CHAPTER 10 Reactions in Aqueous Solutions I: Acids, Bases & Salts

- 1. Properties of Aqueous Solutions of Acids & Bases
- 2. The Arrhenius Theory
- 3. The BrØnsted-Lowry Theory
- 4. The Lewis Theory
- 5. The Autoionization of Water
- 6. The Hydronium Ion (Hydrated Hydrogen Ion)
- 7. Amphoterism
- 8. Strengths of Acids
- 9. Acid-Base Reactions in Aqueous Solutions

Properties of Aqueous Solutions of Acids and Bases		
acidic solutions	basic solutions	••
They have a sour taste	They have a bitter taste	
They change the colors of many indicators	They change the colors of many indicators	,
React with metals to generate hydrogen		
They react with metal oxides and hydroxides to form salts and water	They react with acids to form salts and water	
Acidic aqueous solutions conduct electricity	Aqueous basic solutions conduct electricity	

The Arrhenius	The Brønsted-	The Lewis
Theory	Lowry Theory	Theory
Acids are	An acid is a	Acids are
substances that	proton donor	<u>electron pair</u>
contain hydrogen	(H ⁺).	<u>acceptors</u> .
Bases are substances that contain hydroxyl, OH, group	A base is a proton acceptor.	Bases are <u>electron pair</u> <u>donors</u> .
HCI and NaOH	NH ₃ and H ₂ O	BF ₃ and NH ₃

The Arrhenius Theory

- Svante Augustus Arrhenius first presented this theory of acids and bases in 1884.
- Acids are substances that contain hydrogen and produces H⁺ in aqueous solutions.
- Bases are substances that contain the hydroxyl, OH, group and produce hydroxide ions, OH⁻, in aqueous solutions.

- J.N. BrØnsted and T.M. Lowry developed the acid-base theory in 1923.
- An acid is a proton donor (H⁺).
- A base is a proton acceptor.

© 2004 Thomson/Brooks Cole

© 2004 Thomson/Brooks Cole

- An important part of BrØnsted-Lowry acid-base theory is the idea of conjugate acid-base pairs.
 - Two species that differ by a proton are called acid-base conjugate pairs.
- HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-
- HNO_3 is the acid, conjugate base is NO_3^-
- H₂O is the base, conjugate acid is H₃O⁺

 Conjugate acid-base pairs are species that differ by a proton.

- The major differences between Arrhenius and Brønsted-Lowry theories.
- 1. The reaction does not have to occur in an aqueous solution.
- 2. Bases are not required to be hydroxides.

- An important concept in BrØnsted-Lowry theory involves the relative strengths of acid-base pairs.
- Weak acids have strong conjugate bases.
- Weak bases have strong conjugate acids.
- The weaker the acid or base, the stronger the conjugate partner.
- The reason why a weak acid or base is weak is because the conjugate is so strong it reforms the original acid or base.

$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

- Since NH₃ is a weak base, NH₄⁺ must be a strong acid.
 - NH₄⁺ gives up H⁺ to reform NH₃.
- Compare that to

 $NaOH \rightarrow Na^+_{(aq)} + OH^-_{(aq)}$

 Na⁺ must be a weak acid or it would recombine to form NaOH

- Developed in 1923 by G.N. Lewis.
 - Emphasis on what the electrons are doing as opposed to what the protons are doing.
- Acids are defined as electron pair acceptors.
- Bases are defined as <u>electron pair donors</u>.

• One Lewis acid-base example is the ionization of ammonia. Look at this reaction in more detail paying attention to the electrons.

16

 A second example is the ionization of HBr. Again, a more detailed examination keeping our focus on the electrons.

Acid - it accepts the electron pair

Base- it donates the electron pair

covalent coordinate bond formed

• A third Lewis example is the autoionization of water.

$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^$ acid base

- The reaction of sodium fluoride and boron trifluoride provides an example of a Lewis acid-base reaction.
 - It does not involve H⁺ at all, thus it cannot be an Arrhenius nor a Brønsted-Lowry acid-base reaction.

 $NaF + BF_3 \rightarrow Na^+ + BF_4^-$

Base - it donates the electron pair

Acid - it accepts the electron pair

20

© 2004 Thomson/Brooks Cole

© 2004 Thomson/Brooks Cole

The Autoionization of Water

- Water can be either an acid or base in Bronsted-Lowry theory.
- Consequently, water can react with itself.
 - This reaction is called autoionization.
- One water molecule acts as a base and the other as an acid.

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

base₁ acid₂ acid₁ base₂

The Hydronium Ion (Hydrated Hydrogen Ion)

- The protons that are generated in acid-base reactions are not present in solution by themselves.
- Protons are surrounded by several water molecules and called the hydronium ions.
- $H^+_{(aq)}$ is really $H(H_2O)_n^+$

© 2004 Thomson/Brooks Cole

Amphoterism

• Species that can behave as an acid or base are called **amphoteric**.

