CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

1. Pressure
2. Boyle's Law: The V-P Relationship
3. Charles' Law: The V-T Relationship
4. Standard T\&P
5. The Combined Gas Law Equation
6. Avogadro's Law and the Standard Molar Volume
7. Summary of Gas Laws: The Ideal Gas Equation
8. Dalton's Law of Partial Pressures
9. The Kinetic-Molecular Theory
10. Diffusion and Effusion of Gases
11. Real Gases: Deviations from Ideality

Pressure

- Pressure is force per unit area.
- $\mathrm{lb} / \mathrm{in}^{2}$
- $\mathrm{N} / \mathrm{m}^{2}$
- Gas pressure as most people think of it.
- Atmospheric pressure is measured using a barometer.
- Definitions of standard pressure
- 76 cm Hg
- 760 mm Hg
- 760 torr
- 1 atmosphere
- 101.3 kPa

Hg density $=13.6 \mathrm{~g} / \mathrm{mL}_{2}$

Boyle's Law:
 The Volume-Pressure Relationship

$\circ \mathrm{V} \propto 1 / \mathrm{P}$ or

- $V=k(1 / P)$ or $P V=k$
- $P_{1} V_{1}=k_{1}$ for one sample of a gas.
- $P_{2} V_{2}=k_{2}$ for a second sample of a gas.
- $k_{1}=k_{2}$ for the same sample of a gas at the same T.
- Thus we can write Boyle's Law mathematically as $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

Boyle's Law:

The Volume-Pressure Relationship

- At $25^{\circ} \mathrm{C}$ a sample of He has a volume of 4.00 $\times 10^{2} \mathrm{~mL}$ under a pressure of 7.60×10^{2} torr. What volume would it occupy under a pressure of 2.00 atm at the same T ?

$$
\begin{aligned}
\mathrm{P}_{1} \mathrm{~V}_{1} & =\mathrm{P}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{2} & =\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2}} \\
& =\frac{(760 \text { torr })(400 \mathrm{~mL})}{1520 \mathrm{torr}} \\
& =2.00 \times 10^{2} \mathrm{~mL}
\end{aligned}
$$

Charles' Law:

The Volume-Temperature Relationship;

Charles' Law:
 The Volume-Temperature Relationship; The Absolute Temperature Scale

- Charles's law states that the volume of a gas is directly proportional to the absolute temperature at constant pressure.
- Gas laws must use the Kelvin scale to be correct.
- Relationship between Kelvin and centigrade.

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273
$$

Charles' Law:

The Volume-Temperature Relationship; The Absolute Temperature Scale

o Mathematical form of Charles' law.

$$
\mathrm{V} \propto \mathrm{~T} \text { or } \mathrm{V}=\mathrm{kT} \text { or } \frac{\mathrm{V}}{\mathrm{~T}}=\mathrm{k}
$$

$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\mathrm{k}$ and $\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}=\mathrm{k}$ however the k 's are equal so

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \text { in the most useful form }
$$

Charles' Law:

The Volume-Temperature Relationship; The Absolute Temperature Scale

- A sample of hydrogen, H_{2}, occupies 1.00 x $10^{2} \mathrm{~mL}$ at $25.0^{\circ} \mathrm{C}$ and 1.00 atm . What volume would it occupy at $50.0^{\circ} \mathrm{C}$ under the same pressure?

$$
\begin{aligned}
& \mathrm{T}_{1}=25+273=298 \\
& \mathrm{~T}_{2}=50+273=323 \\
& \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \therefore \mathrm{~V}_{2}=\frac{\mathrm{V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}} \\
& \mathrm{~V}_{2}=\frac{1.00 \times 10^{2} \mathrm{~mL} \times 323 \mathrm{~K}}{298 \mathrm{~K}} \\
&=108 \mathrm{~mL}
\end{aligned}
$$

Standard Temperature and Pressure

- Standard temperature and pressure is given the symbol STP.
- Standard $\mathrm{P} \equiv 1.00000 \mathrm{~atm}$ or 101.3 kPa
- Standard T $\equiv 273.15 \mathrm{~K}$ or $0.00^{\circ} \mathrm{C}$

The Combined Gas Law Equation

- Boyle's and Charles' Laws combined into one statement is called the combined gas law equation.
- Useful when the V, T, and P of a gas are changing.

$$
\begin{array}{cc}
\text { Boyle' s Law } & \text { Charles' Law } \\
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} & \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
\end{array}
$$

For a given sample of gas: The combined gas law is :

$$
\frac{\mathrm{P} \mathrm{~V}}{\mathrm{~T}}=\mathrm{k}
$$

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

The Combined Gas Law Equation

- A sample of nitrogen gas, N_{2}, occupies 7.50 x $10^{2} \mathrm{~mL}$ at $75.0^{\circ} \mathrm{C}$ under a pressure of 8.10 x 10^{2} torr. What volume would it occupy at STP?

