Chemical Reactions & Periodicity

In the next sections periodicity will be applied to the chemical reactions of hydrogen, oxygen, and their compounds.

Hydrogen and the Hydrides

■ Hydrogen gas, H₂, can be made in the laboratory by the reaction of a metal with a nonoxidizing acid.
 Mg + 2 HCl → MgCl₂ + H₂
 •Hydrogen is commercially prepared by the thermal cracking of hydrocarbons.

 $C_4H_{10} \rightarrow 2C_2H_2 + 3H_2$

Hydrogen reacts with active metals, groups IA and IIA, to yield hydrides.

 $2 \text{ K} + \text{H}_2 \rightarrow 2 \text{ KH}$ Ba $+ \text{H}_2 \rightarrow \text{BaH}_2$

• The H⁻ reacts with water to produce H₂ and OH⁻. H⁻ + H₂O \rightarrow H₂ + OH⁻

•For example, the reaction of LiH with water proceeds in this fashion.

 $LiH_{(s)} + H_2O_{(\ell)} \rightarrow H_{2(g)} + OH_{(aq)}^- + Li_{(aq)}^+$

Hydrogen reacts with nonmetals to produce covalent compounds.

 $H_{2} + F_{2} \rightarrow 2 HF$ $H_{2} + Br_{2} \rightarrow 2 HBr$ $2 H_{2} + O_{2} \rightarrow 2 H_{2}O$ $8 H_{2} + S_{8} \rightarrow 8 H_{2}S$

The hydrides of Group VIIA and VIA hydrides are acidic.

 $HCl \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)} \qquad (a \text{ strong acid})$ $H_{2}S \rightleftharpoons H^{+}_{(aq)} + HS^{-}_{(aq)} \qquad (a \text{ weak acid})$

- There is an important periodic trend evident in the ionic or covalent character of hydrides.
- <u>Metal hydrides</u> are ionic compounds and form basic aqueous solutions.
- 2. <u>Nonmetal hydrides</u> are covalent compounds and form acidic aqueous solutions.

IA	IIA	IIIA	IVA	VA	VIA	VIIA
LiH	BeH ₂	B_2H_6	CH ₄	NH ₃	H ₂ O	HF
NaH	MgH ₂	$(AlH_3)_x$	SiH ₄	PH ₃	H ₂ S	HC1
KH	CaH ₂	Ga ₂ H ₆	GeH ₄	AsH ₃	H ₂ Se	HBr
RbH	SrH ₂	InH ₃	SnH ₄	SbH ₃	H ₂ Te	HI
CsH	BaH ₂	TlH	PbH ₄	BiH ₃	H ₂ Po	HAt

© 2004 Thomson/Brooks Cole

Oxygen and the Oxides

Joseph Priestley discovered oxygen in 1774 using this reaction:

 $2 \text{ HgO}_{(s)} \rightarrow 2 \text{ Hg}_{(\ell)} + \text{O}_{2(g)}$ •A common laboratory preparation method for oxygen is:

 $2 \operatorname{KClO}_{3(s)} \rightarrow 2 \operatorname{KCl}_{(s)} + 3 \operatorname{O}_{2(g)}$ •Commercially, oxygen is obtained from the fractional distillation of liquid air.

Oxygen and the Oxides

• Ozone (O_3) is an <u>allotropic</u> form of oxygen which has two resonance structures.

•Ozone is an excellent UV light absorber in the earth's atmosphere.

 $2 O_{3(g)} \rightarrow 3 O_{2(g)}$ in presence of UV

Cygen is an extremely reactive element.
 O₂ reacts with most metals to produce normal <u>oxides</u> having an oxidation number of -2.
 4 Li_(s) + O_{2(g)} → 2 Li₂O_(s)
 However, oxygen reacts with sodium to produce a <u>peroxide</u> having an oxidation number of -1.

 $2 \operatorname{Na}_{(s)} + O_{2(g)} \to \operatorname{Na}_2 O_{2(s)}$

Oxygen reacts with K, Rb, and Cs to produce <u>superoxides</u> having an oxidation number of -1/2.

