Molecular Weight and Atomic Weight

Take-Home Calculations

- Molecular Weight = Σ atomic weights
- Mole = Weight / Molecular Weight
- Number of atoms or molecules = Mole x Avogadro's number (6.022×10^{23})
- Mass of one atom = grams of an element / 6.022×10^{23}

Molar Mass or Molecular Weight

- Molar mass
mass in grams numerically equal to the atomic weight of the element in grams.
- Molar mass or Molecular weight of $\mathrm{NaCl}=$ $22.990+35.452=58.442 \mathrm{amu}$
- amu = atomic mass unit

Molar Mass

How do we calculate the molar mass of a compound?
${ }^{\circ}$ add atomic weights of each atom
The molar mass of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, is:
$3 \times \mathrm{C}=3 \times 12.01 \mathrm{amu}=36.03 \mathrm{amu}$
$8 \times \mathrm{H}=8 \times 1.01 \mathrm{amu}=8.08 \mathrm{amu}$
Molar mass
$=44.11 \mathrm{amu}$

Molar Mass

Calculate the molar mass of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?
$1 \times \mathrm{Ca}=1 \times 40.08 \mathrm{amu}=40.08 \mathrm{amu}$
$2 \times \mathrm{N}=2 \times 14.01 \mathrm{amu}=28.02 \mathrm{amu}$
$6 \times \mathrm{O}=6 \times 16.00 \mathrm{amu}=96.00 \mathrm{amu}$
Molar mass
$=164.10 \mathrm{amu}$

The Mole

- A number of atoms, ions, or molecules that is large enough to see and handle.
- A mole = number of things
- Just like a dozen $=12$ things
- One mole $=6.022 \times 10^{23}$ things
- Avogadro's number $\left(\mathrm{N}_{\mathrm{A}}\right)=6.022 \times 10^{23}$

The number of moles

- How many moles of Mg atoms are present in 73.4 g of Mg ?

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{Mg} & =73.4 \mathrm{~g} \mathrm{Mg}\left(\frac{1 \mathrm{molMg} \text { atoms }}{24.30 \mathrm{~g} \mathrm{Mg}}\right) \\
& =3.02 \mathrm{molMg}
\end{aligned}
$$

The Mole

- One Mole of Cl_{2} Contains
Cl_{2} or 70.90 g
- contains $6.022 \times 10^{23} \mathrm{Cl}_{2}$ molecules $2\left(6.022 \times 10^{23}\right) \mathrm{Cl}$ atoms

One Mole of $\mathrm{C}_{3} \mathrm{H}_{8}$ Contains

- $\mathrm{C}_{3} \mathrm{H}_{8}$ or 44.11 g
- contains $6.022 \times 10^{23} \mathrm{C}_{3} \mathrm{H}_{8}$ molecules
$3\left(6.022 \times 10^{23}\right) \mathrm{C}$ atoms
$8\left(6.022 \times 10^{23}\right) \mathrm{H}$ atoms

The mass of a single atom

Calculate the mass of a single Mg atom, in grams, to 3 significant figures.

$$
\begin{gathered}
? \mathrm{~g} \mathrm{Mg}=1 \mathrm{Mg} \text { atom }\left(\frac{1 \mathrm{~mol} \mathrm{Mg} \text { atoms }}{6.022 \times 10^{23} \mathrm{Mg} \text { atoms }}\right) \times \\
\left(\frac{24.30 \mathrm{gMg}}{1 \mathrm{~mol} \mathrm{Mg} \text { atoms }}\right)=4.04 \times 10^{-23} \mathrm{~g} \mathrm{Mg}
\end{gathered}
$$

