Percent Yields from Reactions

- Theoretical yield is calculated by assuming that the reaction goes to completion.
- Actual yield is the amount of a specified pure product made in a given reaction.
- In the laboratory, this is the amount of product that is formed in your beaker, after it is purified and dried.
- Percent yield indicates how much of the product is obtained from a reaction.

$$
\text { percent yield }=\frac{\text { actual yield of product }}{\text { theoretical yield of product }} \times 100 \%
$$

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$

A 10.0 g sample of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, was boiled with excess acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, to produce 14.8 g of ethyl acetate, $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$. What is the percent yield?

$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$

- Example 3-11, P.100. A 15.6-g sample of $\mathrm{C}_{6} \mathrm{H}_{6}$ is mixed with excess HNO_{3}. We isolate 18.0 g of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$. What is the percent yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ in this reaction?

$$
\underset{\text { salicylic acid }}{2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}} \quad \stackrel{+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}}{\text { acetic anhydride }} \quad \rightarrow \underset{\text { aspirin }}{\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}+\mathrm{H}_{2} \mathrm{O}
$$

- Salicylic acid reacts with acetic anhydride to form aspirin, acetylsalicylic acid. If the percent yield in this reaction is 78.5%, what mass of salicylic acid is required to produce $150 . \mathrm{g}$ aspirin?

Concentration of Solutions

The concentration of a solution defines the amount of solute dissolved in the solvent.

- The amount of sugar in sweet tea can be defined by its concentration.

Concentrations of Solutions

Molarity (M): number of moles of a solute dissolved in one liter of solution, Moles/Liter

number of moles of solute number of liters of solution

Take-Home Calculations

- $(M \times V)_{A}=(M \times V)_{B}$
- MxV = moles of solute
- MxV = W/MW
- $(M \times V)_{A}=(W / M W)_{A}$ OR
- $(M \times V)_{A}=(W / M W)_{B}$
- $\mathbf{W}=M \times V \times M W$

$\mathrm{KOH}+\mathrm{HCl} \rightarrow \mathbf{K C l}+\mathrm{H}_{\mathbf{2}} \mathbf{O}$

What is the molarity of a KOH solution if 38.7 mL of the KOH solution is required to react with 43.2 mL of 0.223 M HCl ?

Concentrations of Solutions

Calculate the molarity of a solution that contains 12.5 g of sulfuric acid in 1.75 L of solution.

Concentrations of Solutions

Determine the mass of calcium nitrate required to prepare 3.50 L of 0.800 M $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.

$\mathrm{BaCl}_{\mathbf{2}} \mathbf{+ N a}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}} \rightarrow \mathrm{BaSO}_{\mathbf{4}}+\mathbf{+} \mathbf{~ N a C l}$

What volume of $0.500 \mathrm{M} \mathrm{BaCl}_{2}$ is required to completely react with 4.32 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$?

Dilution of Solutions

- Common method to dilute a solution involves the use of volumetric flask, pipette, and suction bulb.

Dilution of Solutions

To dilute a solution, add solvent to a concentrated solution.

- One method to make tea "less sweet."
- How fountain drinks are made from syrup.
- $\left(M_{1} V_{1}\right)_{\text {before dilution }}=\left(M_{2} \mathbf{V}_{2}\right)_{\text {after dilution }}$

Dilution of Solutions

- If 10.0 mL of 12.0 M HCl is added to enough water to give 100 mL of solution, what is the concentration of the solution?

Dilution of Solutions

- What volume of 18.0 M sulfuric acid is required to make 2.50 L of a 2.40 M sulfuric acid solution?

