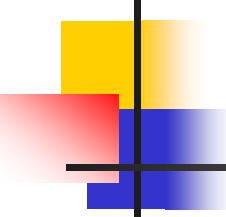


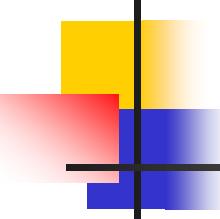
Solutions


- We carry out many reactions in solutions
- Remember that in the liquid state molecules move much easier than in the solid, hence the mixing of reactants occurs faster
- Solute is the substance which we dissolve
- Solvent is the substance in which we dissolve the solute
- In aqueous solutions, the solvent is water

Concentration of Solutions

- The concentration of a solution defines the amount of solute dissolved in the solvent
- We will express the concentration of a solution in one of the two most common ways:
 - percent by mass
 - molarity

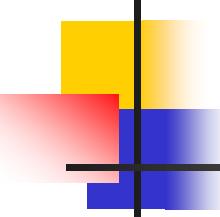
Percent by mass of solute


$$\% \text{ by mass of solute} = \frac{\text{mass of solute}}{\text{mass of solution}} \times 100\%$$

$$\text{mass of solution} = \text{mass of solute} + \text{mass of solvent}$$

- What does it tell us?
 - The mass of solute in 100 mass units of solution

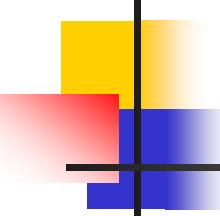
$$w(\text{solute}) = \frac{m(\text{solute})}{m(\text{solution})} \times 100\%$$


- usually expressed as "% w/w"

Example 1

- What is the concentration of the solution obtained by dissolving 25 g of NaOH in 300.0 mL of water?

Example 2



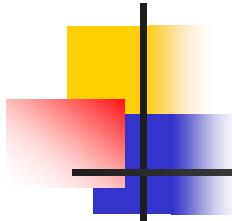
- What mass of NaOH is required to prepare 250.0 g of solution that is 8.00% w/w NaOH?

$$\% \text{ by mass (NaOH)} = \frac{m(\text{NaOH})}{m(\text{solution})} \times 100\%$$

$$8.00\% = \frac{m(\text{NaOH})}{250.0 \text{ g}} \times 100\%$$

$$m(\text{NaOH}) = \frac{250.0 \text{ g} \times 8.00\%}{100\%} = \boxed{20.0 \text{ g}}$$

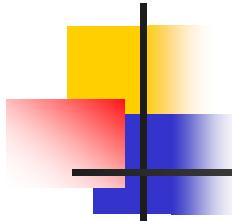
Example 3



- Calculate the mass of 8.00% w/w NaOH solution that contains 32.0 g of NaOH.

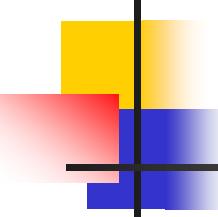
$$\% \text{ by mass (NaOH)} = \frac{m(\text{NaOH})}{m(\text{solution})} \times 100\%$$

$$8.00\% = \frac{32.0 \text{ g}}{m(\text{solution})} \times 100\%$$


$$m(\text{solution}) = \frac{32.0 \text{ g} \times 100\%}{8.00\%} = \boxed{400. \text{ g}}$$

Example 4

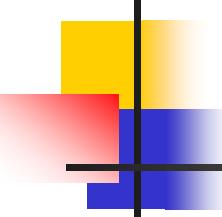
- What volume of 12.0% KOH contains 40.0 g of KOH? The density of the solution is 1.11 g/mL.



