Molecular Weight and Atomic Weight

Molecular Weight or Molar Mass

22.990 + 35.452 = 58.442

Take-Home Calculations

- Molecular Weight = ∑ atomic weights
- Mole = Weight / Molecular Weight
- Number of atoms or molecules = Mole x
 Avogadro's number (6.022 x 10²³)
- Mass of one atom = grams of an element / 6.022 X 10²³

Molar Mass or Molecular Weight

- Molar mass
 - mass in grams numerically equal to the atomic weight of the element in grams.
- Molar mass or Molecular weight of NaCl =
 22.990 + 35.452 = 58.442 amu
- amu = atomic mass unit

Molar Mass

- How do we calculate the molar mass of a compound?
 - add atomic weights of each atom
- The molar mass of propane, C₃H₈, is:

$$3 \times C = 3 \times 12.01 \text{ amu} = 36.03 \text{ amu}$$

$$8 \times H = 8 \times 1.01 \text{ amu} = 8.08 \text{ amu}$$

Molar mass
$$= 44.11$$
 amu

Molar Mass

Calculate the molar mass of $Ca(NO_3)_2$?

$$1 \times \text{Ca} = 1 \times 40.08 \text{ amu} = 40.08 \text{ amu}$$

$$2 \times N = 2 \times 14.01 \,\text{amu} = 28.02 \,\text{amu}$$

$$6 \times O = 6 \times 16.00 \text{ amu} = 96.00 \text{ amu}$$

Molar mass = 164.10 amu

The Mole

- A number of atoms, ions, or molecules that is large enough to see and handle.
- A mole = number of things
 - Just like a dozen = 12 things
 - One mole = 6.022 x 10²³ things
- Avogadro's number $(N_A) = 6.022 \times 10^{23}$

The number of moles

 How many moles of Mg atoms are present in 73.4 g of Mg?

? mol Mg = 73.4 g Mg
$$\left(\frac{1 \text{ mol Mg atoms}}{24.30 \text{ g Mg}}\right)$$

$$= 3.02 \, \text{molMg}$$

The Mole

- One Mole of Cl₂ Contains
 - Cl₂ or 70.90 g
 - contains 6.022 x 10²³ Cl₂ molecules
 2(6.022 x 10²³) Cl atoms
- One Mole of C₃H₈ Contains
 - C₃H₈ or 44.11 g
 - contains 6.022 x 10²³ C₃H₈ molecules
 3 (6.022 x 10²³) C atoms
 8 (6.022 x 10²³) H atoms

The mass of a single atom

 Calculate the mass of a <u>single Mg atom</u>, in grams, to 3 significant figures.

? g Mg = 1 Mg atom
$$\left(\frac{1 \text{ mol Mg atoms}}{6.022 \times 10^{23} \text{ Mg atoms}}\right) \times \left(\frac{24.30 \text{ gMg}}{1 \text{ mol Mg atoms}}\right) = 4.04 \times 10^{-23} \text{ g Mg}$$

The number of atoms

 How many atoms are contained in 1.67 moles of Mg?

? Mg atoms = 1.67 mol Mg
$$\left(\frac{6.022 \times 10^{23} \text{ Mg atoms}}{1 \text{ mol Mg}}\right)$$

= 1.00×10²⁴ Mg atoms

The number of molecules

 Calculate the number of C₃H₈ molecules in 74.6 g of propane.

$$? C_3H_8 \text{ molecules} = 74.6 \text{ g } C_3H_8 \times$$

$$\left(\frac{1 \,\text{mole C}_{3} H_{8}}{44.11 \,\text{g C}_{3} H_{8}}\right) \left(\frac{6.022 \times 10^{23} \,\text{C}_{3} H_{8} \,\text{molecules}}{44.11 \,\text{g C}_{3} H_{8}}\right) =$$

 1.02×10^{24} molecules

The number of atoms

 Calculate the number of O atoms in 26.5 g of Li₂CO₃.

? O atoms = 26.5 g Li₂CO₃ ×
$$\frac{1 \text{ mol Li}_2\text{CO}_3}{73.8 \text{ g Li}_2\text{CO}_3}$$
 ×

$$\frac{6.022 \times 10^{23} \text{ form.units Li}_2\text{CO}_3}{1 \text{ mol Li}_2\text{CO}_3} \times \frac{3 \text{ O atoms}}{1 \text{ formula unit Li}_2\text{CO}_3} =$$

 6.49×10^{23} O atoms

Percent Composition and Formulas of Compounds

- % composition = mass of an individual element in a compound divided by the total mass of the compound x 100%
 - Determine the percent composition of C in C₃H₈.

