Chapter 11

Reactions in Aqueous Solutions II: Calculations

Aqueous Acid-Base Reactions

1. Calculations Involving Molarity
2. Titrations
3. The Mole Method and Molarity
4. Equivalent Weights and Normality

Oxidation-Reduction Reactions
5. The Half-Reaction Method
6. Adding in $\mathrm{H}^{+}, \mathrm{OH}^{-}$, or $\mathrm{H}_{2} \mathrm{O}$ to Balance Oxygen or Hydrogen
7. Stoichiometry of Redox Reactions

Calculations Involving Molarity

- If 100.0 mL of 1.00 M NaOH and 100.0 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solutions are mixed, what will the concentration of the resulting solution be?
- If 130.0 mL of 1.00 M KOH and 100.0 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solutions are mixed, what will be the concentration of KOH and $\mathrm{K}_{2} \mathrm{SO}_{4}$ in the resulting solution?
- What volume of 0.750 M NaOH solution would be required to completely neutralize 100 mL of $0.250 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

Titrations

- Acid-base Titration Terminology

1. Titration - A method of determining the concentration of one solution by reacting it with a solution of known concentration.
2. Primary standard - A chemical compound which can be used to accurately determine the concentration of another solution. Examples include KHP and sodium carbonate.
3. Standard solution - A solution whose concentration has been determined using a primary standard.
4. Standardization - The process in which the concentration of a solution is determined by accurately measuring the volume of the solution required to react with a known amount of a primary standard.
5. Indicator - A substance that exists in different forms with different colors depending on the concentration of the H^{+}in solution. Examples are phenolphthalein and bromothymol blue.
6. Equivalence point - The point at which stoichiometrically equivalent amounts of the acid and base have reacted.
7. End point - The point at which the indicator changes color and the titration is stopped.

Titration

The Mole Method and Molarity

- Potassium hydrogen phthalate is a very good primary standard.
- It is often given the acronym, KHP.
- KHP has a molar mass of $204.2 \mathrm{~g} / \mathrm{mol}$.

- Calculate the molarity of a NaOH solution if 27.3 mL of it reacts with 0.4084 g of KHP.

Calculate the molarity of a sulfuric acid solution if 23.2 mL of it reacts with 0.212 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

Equivalent Weights and Normality

- Normality is another method of expressing concentration.
- Normality is defined as the number of equivalent weights of solute per liter of solution.

- The equivalent weight of an acid is the mass in grams of the acid necessary to furnish Avogadro's number of H^{+}ions.
- For monoprotic acids like $\mathrm{HCl} 1 \mathrm{~mol}=1 \mathrm{eq}$
- For diprotic acids like $\mathrm{H}_{2} \mathrm{SO}_{4} \quad 1 \mathrm{~mol}=2 \mathrm{eq}$
- For triprotic acids like $\mathrm{H}_{3} \mathrm{PO}_{4} \quad 1 \mathrm{~mol}=3 \mathrm{eq}$
- Calculate the normality of a solution that contains 196 g of sulfuric acid in 1.500 x $10^{3} \mathrm{~mL}$ of solution.

TABLE 11-1 Equivalent Weights* of Some Acids and Bases

(c) 2004 Thomson/Brooks Cole

- Calculate the molarity and normality of a solution that contains 34.2 g of barium hydroxide in 8.00 liters of solution.

Equivalent Weights and Normality

- Since $M \times L=$ moles then
- $N \times L$ = number of equivalents or
- $\mathrm{N} \times \mathrm{mL}=$ number of milliequivalents
- What volume of 6.00 M phosphoric acid solution is required to prepare $9.00 \times 10^{2} \mathrm{~mL}$ of 0.200 N phosphoric acid solution?
- What is the normality of a sulfuric acid solution if 31.3 mL of it reacts with 0.318 g of sodium carbonate?
30.0 mL of 0.0750 N nitric acid solution required 22.5 mL of calcium hydroxide solution for neutralization. Calculate the normality and the molarity of the calcium hydroxide solution.
$2 \mathrm{HNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Oxidation-Reduction Reactions The Half-Reaction Method

- Half reaction method rules:

1. Write the unbalanced reaction.
2. Break the reaction into 2 half reactions:

One oxidation half-reaction and
One reduction half-reaction
Each reaction must have complete formulas for molecules and ions.
3. Mass balance each half reaction by adding appropriate stoichiometric coefficients. To balance H and O we can add:

- H^{+}or $\mathrm{H}_{2} \mathrm{O}$ in acidic solutions.
- OH^{-}or $\mathrm{H}_{2} \mathrm{O}$ in basic solutions.

4. Charge balance the half reactions by adding appropriate numbers of electrons.

- Electrons will be products in the oxidation halfreaction.
- Electrons will be reactants in the reduction halfreaction.

5. Multiply each half reaction by a number to make the number of electrons in the oxidation half-reaction equal to the number of electrons reduction half-reaction.
6. Add the two half reactions.
7. Eliminate any common terms and reduce coefficients to smallest whole numbers.

In Acidic Solution:

To balance $\mathrm{O}:$
Add $\mathrm{H}_{2} \mathrm{O}$
:---:
To balance $\mathrm{H}:$
Add H^{+}

In Basic Solution:

To balance $\mathrm{O}:$ For each O needed, (1) add two OH^{-}to side needing O and and add one $\mathrm{H}_{2} \mathrm{O}$ to other side then
To balance $\mathrm{H}:$ and
For each H needed, (1) add one $\mathrm{H}_{2} \mathrm{O}$ to side needing H and
(2) add one OH^{-}to other side

- Tin (II) ions are oxidized to tin (IV) by bromine. Use the half reaction method to write and balance the net ionic equation.
- Dichromate ions oxidize iron (II) ions to iron (III) ions and are reduced to chromium (III) ions in acidic solution. Write and balance the net ionic equation for the reaction.
- In basic solution hydrogen peroxide oxidizes chromite ions, $\mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}$, to chromate ions, $\mathrm{CrO}_{4}{ }^{2-}$. The hydrogen peroxide is reduced to hydroxide ions. Write and balance the net ionic equation for this reaction.
- When chlorine is bubbled into basic solution, it forms hypochlorite ions and chloride ions. Write and balance the net ionic equation.
- This is a disproportionation redox reaction. The same species, in this case Cl_{2}, is both reduced and oxidized.

Stoichiometry of Redox Reactions

- What volume of $0.200 \mathrm{M} \mathrm{KMnO}_{4}$ is required to oxidize 35.0 mL of 0.150 M HCl ? The balanced reaction is:
- A volume of 40.0 mL of iron (II) sulfate is oxidized to iron (III) by 20.0 mL of 0.100 M potassium dichromate solution. What is the concentration of the iron (II) sulfate solution?