Molarity, or Molar Concentration

molarity = $\frac{\text{number of moles of solute}}{\text{number of liters of solution}}$

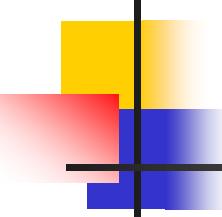
$$M = \frac{n(\text{solvent})}{V(\text{solution})} \left[\frac{\text{mol}}{\text{L}} \text{ or } \frac{\text{mmol}}{\text{mL}} \right]$$


- Always divide the number of moles of the solute by the volume of the solution, not by the volume of the solvent

Example 5

- Calculate the molarity of a solution that contains 12.5 g of sulfuric acid in 1.75 L of solution.

Example 6



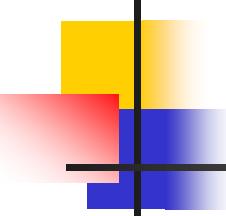
- Determine the mass of calcium nitrate required to prepare 3.50 L of 0.800 M $\text{Ca}(\text{NO}_3)_2$.
- We first find the number of moles of $\text{Ca}(\text{NO}_3)_2$ dissolved in the solution:

$$M = \frac{\text{\# moles (solute)}}{V(\text{solution})}$$

$$0.800 \text{ mol/L} = \frac{\text{\# moles } (\text{Ca}(\text{NO}_3)_2)}{3.50 \text{ L}}$$

$$\text{\# moles } (\text{Ca}(\text{NO}_3)_2) = 0.800 \text{ mol/L} \times 3.50 \text{ L} = 2.80 \text{ mol}$$

Example 6



- Now we calculate the molar mass of $\text{Ca}(\text{NO}_3)_2$ and find its mass in grams necessary for preparation of the solution:

$$M_r(\text{Ca}(\text{NO}_3)_2) = 164.09 \text{ g/mol}$$

$$m(\text{Ca}(\text{NO}_3)_2) = M_r(\text{Ca}(\text{NO}_3)_2) \times \# \text{ moles } (\text{Ca}(\text{NO}_3)_2)$$

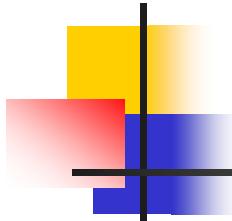
$$m(\text{Ca}(\text{NO}_3)_2) = 164.09 \text{ g/mol} \times 2.80 \text{ mol} = \boxed{459 \text{ g}}$$

Dilution of Solutions

$$M = \frac{n(\text{solute})}{V(\text{solution})} \quad \Rightarrow \quad n(\text{solute}) = M \times V(\text{solution})$$

- Solution 1:

concentration = M_1
volume = V_1

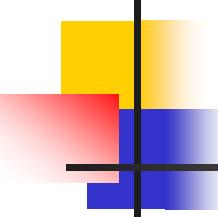

$$n = M_1 \times V_1$$

- We add more solvent (dilute the solution)

concentration = M_2
volume = V_2

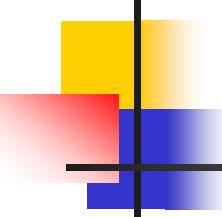
$$n = M_2 \times V_2$$

- The amount of solute remains the same
(we didn't add any solute to the solution)



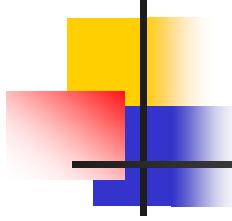
Dilution of Solutions

$$M_1 \times V_1 = M_2 \times V_2$$


- If we know any 3 of these 4 quantities, we can calculate the other one
- The relationship is appropriate for dilutions but not for chemical reactions

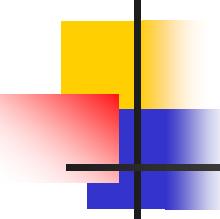
Example 7

- If 10.0 mL of 12.0 M HCl is added to enough water to give 100. mL of solution, what is the concentration of the solution?

