Concentration of Solutions

Percent by Mass:
Mass of solute
\% Mass of solute (W/W) = ----------------------- x $100 \times$--
Mass of solution
*Mass of solution = mass of solute + mass of solvent *d = density

Concentration of Solutions

- Calculate the mass of $8.00 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}$ solution that contains 32.0 g of NaOH .

Concentration of Solutions

- What mass of NaOH is required to prepare 250.0 g of solution that is $8.00 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}$?

Concentration of Solutions

- Calculate the mass of NaOH in 300.0 mL of an $8.00 \% \mathrm{w} / \mathrm{w} \mathrm{NaOH}$ solution. Density is $1.09 \mathrm{~g} / \mathrm{mL}$.

Limiting Reactant Concept

- Kitchen example of limiting reactant concept.

1 packet of muffin mix +2 eggs +1 cup of milk $\rightarrow 12$ muffins

- How many muffins can we make with the following amounts of mix, eggs, and milk?

Limiting Reactant Concept

- Mix Packets	Eggs	Milk
1	1 dozen	1 gallon

limiting reactant is the muffin mix
2
1 dozen
1 gallon
3
4
5
6
7
1 dozen
1 dozen
1 dozen
1 dozen
1 dozen
1 gallon
1 gallon
1 gallon
1 gallon
1 gallon
limiting reactant is the dozen eggs

Limiting Reactant Concept

- Suppose a box contains 87 bolts, 110 washers, and 99 nuts. How many sets, each consisting of one bolt, two washers, and one nut, can you construct from the contents of one box?

$$
87 \text { bolts }(1 \text { set } / 1 \text { bolt })=87 \text { sets }
$$

$$
110 \text { washers }(1 \text { set } / 2 \text { washers })=55 \text { sets }
$$

$$
99 \text { nuts }(1 \text { set } / 1 \text { nut })=99 \text { sets }
$$

the maximum number we can make is 55 sets determined by the smallest number

Limiting Reactant Concept

Look at a chemical limiting reactant situation.

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

What mass of CO_{2} could be formed by the reaction of 16.0 g of CH_{4} with 48.0 g of O_{2} ?

How many grams of $\mathbf{N H}_{3}$ can be prepared from 89.78 g of N 2 and 18.17 g of H_{2} ?

Answer: $102.3 \mathrm{~g} \mathrm{NH}_{3}$

