CHAPTER THREE CHEMICAL EQUATIONS & REACTION STOICHIOMETRY

Goals

- Chemical Equations
- Calculations Based on Chemical Equations
- The Limiting Reactant Concept
- Percent Yields from Chemical Reactions
- Sequential Reactions
- Concentrations of Solutions
- Dilution of solutions
- Using Solutions in Chemical Reactions

- Symbolic representation of a chemical reaction that shows:
- 1. reactants on left side of reaction
- 2. products on right side of equation
- 3. relative amounts of each using stoichiometric coefficients

 Look at the information an equation provides:

$$Fe_2O_3 + 3 CO \xrightarrow{\Delta} 2 Fe + 3 CO_2$$

reactants	yields	products	
1 formula unit	3 molecules	2 atoms	3 molecules
1 mole	3 moles	2 moles	3 moles
159.7 g	84.0 g	111.7 g	132 g

- Law of Conservation of Matter
 - There is <u>no detectable change</u> in quantity of matter in an ordinary chemical reaction.
 - Balanced chemical equations must always include the <u>same number</u> of each kind of atom on both sides of the equation.

$C_3H_8 + 5O_2 \xrightarrow{\Delta} 3CO_2 + 4H_2O$

Law of Conservation of Matter

NH₃ burns in oxygen to form NO & water

 $2 \text{ NH}_{3} + \frac{5}{2} \text{ O}_{2} \xrightarrow{\Delta} 2 \text{ NO} + 3 \text{ H}_{2} \text{ O}$ or correctly $4 \text{ NH}_{3} + 5 \text{ O}_{2} \xrightarrow{\Delta} 4 \text{ NO} + 6 \text{ H}_{2} \text{ O}$

Law of Conservation of Matter

 C₇H₁₆ burns in oxygen to form carbon dioxide and water.

$$C_7H_{16} + 11O_2 \xrightarrow{\Delta} 7CO_2 + 8H_2O$$

 Balancing equations is a skill acquired only with lots of practice

Calculations Based on Chemical Equations

 How many CO molecules are required to react with 25 formula units of Fe₂O₃?

25 $\operatorname{Fe}_2O_3 + ? \operatorname{CO} \rightarrow \operatorname{Product}$ 1 Fe_2O_3 needs 3 CO 25 Fe_2O_3 needs ? CO

? CO molecules= 25 formula units $Fe_2O_3 \times \frac{1}{1}$

3 CO molecules

 $1 \operatorname{Fe}_2 \operatorname{O}_3$ formulaunit

=75 molecules of CO

Calculations Based on Chemical Equations

 How many iron atoms can be produced by the reaction of 2.50 x 10⁵ formula units of iron (III) oxide with excess carbon monoxide?

 $Fe_2O_3 + excess CO \rightarrow 2 Fe +$ $1Fe_2O_3 gives 2 Fe$ 2.5 X 10⁵ $Fe_2O_3 gives ? Fe$

? Fe atoms = 2.50×10^{5} formula units Fe $_{2}O_{3}$ $\times \frac{2 \text{ Fe atoms}}{1 \text{ formula units Fe}_{2}O_{3}} = 5.00 \times 10^{5}$ Fe atoms

Calculations Based on Chemical Equations

What mass of CO is required to react with 146 g of iron (III) oxide? $Fe_2O_3 + 3CO \rightarrow Product$ MW(Fe₂O₃) needs <u>3</u>MW(CO) 146 g needs ?g CO ? g CO = 146 g Fe₂O₃ × $\frac{1 \text{ mol Fe}_2O_3}{159.7 \text{ g Fe}_2O_3}$ × $\frac{3 \text{ mol CO}}{1 \text{ mol Fe}_2O_3}$ $\times \frac{28.0 \text{ g CO}}{1 \text{ mol CO}} = 76.8 \text{ g CO}$