$$
\begin{gathered}
\mathrm{V}_{1}=750 \mathrm{~mL} \\
\mathrm{~T}_{1}=348 \mathrm{~K} \quad \mathrm{~V}_{2}=? \\
\mathrm{P}_{1}=810 \text { torr } \quad \mathrm{P}_{2}=760 \mathrm{~K} \\
\text { Solve for } \mathrm{V}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{P}_{2} \mathrm{~T}_{1}} \\
\text { Sol3 } \\
=\frac{(810 \text { torr })(750 \mathrm{~mL})(273 \mathrm{~K})}{(760 \text { torr })(348 \mathrm{~K})} \\
=627 \mathrm{~mL}
\end{gathered}
$$

The Combined Gas Law Equation

- A sample of methane, CH_{4}, occupies 2.60 x $10^{2} \mathrm{~mL}$ at $32^{\circ} \mathrm{C}$ under a pressure of 0.500 atm. At what temperature would it occupy $5.00 \times 10^{2} \mathrm{~mL}$ under a pressure of 1.20×10^{3} torr?

$$
\begin{array}{rlrl}
\mathrm{V}_{1} & =260 \mathrm{~mL} & \mathrm{~V}_{2}=500 \mathrm{~mL} \\
\mathrm{P}_{1} & =0.500 \mathrm{~atm} & \mathrm{P}_{2}=1200 \mathrm{torr} \\
& =380 \text { torr } & \\
\mathrm{T}_{1} & =305 \mathrm{~K} & \mathrm{~T}_{2}=? \\
\mathrm{~T}_{2} & =\frac{\mathrm{T}_{1} \mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{P}_{1} \mathrm{~V}_{1}}=\frac{(305 \mathrm{~K})(1200 \text { torr })(500 \mathrm{~mL})}{(380 \text { torr })(260 \mathrm{~mL})} \\
& =1852 \mathrm{~K} \approx 1580{ }^{\circ} \mathrm{C}
\end{array}
$$

Avogadro's Law and the Standard Molar Volume

o Avogadro's Law states that at the same temperature and pressure, equal volumes of two gases contain the same number of molecules (or moles) of gas.

- If we set the temperature and pressure for any gas to be STP, then one mole of that gas has a volume called the standard molar volume.
- The standard molar volume is 22.4 L at STP.
- This is another way to measure moles.
- For gases, the volume is proportional to the number of moles.

Summary of Gas Laws: The Ideal Gas Law

- Boyle's Law - V $\propto 1 / P$ (at constant T \& n)
- Charles' Law - V \propto T (at constant P \& n)
- Avogadro's Law - V $\propto \mathrm{n}$ (at constant T \& P)
- Combine these three laws into one statement

$$
V \propto n T / P
$$

o Convert the proportionality into an equality.

$$
V=n R T / P
$$

- This provides the Ideal Gas Law.

$$
P V=n R T
$$

$\circ R$ is a proportionality constant called the universal gas constant.

Summary of Gas Laws: The Ideal Gas Law

- We must determine the value of R.
- Recognize that for one mole of a gas at 1.00 atm, and 273 K (STP), the volume is 22.4 L .
- Use these values in the ideal gas law.

$$
\begin{aligned}
\mathrm{R} & =\frac{\mathrm{PV}}{\mathrm{nT}}=\frac{(1.00 \mathrm{~atm})(22.4 \mathrm{~L})}{(1.00 \mathrm{~mol})(273 \mathrm{~K})} \\
& =0.0821 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}
\end{aligned}
$$

Summary of Gas Laws: The Ideal Gas Law

- R has other values if the units are changed.
- $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
- Use this value in thermodynamics.

○ $\mathrm{R}=8.314 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2} \mathrm{~K} \mathrm{~mol}$

- Use this later in this chapter for gas velocities.

○ $\mathrm{R}=8.314 \mathrm{dm}^{3} \mathrm{kPa} / \mathrm{K} \mathrm{mol}$

- This is R in all metric units.
$\circ R=1.987 \mathrm{cal} / \mathrm{K} \mathrm{mol}$
- This the value of R in calories rather than J .

Summary of Gas Laws:
 The Ideal Gas Law

- What volume would 50.0 g of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, occupy at $1.40 \times 10^{2}{ }^{\circ} \mathrm{C}$ under a pressure of 1.82×10^{3} torr?

