CHAPTER THREE
 CHEMICAL EQUATIONS \& REACTION STOICHIOMETRY

Goals

- Chemical Equations
- Calculations Based on Chemical Equations
- The Limiting Reactant Concept
- Percent Yields from Chemical Reactions
- Sequential Reactions
- Concentrations of Solutions
- Dilution of solutions
- Using Solutions in Chemical Reactions

Chemical Equations

Symbolic representation of a chemical reaction that shows:

1. reactants on left side of reaction
2. products on right side of equation
3. relative amounts of each using stoichiometric coefficients

Chemical Equations

Chemical Equations

- Look at the information an equation provides:
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \xrightarrow{\Delta} 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
reactants
yields
products

1 formula unit	3 molecules	2 atoms	3 molecules
1 mole	3 moles	2 moles	3 moles
159.7 g	84.0 g	111.7 g	132 g

Chemical Equations

- Law of Conservation of Matter
- There is no detectable change in quantity of matter in an ordinary chemical reaction.
- Balanced chemical equations must always include the same number of each kind of atom on both sides of the equation.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \xrightarrow{\Delta} 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Law of Conservation of Matter

NH_{3} burns in oxygen to form NO \& water
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$
or correctly
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow{\Delta} 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$

Law of Conservation of Matter

- $\mathrm{C}_{7} \mathrm{H}_{16}$ burns in oxygen to form carbon dioxide and water.
$\mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \xrightarrow{\Delta} 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Balancing equations is a skill acquired only with lots of practice

Calculations Based on Chemical Equations

- How many CO molecules are required to react with 25 formula units of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

$$
25 \mathrm{Fe}_{2} \mathrm{O}_{3}+? \mathrm{CO} \rightarrow \text { Product }
$$

$1 \mathrm{Fe}_{2} \mathrm{O}_{3}$ needs 3 CO
$25 \mathrm{Fe}_{2} \mathrm{O}_{3}$ needs ? CO
$=75$ molecules of CO

Calculations Based on Chemical Equations

- How many iron atoms can be produced by the reaction of 2.50×10^{5} formula units of iron (III) oxide with excess carbon monoxide?
$\mathrm{Fe}_{2} \mathrm{O}_{3}+$ excess $\mathrm{CO} \rightarrow 2 \mathrm{Fe}+$ $1 \mathrm{Fe}_{2} \mathrm{O}_{3}$ gives 2 Fe
$2.5 \times 10^{5} \mathrm{Fe}_{2} \mathrm{O}_{3}$ gives $? ~ F e$
$? \mathrm{Fe}$ atoms $=2.50 \times 10^{5}$ formula units $\mathrm{Fe}_{2} \mathrm{O}_{3}$
$\times \frac{2 \mathrm{Fe} \text { atoms }}{1 \text { formula units } \mathrm{Fe}_{2} \mathrm{O}_{3}}=5.00 \times 10^{5} \mathrm{Fe}$ atoms

Calculations Based on Chemical Equations

- What mass of CO is required to react with 146 g of iron (III) oxide?
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow$ Product
$\mathrm{MW}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ needs 3 $\mathrm{MW}(\mathrm{CO})$
$146 \mathrm{~g} \underset{\text { needs }}{ }$?g CO
? $\mathrm{g} \mathrm{CO}=146 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{159.7 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}} \times \frac{3 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}$
$\times \frac{28.0 \mathrm{~g} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{CO}}=76.8 \mathrm{~g} \mathrm{CO}$

