CHEMISTRY 101 Practice Exam 1 DR. PECK

Directions: (1) Choose the best answer for each multiple choice question (numbers 1-15). Transfer your multiple choice answers onto the scantron.
(2) Do not separate any of the pages. When finished, give the proctor at the front of the room both the exam and the completed scantron. Cover your exam and your work whenever possible.

NAME
(print)
(signature)
(seat no.)
(NOTE: This practice exam does not contain questions based upon topics from Chapter 5. The actual exam may or may no depending upon our ability to cover Chapter 5 in lecture before the date of the first exam.)

1. Which one of the following is a weak acid?
(a) HBr
(b) HClO_{4}
(c) HNO_{3}
(d) HCl
(e) HClO_{2}
2. What is the oxidizing agent in the following reaction?

$$
6 \mathrm{KOH}(\mathrm{aq})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{KClO}_{3}(\mathrm{aq})+5 \mathrm{KCl}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(a) KOH
(b) KCl
(c) KClO_{3}
(d) $\mathrm{Cl}_{2}(\mathrm{e}) \mathrm{H}_{2} \mathrm{O}$
3. Balance the following equation with the smallest whole number coefficients. What is the coefficient for HCl in the balanced equation?

$$
\mathrm{SnS}_{2}+\mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{SnCl}_{6}+\mathrm{H}_{2} \mathrm{~S}
$$

(a) 4
(b) 6
(c) 3
(d) 12
(e) 2
4. Classify the following reaction by giving all of these reaction type(s) that apply.
I. redox
II. combination
III. decomposition
IV. displacement
V. metathesis

$$
2 \mathrm{PbO}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PbO}_{2}(\mathrm{~s})
$$

(a) I and V
(b) only II
(c) I and II
(d) only III
(e) only V
5. Each response below lists an ion by name and by chemical symbol or formula. Also each ion is classified as monatomic or polyatomic and as a cation or anion. Which response contains an error?
(a) phosphate
(b) sulfite
(c) nitrite
(d) iron(II)
(e) bromide
$\mathrm{PO}_{4}{ }^{3-}$ polyatomic anion
$\mathrm{SO}_{3}{ }^{2-}$ polyatomic anion
$\mathrm{NO}_{3}{ }^{-}$polyatomic anion
Fe^{2+} monatomic cation
Br^{-}monatomic anion
6. Which of the following matched pairs of name and formula has an error?
(a) $\mathrm{N}_{2} \mathrm{O}_{4}$
dinitrogen oxide
(b) $\mathrm{I}_{2} \mathrm{O}_{7}$ diiodine heptoxide
(c) $\mathrm{As}_{2} \mathrm{O}_{5}$
diarsenic pentoxide
(d) $\mathrm{P}_{4} \mathrm{O}_{10}$ tetraphosphorus decoxide
(e) $\quad \mathrm{S}_{4} \mathrm{~N}_{4}$
tetrasulfur tetranitride
7. Which of the following equations could not be a formula unit equation for the net ionic equation:
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$?
(a) $\mathrm{HCN}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(c) $\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(d) $\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \rightarrow \mathrm{LiClO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(e) $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
8. How many moles of CO_{2} would be produced from 56 moles of O_{2} according to the following balanced equation?

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

(a) 8
(b) 16
(c) 32
(d) 48
(e) 224
9. Calculate the number of atoms in 40.5 g of aluminum.
(a) 900
(b) 2.5×10^{-24}
(c) 1.8×10^{-21}
(d) 6.6×10^{26}
(e) 9.0×10^{23}
10. A compound contains sulfur, oxygen, and chlorine. Analysis shows that it contains by mass 26.95% sulfur and 59.61% chlorine. What is the simplest formula for this compound?
(a) SOCl
(b) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
(c) SOCl_{2}
(d) $\mathrm{SO}_{2} \mathrm{Cl}$
(e) $\mathrm{S}_{2} \mathrm{OCl}_{2}$
11. The specific gravity of ethyl chloride, an external painkiller, is 1.37 at $10^{\circ} \mathrm{C}$. What is the mass of 47.4 mL of the liquid?
(a) 0.346 g
(b) 34.6 g
(c) 52.5 g
(d) 56.6 g
(e) 64.9 g
12. What mass of SrF_{2} can be prepared from the reaction of 8.05 g of $\mathrm{Sr}(\mathrm{OH})_{2}$ with 3.88 g of HF ?

$$
\mathrm{Sr}(\mathrm{OH})_{2}+2 \mathrm{HF} \rightarrow \mathrm{SrF}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(a) 8.31 g
(b) 8.62 g
(c) 10.5 g
(d) 11.7 g
(e) 12.2 g
13. The reaction of 5.0 g of fluorine with excess chlorine produced 7.0 g of ClF_{3}. What percent yield of ClF_{3} was obtained?

$$
\mathrm{Cl}_{2}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{ClF}_{3}
$$

(a) 58%
(b) 69%
(c) 76%
(d) 86%
(e) 92%
14. What is the molarity of $910 . \mathrm{mL}$ of a solution containing 46.2 grams of NaBr ?
(a) 0.493 M
(b) 0.506 M
(c) 0.516 M
(d) 0.528 M
(e) 0.545 M
15. If a reaction of 5.0 g of hydrogen with 5.0 g of carbon monoxide produced 5.5 g of methanol, what was the percent yield?

$$
2 \mathrm{H}_{2}+\mathrm{CO} \rightarrow \mathrm{CH}_{3} \mathrm{OH}
$$

(a) 11%
(b) 24%
(c) 63%
(d) 79%
(e) 96%
16. A sample of commercial perchloric acid is $70.0 \% \mathrm{HClO}_{4}$ by mass; its density is $1.664 \mathrm{~g} / \mathrm{mL}$. How many milliliters of this concentrated HClO_{4} would be required to prepare $500 . \mathrm{mL}$ of $1.25 \mathrm{M} \mathrm{HClO}_{4}$ solution? Show your work.
Ans. \qquad
17. What volume of 4.00 molar sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, is required to react with 250. grams of calcium carbonate, CaCO_{3} ? Show your work.

$$
\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Ans. \qquad

Answers: 1.(E), 2(D), 3(B), 4(C), 5(C), 6(A), 7(A), 8(C), 9(E), 10(C), 11(E), 12(A), 13(D), 14(A), 15(E), 16(53.9 mL), 17(625 mL)