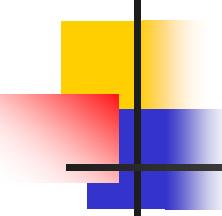

Example 8

- What volume of 18.0 M sulfuric acid is required to make 2.50 L of a 2.40 M sulfuric acid solution?
 - $V_1 = ?$
 - $M_1 = 18.0 \text{ M}$
 - $V_2 = 2.50 \text{ L}$
 - $M_2 = 2.40 \text{ M}$

$$V_1 \times 18.0 \text{ M} = 2.50 \text{ L} \times 2.40 \text{ M}$$


$V_1 = 0.333 \text{ L}$

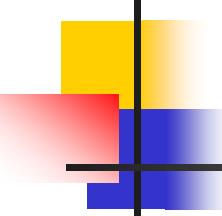
Using Solutions in Chemical Reactions


- Combine the concepts of molarity and stoichiometry to determine the amounts of reactants and products involved in reactions in solution.

Example 9

- What volume of 0.500 M BaCl_2 is required to completely react with 4.32 g of Na_2SO_4 ?

Example 10


- What volume of 0.200 M NaOH will react with 50.0 mL of 0.200 M aluminum nitrate, $\text{Al}(\text{NO}_3)_3$? What mass of $\text{Al}(\text{OH})_3$ will precipitate?

- First we calculate the number of moles of $\text{Al}(\text{NO}_3)_3$ (remember to convert mL to L):

$$M(\text{Al}(\text{NO}_3)_3) = \frac{\#\text{ moles}(\text{Al}(\text{NO}_3)_3)}{0.0500 \text{ L}} = 0.200 \text{ mol/L}$$

$$\#\text{ moles}(\text{Al}(\text{NO}_3)_3) = 0.0100 \text{ mol}$$

Example 10 (continued)

- From the equation we see that each mole of $\text{Al}(\text{NO}_3)_3$ reacts with 3 moles of NaOH . Therefore, we multiply the number of moles of $\text{Al}(\text{NO}_3)_3$ by 3 to find the number of moles of NaOH required for the reaction:

$$\# \text{ moles } (\text{NaOH}) = 0.0300 \text{ mol}$$

- Now we again use the formula for the molarity to find the volume of the NaOH solution reacting:

$$0.200 \text{ mol/L} = \frac{0.0300 \text{ mol}}{V(\text{solution})}$$

$$V(\text{solution}) = 0.150 \text{ L} = \boxed{150 \text{ mL}}$$

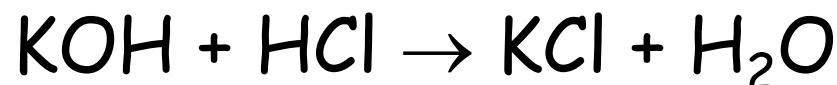
Example 10 (continued)

- Each mole of $\text{Al}(\text{NO}_3)_3$ produces 1 mole of $\text{Al}(\text{OH})_3$. Since the reacting solution contains 0.0100 mole of $\text{Al}(\text{NO}_3)_3$, 0.0100 mole of $\text{Al}(\text{OH})_3$ will be formed:

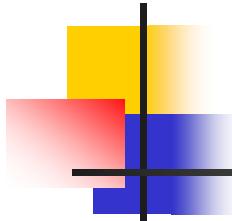
$$m(\text{Al}(\text{OH})_3) = \# \text{moles}(\text{Al}(\text{OH})_3) \times M_r(\text{Al}(\text{OH})_3)$$

$$m(\text{Al}(\text{OH})_3) = 0.0100 \text{ mol} \times 78.00 \text{ g/mol} = \boxed{0.780 \text{ g}}$$

$$0.200 \text{ mol/L} = \frac{0.0300 \text{ mol}}{V(\text{solution})}$$


$$V(\text{solution}) = 0.150 \text{ L} = \boxed{150 \text{ mL}}$$

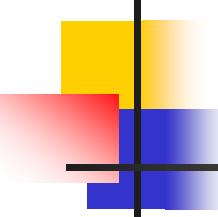
Example 11


- What is the molarity of a KOH solution if 38.7 mL of the KOH solution is required to react with 43.2 mL of 0.223 M HCl?