Amphoterism

- Examples of amphoteric species are hydroxides of elements with intermediate electronegativity.
 - Zn and Al hydroxides for example.
- Zn(OH)₂ behaves as a base in presence of strong acids.
- Zn(OH)₂ behaves as an acid in presence of strong bases.

 $Zn(OH)_2 + 2 HNO_3 \rightarrow Zn(NO_3)_2 + 2 H_2O$

$Zn(OH)_2 + 2KOH \rightarrow K_2Zn(OH)_4$

Strengths of Acids

For binary acids, acid strength increases with decreasing H-X bond strength.

- Bond strength has this periodic trend.
 HF >> HCI > HBr > HI
- Acid strength has the reverse trend.
 HF << HCI < HBr < HI

The same trend applies to the VIA hydrides.

- Their bond strength has this trend.
 H₂O >> H₂S > H₂Se > H₂Te
- The acid strength is the reverse trend.
 H₂O << H₂S < H₂Se < H₂Te

TA	BLE 10-	2 Relat	ive Strengths of Con	jugate Acid–Base Pairs	5		
Acid			Base				
Acid strength increases		$ \begin{bmatrix} ClO_4 \\ I \\ Br \\ Cl \\ NO_3 \end{bmatrix} \begin{bmatrix} 100 \\ dilu \\ mol \\ nor \\ NO_3 \end{bmatrix} $	% ionized in ite aq. soln. No lecules of ionized acid. acid le base a	Negligible base strength in water.	$\begin{cases} ClO_4^- \\ I^- \\ Br^- \\ Cl^- \\ NO_3^- \end{cases}$	increases	
	Higher Hi	90+ F H3COOH CN H4+ 20 H3	Equilibrium mixture of nonionized molecules of acid, conjugate base, and H ⁺ (aq). Reacts to form in aqu	s completely with H ₂ O m OH ⁻ ; cannot exist leous solution.	H ₂ O F ⁻ CH ₃ COO ⁻ CN ⁻ NH ₃ OH ⁻ NH ₂ ⁻	Base strength	

Strengths of Acids

- Remember that for **binary acids**, acid strength increased with decreasing H-X bond strength.
- Ternary acids have the same periodic trend.
- Strong ternary acids have weaker H-O bonds than weak ternary acids.
- For example, compare acid strengths: $HNO_2 < HNO_3$ $H_2SO_3 < H_2SO_4$
- This implies that the H-O bond strength is: $HNO_2 > HNO_3$ $H_2SO_3 > H_2SO_4$

Ternary acids are hydroxides of nonmetals that produce H_3O^+ in water.

Bond that breaks to form H^+ and NO_3^-

Hydroxyl group

© 2004 Thomson/Brooks Cole

@ 2004 Thomson/Brooks Cole

Strengths of Acids

- Ternary acid strength usually increases with:
- 1. an increasing number of O atoms on the central atom.
- 2. an increasing oxidation state of central atom.
 - Every additional O atom increases the oxidation state of the central atom by 2.

Strengths of Acids

- For ternary acids having the same central atom: the <u>highest oxidation state</u> of the central atom is <u>usually strongest acid</u>.
- For example, look at the strength of the Cl ternary acids.

 $\begin{array}{ll} \text{HCIO} < \text{HCIO}_2 < \text{HCIO}_3 < \text{HCIO}_4 \\ \text{weakest} & \text{strongest} \end{array}$

Acid-Base Reactions in Aqueous Solutions

- There are four acid-base reaction combinations that are possible:
 - 1. Strong acids strong bases
 - 2. Weak acids strong bases
 - 3. Strong acids weak bases
 - 4. Weak acids weak bases

Acid-Base Reactions in Aqueous Solutions

- 1. Strong acids strong bases
 - forming soluble salts

 $2 \text{ HBr}_{(aq)} + \text{Ca(OH)}_{2(aq)} \rightarrow \text{CaBr}_{2(aq)} + 2 \text{ H}_2 \text{O}_{(\ell)}$

- 2. Strong acids-strong bases
 - forming *insoluble* salts
- **** There is only one reaction of this type:

 $H_2SO_{4(aq)} + Ba(OH)_{2(aq)} \rightarrow BaSO_{4(s)} + 2H_2O_{(\ell)}$

- 3. Weak acids strong bases
 - forming soluble salts

 $HNO_{2(aq)} + NaOH_{(aq)} \rightarrow NaNO_{2(aq)} + H_2O_{(\ell)}$

Acid-Base Reactions in Aqueous Solutions

- Strong acids weak bases 4.
 - forming soluble salts

 $HNO_{3(aq)} + NH_{3(aq)} \rightarrow NH_4NO_{3(aq)}$

- Weak acids weak bases 5.
 - forming soluble salts $CH_3COOH_{(aq)} + NH_{3(aq)} \rightarrow NH_4CH_3COO_{(aq)}$