 $2 \operatorname{Na}_{(s)} + O_{2(g)} \rightarrow \operatorname{Na}_2 O_{2(s)}$

TABLE 6-4	Oxygen Co	mpounds of	the IA and	IIA Metals*	8					
	IA					ПА				
	Li	Na	K	Rb	Cs	Be	Mg	Ca	Sr	Ba
normal oxides	Li ₂ O	Na ₂ O	K ₂ O	Rb ₂ O	Cs ₂ O	BeO	MgO	CaO	SrO	BaO
peroxides	Li ₂ O ₂	Na ₂ O ₂	K_2O_2	Rb ₂ O ₂	Cs ₂ O ₂			CaO ₂	SrO ₂	BaO ₂
superoxides		NaO ₂	KO ₂	RbO ₂	CsO ₂					

*The shaded compounds represent the principal products of the direct reaction of the metal with oxygen. © 2004 Thomson/Brooks Cole

Class	Contains Ions	Oxidation No. of Oxygen		
normal oxides	O ² -	-2		
peroxides	O_2^{2-}	-1		
superoxides	$\tilde{O_2}$ -	$-\frac{1}{2}$		
@ 2004 Thomson/Brooks Colo				

© 2004 Thomson/Brooks Cole

At high oxygen pressures the IIA metals can form peroxides.

 $Ca_{(s)} + O_{2(g)} \rightarrow CaO_{2(s)}$ # Metals that have variable oxidation states, such as the *d*-transition metals, can form variable oxides.

 For example, in limited oxygen: 2 Mn_(s) + O_{2(g)} → 2 MnO_(s)

 In excess oxygen: 4 Mn_(s) + 3 O_{2(g)} → 2 Mn₂O_{3(s)}

■ Oxygen reacts with nonmetals to form covalent nonmetal oxides.
■ In limited oxygen
2 C_(s) + O_{2(g)} → 2 CO_(g)
■ In excess oxygen
C_(s) + O_{2(g)} → CO_{2(g)}

Phosphorous reacts similarly to carbon forming two different oxides depending on the oxygen amounts: In limited oxygen $P_{4(s)} + 3 O_{2(g)} \rightarrow P_4 O_{6(s)}$ In excess oxygen $P_{4(s)} + 5 O_{2(g)} \rightarrow P_4 O_{10(s)}$

➡ Similarly to the nonmetal hydrides, nonmetal oxides are <u>acidic</u>.

They react with water to produce ternary acids.For example:

 $CO_{2(g)} + H_2O_{(\ell)} \rightarrow H_2CO_{3(aq)}$

 $Cl_2O_{7(s)} + H_2O_{(\ell)} \rightarrow 2 HClO_{4(aq)}$

 $As_2O_{5(s)} + 6 H_2O_{(\ell)} \rightarrow 4 H_3AsO_{4(aq)}$

Similarly to the hydrides, metal oxides are **<u>basic</u>**.

- These are called basic anhydrides.
- They react with water to produce ionic metal hydroxides (bases)

 $Li_2O_{(s)} + H_2O_{(\ell)} \rightarrow 2 LiOH_{(aq)}$

 $CaO_{(s)} + H_2O_{(\ell)} \rightarrow Ca(OH)_{2(aq)}$

Metal oxides are usually <u>ionic</u> and <u>basic</u>.
Nonmetal oxides are usually <u>covalent</u> and <u>acidic</u>.

	Metal Oxide	e + Water	\longrightarrow	Metal Hydroxid	e (base)
sodium oxide	$Na_2O(s)$	$+ \operatorname{H}_2 \operatorname{O}(\ell)$	\longrightarrow	2 NaOH(aq)	sodium hydroxide
calcium oxide	CaO(s)	$+ \operatorname{H}_2 \operatorname{O}(\ell)$	\longrightarrow	Ca(OH) ₂ (aq)	calcium hydroxide
barium oxide © 2004 Thomson/Brooks Cole	BaO(s)	$+ \operatorname{H}_2 \operatorname{O}(\ell)$	\longrightarrow	Ba(OH) ₂ (aq)	barium hydroxide

	Nonmetal Oxide	+ Water	\longrightarrow Ternary Acid	
carbon dioxide	€ CO ₂ (g)	$+ \operatorname{H}_2 \operatorname{O}(\ell)$	\longrightarrow H ₂ CO ₃ (aq)	carbonic acid
sulfur dioxide	↔ SO ₂ (g)	$+ \operatorname{H}_2 \mathrm{O}(\ell)$	\longrightarrow H ₂ SO ₃ (aq)	sulfurous acid
sulfur trioxide	€ SO ₃ (ℓ)	$+ \operatorname{H}_2 \operatorname{O}(\ell)$	\longrightarrow H ₂ SO ₄ (aq)	sulfuric acid
dinitrogen pentoxide	$\underset{N_2O_5(s)}{\textcircled{\bullet}}$	$+ \operatorname{H_2O}(\ell)$	$\longrightarrow 2HNO_3(aq)$	nitric acid
tetraphosphorus decoxide	⊕ P ₄ O ₁₀ (s)	$+ 6H_2O(\ell)$	$\rightarrow 4H_3PO_4(aq)$	phosphoric acid