- First we calculate the number of moles of HCl in the solution (remember to convert mL to L):

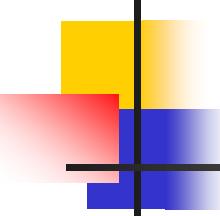
$$M(\text{HCl}) = \frac{\#\text{ moles}(\text{HCl})}{0.0432 \text{ L}} = 0.223 \text{ mol/L}$$

$$\#\text{ moles}(\text{HCl}) = 9.63 \cdot 10^{-3} \text{ mol}$$


Example 11 (continued)

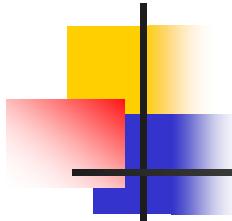
- From the equation we see that each mole of HCl reacts with 1 mole of KOH. Therefore, $9.63 \cdot 10^{-3}$ mole of HCl will react with $9.63 \cdot 10^{-3}$ mole of KOH.
- Now we can use the formula for the molarity:

$$M(\text{KOH}) = \frac{\text{\# moles(KOH)}}{V(\text{solution})}$$


$$M(\text{KOH}) = \frac{9.63 \cdot 10^{-3} \text{ mol}}{0.0387 \text{ L}} = 0.249 \text{ mol/L} = 0.249 \text{ M}$$