The number of atoms

How many atoms are contained in 1.67 moles of Mg?
$? \mathrm{Mg}$ atoms $=1.67 \mathrm{~mol} \mathrm{Mg}\left(\frac{6.022 \times 10^{23} \mathrm{Mg} \text { atoms }}{1 \mathrm{~mol} \mathrm{Mg}}\right)$

$$
=1.00 \times 10^{24} \mathrm{Mg} \text { atoms }
$$

The number of molecules

- Calculate the number of $\mathrm{C}_{3} \mathrm{H}_{8}$ molecules in 74.6 g of propane.
? $\mathrm{C}_{3} \mathrm{H}_{8}$ molecules $=74.6 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times$
$\left(\frac{1 \text { mole C }_{3} \mathrm{H}_{8}}{44.11 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{C}_{3} \mathrm{H}_{8} \text { molecules }}{44.11 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}\right)=$
1.02×10^{24} molecules

The number of atoms

Calculate the number of O atoms in 26.5 g of $\mathrm{Li}_{2} \mathrm{CO}_{3}$.
? O atoms $=26.5 \mathrm{~g} \mathrm{Li}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{CO}_{3}}{73.8 \mathrm{~g} \mathrm{Li}_{2} \mathrm{CO}_{3}} \times$
6.022×10^{23} form.units $\mathrm{Li}_{2} \mathrm{CO}_{3}$
3 O atoms
$1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{CO}_{3} \quad 1$ formula unit $\mathrm{Li}_{2} \mathrm{CO}_{3}$

$$
6.49 \times 10^{23} \mathrm{O} \text { atoms }
$$

Percent Composition and Formulas of Compounds

- \% composition = mass of an individual element in a compound divided by the total mass of the compound $\times 100 \%$
- Determine the percent composition of C in $\mathrm{C}_{3} \mathrm{H}_{8}$.

$$
\begin{aligned}
\% \mathrm{C} & =\frac{\text { mass } \mathrm{C}}{\text { mass } \mathrm{C}_{3} \mathrm{H}_{8}} \times 100 \% \\
& =\frac{3 \times 12.01 \mathrm{~g}}{44.11 \mathrm{~g}} \times 100 \% \\
& =81.68 \%
\end{aligned}
$$

Percent Composition and Formulas of Compounds

- What is the percent composition of H in $\mathrm{C}_{3} \mathrm{H}_{8}$?

$$
\begin{aligned}
\% \mathrm{H} & =\frac{\text { mass } \mathrm{H}}{\operatorname{mass~}_{3} \mathrm{H}_{8}} \times 100 \% \\
& =\frac{8 \times \mathrm{H}}{\mathrm{C}_{3} \mathrm{H}_{8}} \times 100 \% \\
& =\frac{8 \times 1.01 \mathrm{~g}}{44.11 \mathrm{~g}} \times 100 \%=18.32 \% \\
& \text { or } \\
18.32 \% & =100 \%-81.68 \%
\end{aligned}
$$

Percent Composition and Formulas of Compounds

- Calculate the percent composition of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ to 3 significant figures
$\% \mathrm{Fe}=\frac{2 \times \mathrm{Fe}}{\left.\mathrm{Fe}_{2} \mathrm{SO}_{4}\right)_{3}} \times 100 \%=\frac{2 \times 55.8 \mathrm{~g}}{399.9 \mathrm{~g}} \times 100 \%=27.9 \% \mathrm{Fe}$
$\% \mathrm{~S}=\frac{3 \times \mathrm{S}}{\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}} \times 100 \%=\frac{3 \times 32.1 \mathrm{lg}}{399.9 \mathrm{~g}} \times 100 \%=24.1 \% \mathrm{~S}$
$\% \mathrm{O}=\frac{12 \times \mathrm{O}}{\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}} \times 100 \%=\frac{12 \times 16.0 \mathrm{~g}}{399.9 \mathrm{~g}} \times 100 \%=48.0 \% \mathrm{O}$
Total

Derivation of Formulas from Elemental Composition

- Empirical Formula - smallest whole-number ratio of atoms present in a compound
- CH_{2} is the empirical formula for alkenes $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$
- Molecular Formula - actual numbers of atoms of each element present in a molecule of the compound
- Ethene $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ is $\mathrm{C}_{2} \mathrm{H}_{4}$
- Pentene $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ is $\mathrm{C}_{5} \mathrm{H}_{10}$
- percent composition is determined experimentally

