Percent Yields from Reactions

- Theoretical yield is calculated by assuming that the reaction goes to completion.
- Actual yield is the amount of a specified pure product made in a given reaction.
- In the laboratory, this is the amount of product that is formed in your beaker, after it is purified and dried.
- Percent yield indicates how much of the product is obtained from a reaction.

$$
\text { percent yield }=\frac{\text { actual yield of product }}{\text { theoretical yield of product }} \times 100 \%
$$

Percent Yields from Reactions

A 10.0 g sample of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, was boiled with excess acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, to produce 14.8 g of ethyl acetate,
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$. What is the percent yield?
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$

Percent Yields from Reactions

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$

1. Calculate the theoretical yield
$? \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}=10.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \times \frac{88.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}}{46.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}$
$=19.1 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
2. Calculate the percent yield.

$$
\% \text { yield }=\frac{14.8 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}}{19.1 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}} \times 100 \%=77.5 \%
$$

Percent Yields from Reactions

Example 3-11, P.100. A 15.6-g sample of $\mathrm{C}_{6} \mathrm{H}_{6}$ is mixed with excess HNO_{3}. We isolate 18.0 g of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$. What is the percent yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ in this reaction?
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
MW \rightarrow MW
$15.6 \xrightarrow{ } \mathrm{X}$ (Theoretical Yield)

Percent Yields from Reactions

$15.6 \times 123.1 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$

$X=$

$$
78.1 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}
$$

$X\left(\underline{\text { Theoretical Yield })}=24.6 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\right.$
actual Yield (18.9 g)
Percent Yield $=$ X 100 = 73.2 \%

Theoretical Yield (24.6 g)

Percent Yields from Reactions

Salicylic acid reacts with acetic anhydride to form aspirin, acetylsalicylic acid. If the percent yield in this reaction is 78.5%, what mass of salicylic acid is required to produce 150. g aspirin?

- $2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow 2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{H} 2 \mathrm{O}$ salicylic acid acetic anhydride aspirin

Percent Yields from Reactions

 actual Yield (150 g)$78.5=$ X 100

Theoretical Yield (g)
$2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3} \quad+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \quad \rightarrow \quad 2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}$ salicylic acid acetic anhydride aspirin
\rightarrow 2MW
$\rightarrow 191.08$ (Theoretical Yield)

ANSWER: $\mathrm{X}=146 \mathrm{~g}$