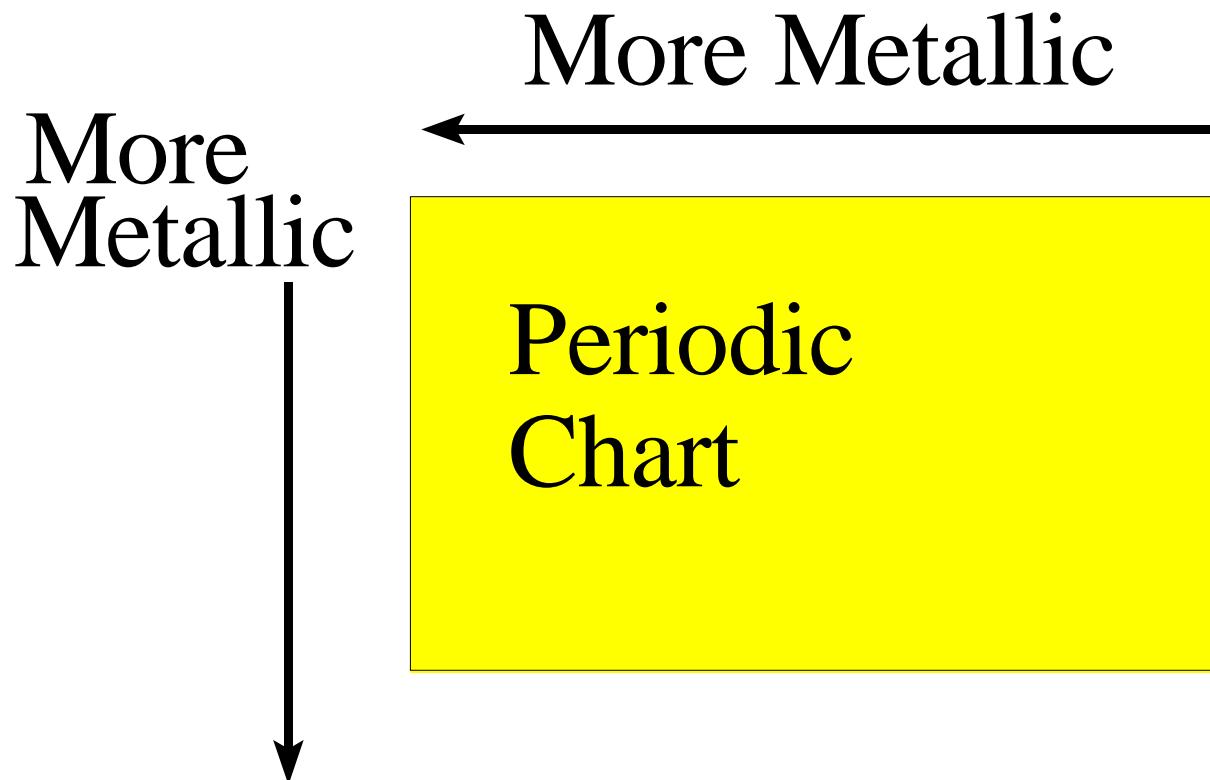
Example 12

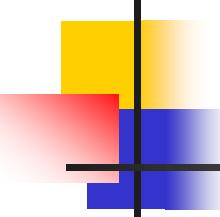
- What is the molarity of a barium hydroxide solution if 44.1 mL of 0.103 M HCl is required to react with 38.3 mL of the $\text{Ba}(\text{OH})_2$ solution?



Metals and Nonmetals

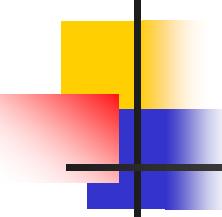
- Stair step function on periodic table separates metals from nonmetals.


Periodic Table of the Elements																						
1A		2A		3B			4B			5B			6B			7B			8B			
Metals		Metalloids		Nonmetals			Metals			Metalloids			Nonmetals			Metals			Metalloids		Nonmetals	
H		Li	Be				B	C	N	O	F	Ne										
Na	Mg			Al	Si	P	S	Cl	Ar													
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr					
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe					
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn					
Fr	Ra	A ⁺	Unq	Unp	Unh	Uns	Uno	Une	Uun	Uuu												
Lanthanide*																						
Actinide**																						

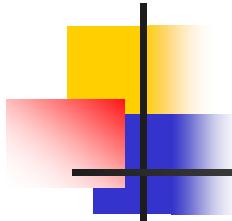

- Metals are to the left of the stair step
- Nonmetals are to the right of the stair step