Derivation of Formulas from Elemental Composition

- A compound contains 24.74% K, $34.76 \% \mathrm{Mn}$, and $40.50 \% \mathrm{O}$ by mass. What is its empirical formula?
- Make the simplifying assumption that we have 100.0 g of compound.
- In 100.0 g of compound there are:
- 24.74 g of K
- 34.76 g of Mn
- 40.50 g of O

Derivation of Formulas from Elemental Composition

$$
\begin{gathered}
\text { ? mol K }=24.74 \mathrm{~g} \mathrm{~K} \times \frac{1 \mathrm{~mol} \mathrm{~K}}{39.10 \mathrm{~g} \mathrm{~K}}=0.6327 \mathrm{~mol} \mathrm{~K} \\
\text { ? mol } \mathrm{Mn}=34.76 \mathrm{~g} \mathrm{Mn} \times \frac{1 \mathrm{~mol} \mathrm{Mn}}{54.94 \mathrm{~g} \mathrm{Mn}}=0.6327 \mathrm{~mol} \mathrm{Mn} \\
\text { ? mol O }=40.50 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.531 \mathrm{~mol} \mathrm{O} \\
\text { for } \mathrm{K} \Rightarrow \\
\xlongequal{\frac{\text { obtain smallest whole number ratio }}{0.6327}=1 \mathrm{~K} \quad \text { for } \mathrm{Mn} \Rightarrow \frac{0.6327}{0.6327}}=1 \mathrm{Mn} \\
\text { for } \mathrm{O} \Rightarrow \frac{2.531}{0.6327}=4 \mathrm{O}
\end{gathered}
$$

thus the chemical formula is KMnO

Derivation of Formulas from Elemental Composition

- A sample of a compound contains 6.541 g of Co and 2.368 g of O . What is the empirical formula for this compound?

$$
\begin{gathered}
? \mathrm{~mol} \mathrm{Co}=6.541 \mathrm{~g} \mathrm{Co} \times \frac{1 \mathrm{~mol} \mathrm{Co}}{58.93 \mathrm{gCo}}=0.1110 \mathrm{~mol} \mathrm{Co} \\
? \mathrm{~mol} \mathrm{O}=2.368 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=0.1480 \mathrm{~mol} \mathrm{O}
\end{gathered}
$$

find smallest whole number ratio

Derivation of Formulas from Elemental Composition

- A sample of a compound contains 6.541 g of Co and 2.368 g of O . What is the empirical formula for this compound?

$$
\text { for } \mathrm{Co} \Rightarrow \frac{0.1110}{0.1110}=1 \mathrm{Co} \quad \text { for } \mathrm{O} \Rightarrow \frac{0.1480}{0.1110}=1.333 \mathrm{O}
$$

multipy both by 3 to turn fraction to whole number

$$
1 \mathrm{Co} \times 3=3 \mathrm{Co} \quad 1.333 \mathrm{O} \times 3=4 \mathrm{O}
$$

Thus the compound' s formula is :

$$
\mathrm{Co}_{3} \mathrm{O}_{4}
$$

Purity of Samples

The percent purity of a sample of a substance is always represented as
$\%$ purity $=\frac{\text { mass of pure substance }}{\text { mass of sample }} \times 100 \%$ mass of sample includes impurities

Purity of Samples

A bottle of sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$, is 98.3% pure $\mathrm{Na}_{3} \mathrm{PO}_{4}$. What are the masses of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and impurities in 250.0 g of this sample of $\mathrm{Na}_{3} \mathrm{PO}_{4}$?

$$
\text { unit factor } \frac{98.3 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}}{100.0 \mathrm{~g} \mathrm{sample}}
$$

$$
\begin{gathered}
? \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}=250.0 \mathrm{~g} \text { sample } \times \frac{98.3 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}}{100.0 \mathrm{~g} \mathrm{sample}} \\
=246 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}
\end{gathered}
$$

$?$ g impurities $=250.0$ g sample $-246 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}$
$=4.00 \mathrm{~g}$ impurities

