CHAPTER 10

Reactions in Aqueous Solutions I: Acids, Bases \& Salts

1. Properties of Aqueous Solutions of Acids \& Bases
2. The Arrhenius Theory
3. The BrØnsted-Lowry Theory
4. The Lewis Theory
5. The Autoionization of Water
6. The Hydronium Ion (Hydrated Hydrogen Ion)
7. Amphoterism
8. Strengths of Acids
9. Acid-Base Reactions in Aqueous Solutions

Properties of Aqueous Solutions of Acids and Bases

acidic solutions	basic solutions
They have a sour taste	They have a bitter taste
They change the colors of many indicators	They change the colors of many indicators
React with metals to generate hydrogen	
They react with metal oxides and hydroxides to form salts and water	They react with acids to form salts and water
Acidic aqueous solutions conduct electricity	Aqueous basic solutions conduct electricity

The Arrhenius Theory	The Brønsted- Lowry Theory	The Lewis Theory
Acids are substances that contain hydrogen Bases are	An acid is a proton donor $\left(\mathbf{H}^{+}\right)$.	Acids are A base is a electron pair substances that contain hydroxyl, OH, group

The Arrhenius Theory

- Svante Augustus Arrhenius first presented this theory of acids and bases in 1884.
- Acids are substances that contain hydrogen and produces H^{+}in aqueous solutions.
- Bases are substances that contain the hydroxyl, OH, group and produce hydroxide ions, OH^{-}, in aqueous solutions.

The Brønsted-Lowry Theory

- J.N. BrØnsted and T.M. Lowry developed the acid-base theory in 1923.
- An acid is a proton donor $\left(\mathrm{H}^{+}\right)$.
- A base is a proton acceptor.

base $_{1}$

acid_{1}
base $_{2}$

$$
\begin{gathered}
\mathrm{NH}_{3}(\mathrm{aq}) \\
\text { base }_{1}
\end{gathered}
$$

The Brønsted-Lowry Theory

- An important part of BrØnsted-Lowry acid-base theory is the idea of conjugate acid-base pairs.

Two species that differ by a proton are called acid-base conjugate pairs.

- $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$
- HNO_{3} is the acid, conjugate base is $\mathrm{NO}_{3}{ }^{-}$
- $\mathrm{H}_{2} \mathrm{O}$ is the base, conjugate acid is $\mathrm{H}_{3} \mathrm{O}^{+}$

The Brønsted-Lowry Theory

- Conjugate acid-base pairs are species that differ by a proton.

The Brønsted-Lowry Theory

The major differences between Arrhenius and Brønsted-Lowry theories.

1. The reaction does not have to occur in an aqueous solution.
2. Bases are not required to be hydroxides.

The Brønsted-Lowry Theory

- An important concept in BrØnsted-Lowry theory involves the relative strengths of acid-base pairs.
- Weak acids have strong conjugate bases.
- Weak bases have strong conjugate acids.
- The weaker the acid or base, the stronger the conjugate partner.
- The reason why a weak acid or base is weak is because the conjugate is so strong it reforms the original acid or base.

The Brønsted-Lowry Theory

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{NH}_{4}^{+}}{+}+\mathrm{OH}^{-}
$$

- Since NH_{3} is a weak base, NH_{4}^{+}must be a strong acid.
- NH_{4}^{+}gives up H^{+}to reform NH_{3}.
- Compare that to

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

- Na^{+}must be a weak acid or it would recombine to form NaOH

The Lewis Theory

- Developed in 1923 by G.N. Lewis.
- Emphasis on what the electrons are doing as opposed to what the protons are doing.
- Acids are defined as electron pair acceptors.
- Bases are defined as electron pair donors.

The Lewis Theory

- One Lewis acid-base example is the ionization of ammonia. Look at this reaction in more detail paying attention to the electrons.

The Lewis Theory

- A second example is the ionization of HBr . Again, a more detailed examination keeping our focus on the electrons.

The Lewis Theory

- A third Lewis example is the autoionization of water.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& \text {acid base }
\end{aligned}
$$

The Lewis Theory

- The reaction of sodium fluoride and boron trifluoride provides an example of a Lewis acid-base reaction.
- It does not involve H^{+}at all, thus it cannot be an Arrhenius nor a Brønsted-Lowry acid-base reaction.

$$
\mathrm{NaF}+\mathrm{BF}_{3} \rightarrow \mathrm{Na}^{+}+\mathrm{BF}_{4}^{-}
$$

The Lewis Theory

The Lewis Theory

- BF_{3} is a strong Lewis acid.