Metals and Nonmetals

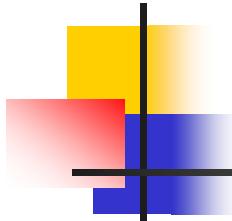
- Periodic trends in metallic character



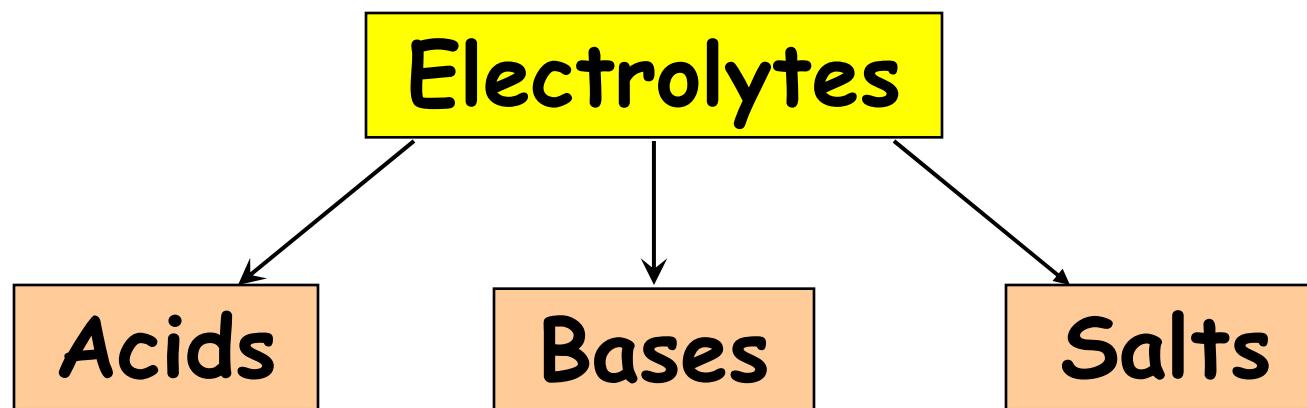
Metals and Nonmetals

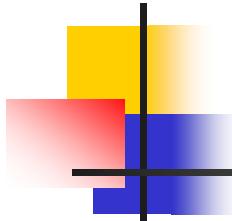

- Metals tend to form cations
 - Li^{1+} , Ca^{2+} , Ni^{2+} , Al^{3+}
- Nonmetals tend to form anions or oxoanions
 - Cl^{1-} , O^{2-} , P^{3-}
 - ClO_4^{1-} , NO_3^{1-} , CO_3^{2-} , SO_4^{2-} , PO_4^{3-}
- Important exceptions:
 - H^{1+} , NH_4^{1+}

Aqueous Solutions


- Classification of solutes:
 - Electrolytes - solutes whose aqueous solutions conduct electricity
 - Nonelectrolytes - solutes whose aqueous solutions do not conduct electricity

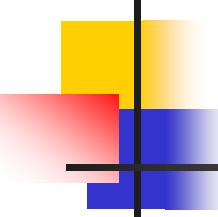
Nonelectrolytes




- Exist in solution in form of electroneutral molecules
- No species present which could conduct electricity
- Some examples:
 - H_2O , $\text{C}_2\text{H}_5\text{OH}$, CH_3COOH

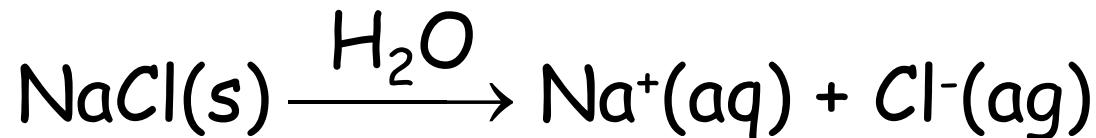
Electrolytes

- Exist in solution as charged ions (both positive and negative)
- Ions move in the electric field and the solution conducts electricity

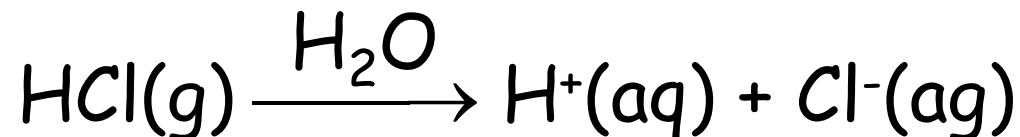


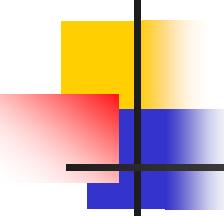
Electrolytes

- Acids
 - Form H^+ cations in aqueous solution
 - HCl , H_2SO_4 , H_3PO_4
- Bases
 - Form OH^- anions in aqueous solution
 - NaOH , $\text{Ca}(\text{OH})_2$
- Salts:
 - Form ions other than H^+ or OH^- in aqueous solution
 - NaCl , MgBr_2 , $\text{Zn}(\text{NO}_3)_2$



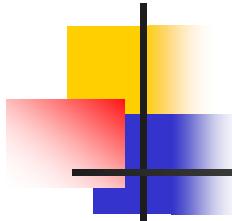
Electrolytes


- Dissociation

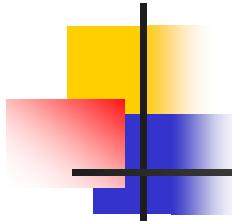

- The process in which a solid ionic compound separates into its ions in solution