1. $\quad \mathrm{T}=140+273=413 \mathrm{~K}$
2. $P=1820$ torr (1 atm/760 torr) $=2.39$ atm
3. $50 \mathrm{~g}(1 \mathrm{~mol} / 30 \mathrm{~g})=1.67 \mathrm{~mol}$
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}$
$=\frac{(1.67 \mathrm{~mol})\left(0.0821 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{molK}}\right)(413 \mathrm{~K})}{2.39 \mathrm{~atm}}$

$$
=23.6 \mathrm{~L}
$$

Summary of Gas Laws: The Ideal Gas Law

- Calculate the number of moles in, and the mass of, an 8.96 L sample of methane, CH_{4}, measured at standard conditions.

$$
\begin{aligned}
& \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.00 \mathrm{~atm})(8.96 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{Latm}}{\mathrm{~mol} \mathrm{~K}}\right)(273 \mathrm{~K})}=0.400 \mathrm{~mol} \mathrm{CH}_{4} \\
& ? \mathrm{~g} \mathrm{CH}_{4}=0.400 \mathrm{~mol} \times \frac{16.0 \mathrm{~g}}{\mathrm{~mol}}=6.40 \mathrm{~g}
\end{aligned}
$$

Summary of Gas Laws: The Ideal Gas Law

- Calculate the pressure exerted by 50.0 g of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, in a 25.0 L container at $25.0^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\mathrm{n}=1.67 \mathrm{~mol} \text { and } \mathrm{T}=298 \mathrm{~K} \\
\mathrm{P}=\frac{\mathrm{n} \mathrm{R} \mathrm{~T}}{\mathrm{~V}} \\
\mathrm{P}=\frac{(1.67 \mathrm{~mol})\left(0.0821 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}\right)(298 \mathrm{~K})}{25.0 \mathrm{~L}} \\
\mathrm{P}=1.63 \mathrm{~atm}
\end{gathered}
$$

Dalton's Law of Partial Pressures

- Dalton's law states that the pressure exerted by a mixture of gases is the sum of the partial pressures of the individual gases.

$$
P_{\text {total }}=P_{A}+P_{B}+P_{C}+\ldots .
$$

Dalton's Law of Partial Pressures

- Vapor Pressure is the pressure exerted by a substance's vapor over the substance's liquid at equilibrium.

The Kinetic-Molecular Theory

- The basic assumptions of kineticmolecular theory are:
- Postulate 1
- Gases consist of discrete molecules that are relatively far apart.
- Gases have few intermolecular attractions.
The volume of individual molecules is very small compared to the gas's volume.
- Proof - Gases are easily compressible. 22

The Kinetic-Molecular Theory

- Postulate 2
- Gas molecules are in constant, random, straight line motion with varying velocities.
- Proof - Brownian motion displays molecular motion.
- Postulate 3
- Gas molecules have elastic collisions with themselves and the container.
- Total energy is conserved during a collision.
- Proof - A sealed, confined gas exhibits no pressure drop over time.

The Kinetic-Molecular Theory

- Postulate 4
- The kinetic energy of the molecules is proportional to the absolute temperature.
- The average kinetic energies of molecules of different gases are equal at a given temperature.
- Proof - Brownian motion increases as temperature increases.

The Kinetic-Molecular Theory

- The kinetic energy of the molecules is proportional to the absolute temperature. The kinetic energy of the molecules is proportional to the absolute temperature.
- Displayed in a Maxwellian distribution.

The Kinetic-Molecular Theory

- Boyle's Law
- $P \propto 1 / V$
- As the V increases the molecular collisions with container walls decrease and the P decreases.
- Dalton's Law
- $P_{\text {total }}=P_{A}+P_{B}+P_{C}+\ldots .$.
- Because gases have few intermolecular attractions, their pressures are independent of other gases in the container.
- Charles' Law
- $\mathrm{V} \propto \mathrm{T}$
- An increase in temperature raises the molecular velocities, thus the V increases to keep the P constant.

Diffusion and Effusion of Gases

- Diffusion is the intermingling of gases.
- Effusion is the escape of gases through tiny holes.

Diffusion and Effusion of Gases

- The rate of effusion is inversely proportional to the square roots of the molecular weights or densities.

$$
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\sqrt{\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}
$$

or

$$
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\sqrt{\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}}
$$

Real Gases:
 Deviations from Ideality

- Real gases behave ideally at ordinary temperatures and pressures.
- At low temperatures and high pressures real gases do not behave ideally.
- The reasons for the deviations from ideality are:

1. The molecules are very close to one another, thus their volume is important.
2. The molecular interactions also become important.

Real Gases:
 Deviations from Ideality

o van der Waals' equation accounts for the behavior of real gases at low T and high P.

$$
\left(\mathrm{P}+\frac{\mathrm{n}^{2} \mathrm{a}}{\mathrm{~V}^{2}}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}
$$

- The van der Waals constants a and b take into account two things:

1. a accounts for intermolecular attraction
2. b accounts for volume of gas molecules
