Lewis Dot Formulas of Atoms

 Lewis dot formulas or Lewis dot representations are a convenient bookkeeping method for tracking <u>valence electrons</u>.

 Valence electrons are those electrons that are transferred or involved in chemical bonding.

Formation of Covalent Bonds

- We can use Lewis dot formulas to show covalent bond formation.
- 1. H₂ molecule

 $H \cdot + H \cdot - H \cdot H \circ H_2$

2. HCl molecule $H \cdot + \cdot Cl : \longrightarrow H^{:} Cl^{:} or HCl$

• Elements in the same periodic group have the same Lewis dot structures.

TABLE 7-1	Lewis Dot Formulas for Representative Elements							
Group	IA	ПА	IIIA	IVA	VA	VIA	VIIA	VIIIA
Number of electrons in valence shell	1	2	3	4	5	6	7	8 (except He)
Period 1	Η·							He:
Period 2	Li ·	Be :	B.	Ë.	· N ·	· Ö :	· F:	: Ne :
Period 3	Na ·	Mg :	Äl•	Si ·	· · · ·	· S :	· Čl :	: Är :
Period 4	Κ·	Ca :	 Ga ·	Ge ·	· As ·	· Se :	· Br :	: Kr :
Period 5	Rb ·	Sr :	 In ·	Sn ·	· Sb ·	· Te:	·Ï:	: Xe :
Period 6	Cs ·	Ba :	τi Ti ·	₽b·	· Bi ·	· Po :	· At :	: <u>Rn</u> :
Period 7	Fr ·	Ra :						

@ 2004 Thomson/Brooks Cole

- First, we explore Lewis dot formulas of homonuclear diatomic molecules.
- 1. Hydrogen molecule, H₂

H: H or H-H 2. Fluorine, F_2 $\vdots F : F : or : F - F :$ 3. Nitrogen, N_2 $: N ::: N : or : N \equiv N :$

Hydrogen chloride, HCI

Water, H₂O

• Ammonia molecule, NH₃

• Ammonium ion, NH₄⁺

- The octet rule states that representative elements usually attain stable noble gas electron configurations in <u>most</u> of their compounds.
- Lewis dot formulas are based on the octet rule.
- We need to distinguish between bonding (or shared) electrons and nonbonding (or unshared or lone pairs) of electrons.

- N A = S rule
- N = number of electrons needed to achieve a noble gas configuration.
 - N usually has a value of 8 for representative elements.
 - N has a value of 2 for H atoms.
- A = number of electrons **available** in valence shells of the atoms.
 - A is equal to the periodic group number for each element.
 - A is equal to 8 for the noble gases.
- **S** = number of electrons **shared** in bonds.
- A-S = number of electrons in unshared, lone pairs.

- For ions we must adjust the number of electrons available, A.
 - Add one e⁻ to A for each negative charge.
 - Subtract one e⁻ from A for each positive charge.
- The central atom in a molecule or polyatomic ion is determined by:
 - The atom that requires the largest number of electrons to complete its octet goes in the center.
 - For two atoms in the same periodic group, the less electronegative element goes in the center.

- Write Lewis dot and dash formulas for hydrogen cyanide, HCN.
- N = 2 (H) + 8 (C) + 8 (N) = 18 (needed)
- A = 1 (H) + 4 (C) + 5 (N) = 10 (available)
- **S** = 8 (shared)
- A-S =
- This molecule has 8 electrons in shared pairs and 2 electrons in lone pairs.

 $H : C ::: N : or H - C \equiv N :$

2

- Write Lewis dot and dash formulas for the sulfite ion, SO₃²⁻.
- $N = 8 (S) + 3 \times 8 (O) = 32 (needed)$
- $A = 6 (S) + 3 \times 6 (O) + 2 (- charge) = <u>26</u> (available)$ = 6 (shared)A-S = 20
- Thus this polyatomic ion has 6 electrons in shared pairs and 20 electrons in lone pairs.
 - Which atom is the central atom in this ion?

S = N - A $= 24 - 12 = 12e^{-}$ shared

© 2004 Thomson/Brooks Cole

 What kind of covalent bonds, single, double, or triple, must this ion have so that the six shared electrons are used to attach the three O atoms to the S atom?

$$: 0 : S : 0 : 2^{-}$$
 or $: 0^{-} - S^{-} = 0^{-} : 2^{-}$
 $: 0 : 0^{-} : 0^{$

Resonance

 Write Lewis dot and dash formulas for sulfur trioxide, SO_3 . $N = 8 (S) + 3 \times 8 (O) = 32$ (needed) $A = 6 (S) + 3 \times 6 (O) = 24 (available)$ S = 8 (shared) = 16 A-S : O : S:: O : or

Resonance

- There are three possible structures for SO₃.
 The double band can be pleased in one of three
 - The double bond can be placed in one of three places.

Double-headed arrows are used to indicate resonance formulas.

Resonance

Resonance is a flawed method of representing molecules.

Writing Lewis Formulas: Limitations of the Octet Rule

- 1. The covalent compounds of Be.
- 2. The covalent compounds of the IIIA Group.
 - 3. Species which contain an odd number of electrons.
- Species in which the central element must have a share of more than 8 valence electrons to accommodate all of the substituents.
- **5.** Compounds of the d- and f-transition metals.

Writing Lewis Formulas: Limitations of the Octet Rule

Write dot and dash formulas for BBr₃.
 This is an example of exception #2.

Writing Lewis Formulas: Limitations of the Octet Rule

• Write dot and dash formulas for **AsF₅** and **PF₅**.

- Covalent bonds in which the electrons are not shared equally are designated as <u>polar</u> covalent bonds.
- Covalent bonds in which the electrons are shared <u>equally</u> are designated as <u>nonpolar</u> covalent bonds.
- To be a polar covalent bond the two atoms involved in the bond must have different electronegativities.

 Some examples of polar covalent bonds.

• HF

Electronegativities $2.1 \quad 4.0$

Difference = 1.9 very polar bond

Η

• Compare HF to HI.

Electronegativities $2.1 \quad 2.5_{0.4}$

Difference = 0.4 slightly polar bond

Polar molecules can be attracted by magnetic and electric fields.

Dipole Moments

- Molecules whose centers of positive and negative charge do not coincide, have an asymmetric charge distribution, and are polar.
 - These molecules have a dipole moment.
- The dipole moment has the symbol μ.
- μ is the product of the distance,d, separating charges of equal magnitude and opposite sign, and the magnitude of the charge, q.

Dipole Moments

- Molecules that have a small separation of charge have a small μ.
- Molecules that have a large separation of charge have a large μ.
- For example, HF and HI:

1.91 Debye units 0.38 Debye units

The Continuous Range of Bonding Types

- Covalent and ionic bonding represent two extremes.
- Most compounds fall somewhere between these two extremes.

The Continuous Range of Bonding Types

- All bonds have some ionic and some covalent character.
 - For example, HI is about 17% ionic
- The greater the electronegativity differences the more polar the bond.