- Ionization

- The process in which a molecular compound separates to form ions in solution

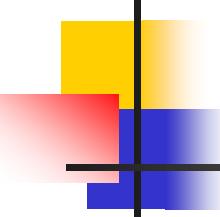


Strong Electrolytes


- Strong electrolytes
 - Dissociate completely in aqueous solution
 - Good electric conductors in solution
- Examples:
 - Strong acids (Table 4-5)
 HCl , HNO_3 , H_2SO_4
 - Strong bases (Table 4-7)
 KOH , $\text{Ba}(\text{OH})_2$
 - Soluble ionic salts (Solubility Chart)
 KI , $\text{Pb}(\text{NO}_3)_2$, Na_3PO_4

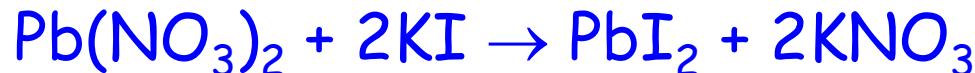
Weak Electrolytes

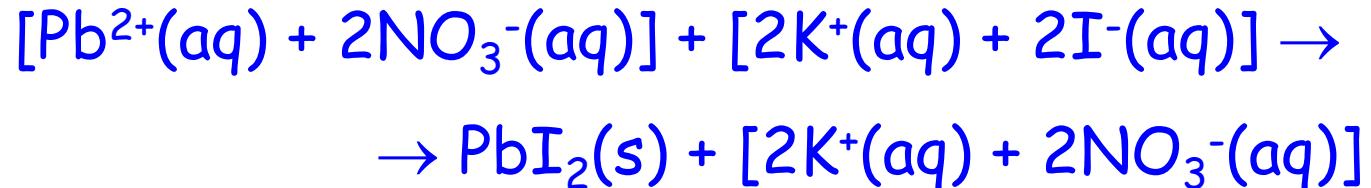
- Weak electrolytes
 - Dissociate partially in aqueous solution
 - Poor electric conductors in solution
- Examples:
 - Weak acids (Table 4-6)
 HF , CH_3COOH , H_2CO_3 , H_3PO_4
 - Weak bases
 NH_3 , CH_3NH_2
- Dissociation of weak electrolytes is reversible


Reversible Reactions

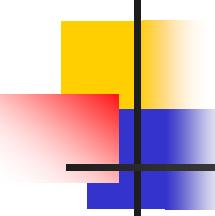
- All weak acids and bases ionize reversibly in aqueous solution
 - This is why they ionize less than 100%
- CH_3COOH - acetic acid

- NH_3 - ammonia



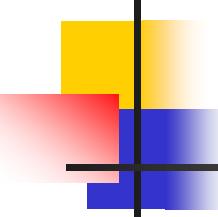

How to Write Ionic Equations

- 1) Write the formula unit equation:



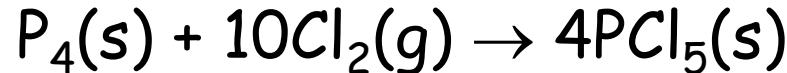
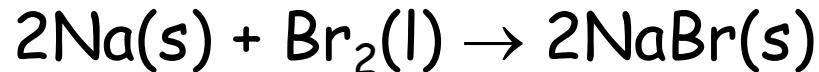
- 2) Show dissociation for every strong electrolyte (total ionic equation):

- 3) To obtain the net ionic equation, get rid of spectator ions:



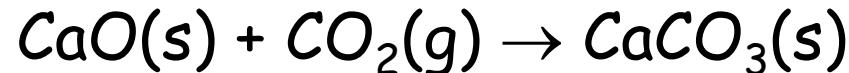
Ionic Equations: Examples

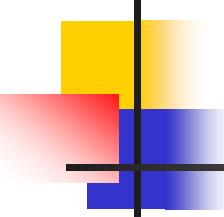
- $\text{Zn} + \text{CuSO}_4 \rightarrow \text{ZnSO}_4 + \text{Cu}$
- $\text{NaOH} + \text{CH}_3\text{COOH} \rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O}$

