Acid-Base Reactions

- There are four acid-base reaction combinations that are possible:
 - Strong acids strong bases
 - Strong acids weak bases
 - Weak acids strong bases
 - Weak acids weak bases
- General name neutralization reactions
- Most of these reactions result in the formation of salt and water

Strong Acid + Strong Base

- Type 1 formation of a soluble salt:
 - HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(ℓ)
 - 2HBr(aq) + Ca(OH)₂(s) \rightarrow CaBr₂(aq) + 2H₂O(ℓ)
- Type 2 formation of an insoluble salt:
 - $H_2SO_4(aq) + Ba(OH)_2(aq) \rightarrow BaSO_4(s) + 2H_2O(\ell)$

Strong Acid + Weak Base

- Always form a soluble salt:
 - $HNO_3(aq) + NH_3(g) \rightarrow NH_4NO_3(aq)$
 - $H_2SO_4(aq) + NH_3(g) \rightarrow (NH_4)_2SO_4(aq)$
- Reactions of acids with ammonia lead only to the formation of soluble salts
- Water is not formed in these reactions

Weak Acid + Strong Base

Always form a soluble salt:

- HNO₂(aq) + NaOH(aq) \rightarrow NaNO₂(aq) + H₂O (ℓ)
- $H_2SO_3(aq) + 2RbOH(aq) \rightarrow Rb_2SO_3(aq) + 2H_2O(\ell)$

Weak Acid + Weak Base

Always form a soluble salt:

- $CH_3COOH(I) + NH_3(g) \rightarrow NH_4(CH_3COO)(aq)$
- $HF(g) + NH_3(g) \rightarrow NH_4F(aq)$

But...

these reactions proceed in the opposite direction because the products are unstable in water

The salts formed by weak acid and weak base are not stable in aqueous solution !!!

Acidic Salts

- Polyprotic acids have more than one proton in their molecules
- When reacted with insufficient amount of a base, such acids do not lose all of their protons
- The salts formed in such reactions are called acidic salts since they can further react with bases

Acidic Salts

Example

- Sulfuric acid and sodium hydroxide are reacted
 in a <u>1:1</u> ratio
 - $H_2SO_4(aq) + NaOH(aq) \rightarrow NaHSO_4(aq) + H_2O(\ell)$ The acidic salt <u>sodium hydrogen sulfate</u> is formed
 - in a <u>1:2</u> ratio
 - $H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(\ell)$ The normal salt <u>sodium sulfate</u> is formed
- Sodium sulfate can also be formed from the acidic salt sodium hydrogen sulfate: NaHSO₄(aq) + NaOH(aq) → Na₂SO₄(aq) + H₂O(ℓ)

Example 1

 Write total and net ionic equations for the reaction of 2 moles of cesium hydroxide with 1 mole of phosphoric acid. Name the salt that is formed.

Basic Salts

- Basic salts are formed by the reaction of polyhydroxy bases with less than the stoichiometric amount of acid
- Example

Barium chloride can also be formed from the basic salt barium hydroxochloride:
Ba(OH)Cl(aq) + HCl(aq) → BaCl₂(aq) + H₂O(ℓ)

Example 2

 Write total and net ionic equations for the reaction of 1 mole of strontium hydroxide with 1 mole of hydrobromic acid. Name the salt that is formed.

The Lewis Theory

- This is the most general of the present day acid-base theories
 - It emphasizes what happens to the electrons as opposed to what happens to the protons
- Acids are <u>electron pair acceptors</u>
- Bases are <u>electron pair donors</u>
- An acid-base reaction is a transfer of the electron pair from base to acid

The Lewis Theory: Examples

$\blacksquare NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

• HBr + H₂O \rightarrow H₃O⁺ + Br⁻

The Lewis Theory

The Lewis theory is more general than the Brønsted-Lowry theory since it is not limited to the compounds with protons

 $NaF + BF_3 \rightarrow Na^+ + BF_4^-$

 Neutralization in the sense of the Lewis theory is the formation of a covalent bond through the donor-acceptor mechanism

Describe the reaction between BF₃ and NH₃ in terms of the Lewis theory

The Lewis Theory

- Lewis bases electron pair donors
 - Species with a lone pair of electrons
 - Anions
- Lewis acids electron pair acceptors
 - Species with an incomplete octet
 - Cations
 - Molecules with polar double bonds
 - Atoms with expandable valence shells

The Lewis Theory: Examples

- $H^+ + OH^- \rightarrow$
- Na⁺ + Cl⁻ \rightarrow
- $CO_2 + H_2O \rightarrow$
- $SnCl_4 + 2Cl^- \rightarrow$

CHAPTER 11

Reactions in Aqueous Solutions II: Calculations

Concentration of Solutions

Percent by mass

% by mass of solute = $\frac{\text{mass of solute}}{\text{mass of solution}} \times 100\%$

Molarity

 $molarity = \frac{number of moles of solute}{volume of solution in liters}$

Example 4

- 12.4 g of Na₂SO₄ is dissolved in 120 ml of water. What is the molarity of the soltution with respect to
 - sodium sulfate ?
 - sulfate anions ?
 - sodium cations ?

Example 5

300 ml of a 0.2 M solution of cesium hydroxide was neutralized with 200 ml of a 0.3 M solution of acetic acid. What is the resulting molarity of the obtained cesium acetate solution?

Reading Assignments

- Read Chapter 10 completely
- Read Sections 4-5 & 4-6 of Chapter 4
- Read Section 6-8 of Chapter 6