$\mathrm{AlCl}_{3}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AlCl}_{4}^{-}(\mathrm{aq})$ acid base product

© 2004 Thomson/Brooks Cole

Sn is $s p^{3} d^{2}$ hybridized (octahedral)
Sn is $s p^{3}$ hybridized (tetrahedral)

The Autoionization of Water

- Water can be either an acid or base in Bronsted-Lowry theory.
- Consequently, water can react with itself.
- This reaction is called autoionization.
- One water molecule acts as a base and the other as an acid.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \\
& \text { base }_{1}
\end{aligned}+\underset{\mathrm{H}_{2} \mathrm{O} \mathrm{Ocid}}{\mathrm{acid}_{2}} \rightleftarrows \stackrel{\mathrm{H}_{3} \mathrm{O}^{+}+\underset{\text { acid }_{1}}{+\mathrm{OH}^{-}}}{\text {base }_{2}}
$$

The Hydronium Ion (Hydrated Hydrogen Ion)

- The protons that are generated in acid-base reactions are not present in solution by themselves.
- Protons are surrounded by several water molecules and called the hydronium ions.
- H^{+}(aq) is really $\mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}{ }^{+}$

H^{+}transfer

Amphoterism

- Species that can behave as an acid or base are called amphoteric.

Amphoterism

- Examples of amphoteric species are hydroxides of elements with intermediate electronegativity.
- Zn and Al hydroxides for example.
- $\mathrm{Zn}(\mathrm{OH})_{2}$ behaves as a base in presence of strong acids.
- $\mathrm{Zn}(\mathrm{OH})_{2}$ behaves as an acid in presence of strong bases.

$$
\mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{Zn}(\mathrm{OH})_{4}$

Strengths of Acids

For binary acids, acid strength increases with decreasing $\mathrm{H}-\mathrm{X}$ bond strength.

- Bond strength has this periodic trend. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
- Acid strength has the reverse trend. $\mathrm{HF} \ll \mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$

The same trend applies to the VIA hydrides.

- Their bond strength has this trend.
$\mathrm{H}_{2} \mathrm{O} \gg \mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
- The acid strength is the reverse trend. $\mathrm{H}_{2} \mathrm{O} \ll \mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$

TABLE 10-2

Acid
Base

Strengths of Acids

- Remember that for binary acids, acid strength increased with decreasing $\mathrm{H}-\mathrm{X}$ bond strength.
- Ternary acids have the same periodic trend.
- Strong ternary acids have weaker H-O bonds than weak ternary acids.
- For example, compare acid strengths:

$$
\mathrm{HNO}_{2}<\mathrm{HNO}_{3} \quad \mathrm{H}_{2} \mathrm{SO}_{3}<\mathrm{H}_{2} \mathrm{SO}_{4}
$$

- This implies that the $\mathrm{H}-\mathrm{O}$ bond strength is:

$$
\mathrm{HNO}_{2}>\mathrm{HNO}_{3} \quad \mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{H}_{2} \mathrm{SO}_{4}
$$

Ternary acids are hydroxides of nonmetals that produce $\mathrm{H}_{3} \mathrm{O}^{+}$in water.

Bond that breaks to form H^{+}and $\mathrm{NO}_{3}{ }^{-}$

Hydroxyl group

Strengths of Acids

- Ternary acid strength usually increases with:

1. an increasing number of O atoms on the central atom.
2. an increasing oxidation state of central atom.

Every additional O atom increases the oxidation state of the central atom by 2 .

Strengths of Acids

- For ternary acids having the same central atom: the highest oxidation state of the central atom is usually strongest acid.
- For example, look at the strength of the Cl ternary acids.

$$
\begin{aligned}
& \mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4} \\
& \text { weakest }
\end{aligned} \text { strongest }
$$

Acid-Base Reactions in Aqueous Solutions

- There are four acid-base reaction combinations that are possible:

1. Strong acids - strong bases
2. Weak acids - strong bases
3. Strong acids - weak bases
4. Weak acids - weak bases

Acid-Base Reactions in Aqueous Solutions

1. Strong acids - strong bases
forming soluble salts
$2 \mathrm{HBr}_{(\mathrm{aq})}+\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq)}} \rightarrow \mathrm{CaBr}_{2(\mathrm{aq)}}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
2. Strong acids-strong bases
forming insoluble salts
**** There is only one reaction of this type:

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

3. Weak acids - strong bases

- forming soluble salts

$$
\mathrm{HNO}_{2(\mathrm{aq)}}+\mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow \mathrm{NaNO}_{2(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

Acid-Base Reactions in Aqueous Solutions

4. Strong acids - weak bases
forming soluble salts

$$
\mathrm{HNO}_{3(\mathrm{aq)}}+\mathrm{NH}_{3(\mathrm{aq)}} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{aq})}
$$

5. Weak acids - weak bases

- forming soluble salts

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{NH}_{3(\mathrm{aq)}} \rightarrow \mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}
$$