% C =
$$\frac{\text{mass C}}{\text{mass C}_3 \text{H}_8} \times 100\%$$

= $\frac{3 \times 12.01 \text{ g}}{44.11 \text{ g}} \times 100\%$
= 81.68%

Percent Composition and Formulas of Compounds

What is the percent composition of H in C₃H₈?

$$\% H = \frac{\text{mass H}}{\text{mass C}_3 H_8} \times 100\%$$

$$= \frac{8 \times H}{\text{C}_3 H_8} \times 100\%$$

$$= \frac{8 \times 1.01 \text{ g}}{44.11 \text{ g}} \times 100\% = 18.32 \%$$
or
$$18.32\% = 100\% - 81.68\%$$

Percent Composition and Formulas of Compounds

 Calculate the percent composition of Fe₂(SO₄)₃ to 3 significant figures

% Fe=
$$\frac{2 \times \text{Fe}}{\text{Fe}_2(\text{SO}_4)_3} \times 100\% = \frac{2 \times 55.8 \text{g}}{399.9 \text{g}} \times 100\% = 27.9\% \text{Fe}$$
% S = $\frac{3 \times \text{S}}{\text{Fe}_2(\text{SO}_4)_3} \times 100\% = \frac{3 \times 32.1 \text{g}}{399.9 \text{g}} \times 100\% = 24.1\% \text{S}$
% O = $\frac{12 \times \text{O}}{\text{Fe}_2(\text{SO}_4)_3} \times 100\% = \frac{12 \times 16.0 \text{g}}{399.9 \text{g}} \times 100\% = 48.0\% \text{O}$
Total =100%

- Empirical Formula smallest whole-number ratio of atoms present in a compound
 - CH₂ is the empirical formula for alkenes (CH₂CH₂CH₂CH₂CH₂)
- Molecular Formula actual numbers of atoms of each element present in a molecule of the compound
 - Ethene CH₂CH₂ is C₂H₄
 - Pentene CH₂CH₂CH₂CH₂CH₂ is C₅H₁₀
 - percent composition is determined experimentally

- A compound contains 24.74% K, 34.76% Mn, and 40.50% O by mass. What is its empirical formula?
- Make the simplifying assumption that we have 100.0 g of compound.
- In 100.0 g of compound there are:
 - 24.74 g of K
 - 34.76 g of Mn
 - 40.50 g of O

? mol K = 24.74 g K ×
$$\frac{1 \text{ mol } K}{39.10 \text{ g K}}$$
 = 0.6327 mol K
? mol Mn = 34.76 g Mn × $\frac{1 \text{ mol } Mn}{54.94 \text{ g Mn}}$ = 0.6327 mol Mn
? mol O = 40.50 g O × $\frac{1 \text{mol } O}{16.00 \text{ g O}}$ = 2.531 mol O

$$\frac{\text{obtain smallest whole number ratio}}{0.6327}$$
for K $\Rightarrow \frac{0.6327}{0.6327}$ = 1 K for Mn $\Rightarrow \frac{0.6327}{0.6327}$ = 1 Mn
for O $\Rightarrow \frac{2.531}{0.6327}$ = 4 O
thus the chemical formula is KMnO ₄

 A sample of a compound contains 6.541g of Co and 2.368g of O. What is the empirical formula for this compound?

? mol Co = 6.541 g Co ×
$$\frac{1 \text{ mol Co}}{58.93 \text{ gCo}}$$
 = 0.1110 mol Co

? mol O = 2.368 g O ×
$$\frac{1\text{mol O}}{16.00 \text{ g O}}$$
 = 0.1480 mol O

find smallest whole number ratio

 A sample of a compound contains 6.541g of Co and 2.368g of O. What is the empirical formula for this compound?

for Co
$$\Rightarrow \frac{0.1110}{0.1110} = 1$$
 Co for O $\Rightarrow \frac{0.1480}{0.1110} = 1.333$ O

multipy both by 3 to turn fraction to whole number

$$1 \text{ Co} \times 3 = 3 \text{ Co}$$
 $1.333 \text{ O} \times 3 = 4 \text{ O}$

Thus the compound's formula is:

Purity of Samples

 The percent purity of a sample of a substance is always represented as

% purity =
$$\frac{\text{mass of pure substance}}{\text{mass of sample}} \times 100\%$$

mass of sample includes impurities

Purity of Samples

• A bottle of sodium phosphate, Na₃PO₄, is 98.3% pure Na₃PO₄. What are the masses of Na₃PO₄ and impurities in 250.0 g of this sample of Na₃PO₄?

unit factor
$$\frac{98.3 \text{ g Na }_{3}\text{PO}_{4}}{100.0 \text{ g sample}}$$

? g Na $_{3}\text{PO}_{4} = 250.0 \text{ g sample} \times \frac{98.3 \text{ g Na }_{3}\text{PO}_{4}}{100.0 \text{ g sample}}$
= 246 g Na $_{3}\text{PO}_{4}$
? g impurities = 250.0 g sample - 246 g Na $_{3}\text{PO}_{4}$
= 4.00 g impurities