© 2004 Thomson/Brooks Cole

ц	Increasing acidic character>									
character	IA	IIA	IIIA	IVA	VA	VIA	VIIA			
	Li ₂ O	BeO	B ₂ O ₃	CO ₂	N ₂ O ₅		OF ₂			
ig base	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO3	Cl ₂ O ₇			
Increasing	K ₂ O	CaO	Ga ₂ O ₃	GeO ₂	As ₂ O ₅	SeO ₃	Br ₂ O ₇			
- Inci	Rb ₂ O	SrO	In ₂ O ₃	SnO ₂	Sb ₂ O ₅	TeO ₃	I ₂ O ₇			
Ļ	Cs ₂ O	BaO	Tl ₂ O ₃	PbO ₂	Bi ₂ O ₅	PoO ₃	At ₂ O ₇			

© 2004 Thomson/Brooks Cole

Nonmetal oxides react with metal oxides to produce salts.

 $Li_{2}O_{(s)} + SO_{2(g)} \rightarrow Li_{2}SO_{3(s)}$ $Cl_{2}O_{7(s)} + MgO_{(s)} \rightarrow Mg(ClO_{4})_{2(s)}$

	Metal Oxide	+ Nonmetal Oxide	I	Salt	
calcium oxide + sulfur trioxide	(+2) CaO(s)	(€) + SO ₃ (ℓ)	\rightarrow	€2€ CaSO ₄ (s)	calcium sulfate
magnesium oxide + carbon dioxide	⊕2 MgO(s)	$+ CO_2(g)$	\longrightarrow	⊕ ⊕ MgCO ₃ (s)	magnesium carbonate
sodium oxide + tetraphosphorus decoxide © 2004 Thomson/Brooks Cole	€ 6Na ₂ O(s	$(+) + P_4O_{10}(s)$		0 0	sodium phosphate

Combustion Reactions

- Combustion reactions are exothermic redox reactions
- One example of extremely exothermic reactions is the combustion of hydrocarbons.

 $2 C_4 H_{10(g)} + 13 O_{2(g)} \rightarrow 8 CO_{2(g)} + 10 H_2 O_{(g)}$

 $C_5H_{12(g)} + 8 O_{2(g)} \rightarrow 5 CO_{2(g)} + 6 H_2O_{(g)}$

Fossil Fuel Contaminants

- When fossil fuels are burned, they frequently have contaminants in them.
- Sulfur contaminants in coal are a major source of air pollution.
 - Sulfur combusts in air.
 - $S_{8(g)} + 8 O_{2(g)} \rightarrow 8 SO_{2(g)}$

♯ Next, a slow air oxidation of sulfur dioxide occurs.

 $2 \operatorname{SO}_{2(g)} + \operatorname{O}_{2(g)} \rightarrow 2 \operatorname{SO}_{3(g)}$ # Sulfur trioxide is a nonmetal oxide, i.e. an acid anhydride.

 $SO_{3(g)} + H_2O_{(\ell)} \rightarrow H_2SO_{4(aq)}$

Fossil Fuel Contaminants

This combustion reaction occurs in a car's cylinders during combustion of gasoline.

 $N_{2(g)} + O_{2(g)} \rightarrow 2 NO_{(g)}$

■ After the engine exhaust is released, a slow oxidation of NO in air occurs.

 $2 \operatorname{NO}_{(g)} + \operatorname{O}_{2(g)} \rightarrow 2 \operatorname{NO}_{2(g)}$

Fossil Fuel Contaminants

NO₂ is also an acid anhydride.

It reacts with water to form acid rain and, unfortunately, the NO is recycled to form more acid rain.

 $3 \text{ NO}_{2(g)} + \text{H}_2\text{O}_{(\ell)} \rightarrow 2 \text{ HNO}_{3(aq)} + \text{NO}_{(g)}$