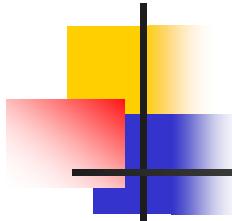
Combination Reactions

- One or more substances react to form one new substance (compound)

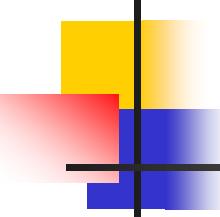

- Element + Element \rightarrow Compound



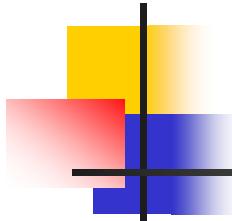
- Compound + Element \rightarrow Compound


- Compound + Compound \rightarrow Compound

Decomposition Reactions

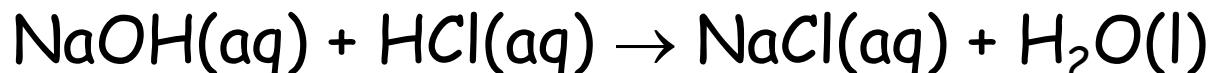

- A compound decomposes to produce two or more substances
 - Compound → Element + Element
$$2\text{HgO}(s) \xrightarrow{\text{heat}} 2\text{Hg}(l) + \text{O}_2(g)$$
$$2\text{H}_2\text{O}(l) \xrightarrow{\text{electrolysis}} 2\text{H}_2(g) + \text{O}_2(g)$$
 - Compound → Compound + Element
$$2\text{KClO}_3(s) \xrightarrow{\text{heat}} 2\text{KCl}(s) + 3\text{O}_2(g)$$
 - Compound → Compound + Compound
$$\text{Mg}(\text{OH})_2(s) \xrightarrow{\text{heat}} \text{MgO}(s) + \text{H}_2\text{O}(g)$$

Displacement Reactions

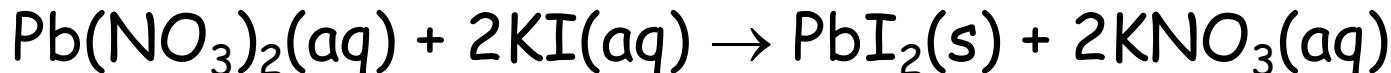

- One element displaces another from a compound
 - $\text{Zn(s)} + \text{CuSO}_4\text{(aq)} \rightarrow \text{ZnSO}_4\text{(aq)} + \text{Cu(s)}$
 - $\text{Zn(s)} + \text{H}_2\text{SO}_4\text{(aq)} \rightarrow \text{ZnSO}_4\text{(aq)} + \text{H}_2\text{(g)}$
 - $2\text{K(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{KOH(aq)} + \text{H}_2\text{(g)}$

Metathesis Reactions

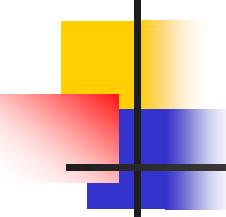
- Exchange of ions between two compounds
- General equation:
 - $AX + BY \rightarrow AY + BX$
- Need a driving force in order to proceed
- Such driving force should act to remove ions from the solution



Metathesis Reactions

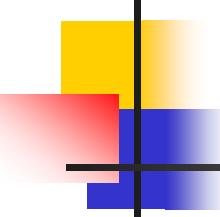

- Formation of a nonelectrolyte

- Acid-Base neutralization - most typical


- Formation of an insoluble compound

- Precipitation

- Gas evolution



Reading Assignment

- Read Sections 4-1 through 4-3 and 4-8 through 4-11
- Get familiar with information presented in Sections 4-5 and 4-6
- Take a look at Lecture 6 notes (will be posted on the web 9/14)
- Read Sections 5-1 through 5-13

Homework #2

- Required:

OWL Homework Problems
based on Chapters 3 & 4
due by 9/26/05, 9:00 p.m.

- Optional:

OWL Tutors and Exercises
Textbook problems
(see course website)