Percent Yields from Reactions

- <u>Theoretical yield</u> is calculated by assuming that the reaction goes to completion.
- <u>Actual yield</u> is the amount of a specified pure product made in a given reaction.
 - In the laboratory, this is the amount of product that is formed in your beaker, after it is purified and dried.
- Percent yield indicates how much of the product is obtained from a reaction.

percent yield =
$$\frac{\text{actual yield of product}}{\text{theoretical yield of product}} \times 100\%$$

© 2004 Thomson/Brooks Cole

$CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$

A 10.0 g sample of ethanol, C_2H_5OH , was boiled with excess acetic acid, CH_3COOH , to produce 14.8 g of ethyl acetate, $CH_3COOC_2H_5$. What is the percent yield?

$C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2$

 Example 3-11, P.100. A 15.6-g sample of C₆H₆ is mixed with excess HNO₃. We isolate 18.0 g of C₆H₅NO₂. What is the percent yield of C₆H₅NO₂ in this reaction?

 Salicylic acid reacts with acetic anhydride to form aspirin, acetylsalicylic acid. If the percent yield in this reaction is 78.5%, what mass of salicylic acid is required to produce 150. g aspirin?

Concentration of Solutions

- The concentration of a solution defines the amount of <u>solute dissolved in the solvent</u>.
 - The amount of sugar in sweet tea can be defined by its concentration.

Concentrations of Solutions

Molarity (M): number of moles of a solute dissolved in one liter of solution, Moles/Liter

$molarity = \frac{number of moles of solute}{number of liters of solution}$

© 2004 Thomson/Brooks Cole

Take-Home Calculations

- $(M \times V)_A = (M \times V)_B$
- M x V = moles of solute
- *M* x V = W/MW
- $(M \times V)_A = (W/MW)_A$ OR
- $(M \times V)_A = (W/MW)_B$
- $W = M \times V \times MW$

KOH + HCI \rightarrow **KCI + H**₂**O**

 What is the molarity of a KOH solution if 38.7 mL of the KOH solution is required to react with 43.2 mL of 0.223 M HCI?

Concentrations of Solutions

 Calculate the <u>molarity</u> of a solution that contains 12.5 g of sulfuric acid in 1.75 L of solution.

Concentrations of Solutions

Determine the <u>mass</u> of calcium nitrate required to prepare 3.50 L of 0.800 M Ca(NO₃)₂.

$BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 + 2 NaCl$

 What <u>volume</u> of 0.500 M BaCl₂ is required to completely react with 4.32 g of Na₂SO₄?

 Common method to dilute a solution involves the use of volumetric flask, pipette, and suction bulb.

- To dilute a solution, add solvent to a concentrated solution.
 - One method to make tea "less sweet."
 - How fountain drinks are made from syrup.
- $(M_1V_1)_{before\ dilution} = (M_2V_2)_{after\ dilution}$

 If 10.0 mL of 12.0 M HCl is added to enough water to give 100. mL of solution, what is the <u>concentration</u> of the solution?

 What <u>volume</u> of 18.0 M sulfuric acid is required to make 2.50 L of a 2.40 M sulfuric acid solution?

