CHAPTER 6

Chemical Periodicity

Chapter Goals

1. More About the Periodic Table

Periodic Properties of the Elements

- 2. Atomic Radii
- 3. Ionization Energy (IE)
- 4. Electron Affinity (EA)
- 5. Ionic Radii
- 6. Electronegativity

Chemical Reactions and Periodicity

- 7. Hydrogen & the Hydrides
- 8. Oxygen & the Oxides

Noble Gases

- All of them have completely filled electron shells.
- Since they have similar electronic structures, <u>full s and p orbitals</u>, their chemical reactions are similar.
 - He $1s^2$
 - Ne [He] $2s^2 2p^6$
 - Ar [Ne] $3s^2 3p^6$
 - Kr [Ar] $4s^2 4p^6$
 - Xe $[Kr] 5s^2 5p^6$
 - $\blacksquare Rn \qquad [Xe] 6s^2 6p^6$

<u>Representative Elements</u>

- Are the elements in A groups on periodic chart.
- These elements will have their "last" electron in an outer s or p orbital.

Representative Elements

<u>d-Transition Elements</u>

\ddagger Each metal has *d* electrons.

- ns (n-1)d configurations
- These elements make the transition from metals to nonmetals.

♯ <u>*f* - transition metals</u>

- Sometimes called inner transition metals.
- Electrons are being added to *f* orbitals.
- Very slight variations of properties from one element to another.

Periodic Properties of the Elements

Atomic Radii

- Atomic radii <u>increase</u> within a column going from the <u>top to the</u> <u>bottom</u> of the periodic table.
- Atomic radii <u>decrease</u> within a row going from <u>left to right</u> on the periodic table.

IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
		Atomic	adii				
H 0.37							He 0.31
Li 1.52	Be 1.12	B 0.85	© 0.77	N 0.75	0 0.73	(E) 0.72	Ne 0.71
Na 1.86	Mg 1.60	A1 1.43	Si 1.18	P 1.10	S 1.03	C1 1.00	Ar 0.98
К	Ca	Ga 1.35	Ge 1.22	As 1.20	Se 1.19	Br 1.14	Kr 1.12
Rb	Sr	In	Sn 1.40	Sb	Te	I	Xe
2.48	2.15	1.67	1.40	1.40	1.42	1.33	1.31
Cs 2.65	Ba 2.22	TI 1.70	Pb 1.46	Bi 1.50	Po 1.68	At 1.40	Rn 1.41

Atomic Radii

- The reason the atomic radii decrease across a period is due to <u>shielding</u> or <u>screening</u> effect.
 - Effective nuclear charge, Z_{eff}, experienced by an electron is less than the actual nuclear charge, Z.
 - The inner electrons block the nuclear charge's effect on the outer electrons.
 - Consequently, the outer electrons feel a stronger effective nuclear charge.
 - For Li, Z_{eff} ~ +1
 - For Be, Z_{eff} ~ +2

Atomic Radii

- **Example:** Arrange these elements based on their atomic radii.
 - Se, S, O, Te

 $\mathbf{O} < \mathbf{S} < \mathbf{Se} < \mathbf{Te}$

- **Example:** Arrange these elements based on their atomic radii.
 - P, Cl, S, Si

Cl < S < P < Si

Example: Arrange these elements based on their atomic radii.

Ga, F, S, As

 $\mathbf{F} < \mathbf{S} < \mathbf{As} < \mathbf{Ga}$

First ionization energy (IE₁)

- The minimum amount of energy required to remove the most loosely bound electron from an isolated gaseous atom to form a 1+ ion.
- **#** Symbolically:

Atom_(g) + energy \rightarrow ion⁺_(g) + e⁻

 $Mg_{(g)} + 738kJ/mol \rightarrow Mg^+ + e^-$

Second ionization energy (IE₂)

- The amount of energy required to remove the second electron from a gaseous 1+ ion.
- **#** Symbolically:
 - $ion^+ + energy \rightarrow ion^{2+} + e^-$

Mg⁺ + 1451 kJ/mol → Mg²⁺ + e⁻ •Atoms can have 3^{rd} (IE₃), 4^{th} (IE₄), etc. ionization energies.

I $E_2 > IE_1$ It always takes more energy to remove a second electron from an ion than from a neutral atom.

IE₁ generally increases moving from IA elements to VIIIA elements.

Important exceptions at Be & Mg, N & P, etc. due to filled and half-filled subshells.

- IE₁ generally decreases moving down a family.
 - IE_1 for $Li > IE_1$ for Na, etc.

First Ionization Energies of Some Elements

First Ionization Energies of Some Elements

- **Example:** Arrange these elements based on their first ionization energies.
 - Sr, Be, Ca, Mg

Sr < Ca < Mg < Be

- **Example:** Arrange these elements based on their first ionization energies.
 - Al, Cl, Na, P

Na < Al < P < Cl

- **Example:** Arrange these elements based on their first ionization energies.
 - **B**, **O**, **Be**, **N**

 $\mathbf{B} < \mathbf{B}\mathbf{e} < \mathbf{O} < \mathbf{N}$

 First, second, third, etc. ionization energies exhibit periodicity as well.

a series added to depend on the second low of the barries of	2. Shows and the Association of the statement of the s
IE ₁ (kJ/mol)	1680
IE ₂ (kJ/mol)	3370
IE ₃ (kJ/mol)	6050
IE ₄ (kJ/mol)	8410
IE ₅ (kJ/mol)	11020
IE ₆ (kJ/mol)	15160
IE ₇ (kJ/mol)	17870
IE ₈ (kJ/mol)	92040

Electron affinity is the amount of energy absorbed when an electron is added to an isolated gaseous atom to form an ion with a 1- charge.

- Electron affinity is a measure of an atom's ability to form negative ions.
- **#** Symbolically:

 $atom(g) + e^- + EA \rightarrow ion^-(g)$

Sign conventions for electron affinity If electron affinity > 0 energy is absorbed. If electron affinity < 0 energy is released.

 $\begin{array}{l} Mg_{(g)} + e^- + 231 \text{ kJ/mol} \rightarrow Mg^-_{(g)} \\ EA = +231 \text{ kJ/mol} \end{array}$

 $Br_{(g)} + e^{-} \rightarrow Br_{(g)}^{-} + 323 \text{ kJ/mol}$ EA = -323 kJ/mol

- the values become more negative from left to right across a period on the periodic chart.
- the values become more negative from bottom to top up a row on the periodic chart.

Electron Affinities of Some Elements

1	Н -73									He	0
2	Li -60	Be (~0)			В —29	C -122	N 0	O -141	F -328	Ne	0
3	Na -53	Mg (~0)	Acan		Al -43	Si -134	P -72	S -200	Cl -349	Ar	0
4	К -48	Ca (~0)		Cu -118	Ga -29	Ge -119	As -78	Se -195	Br -324	Kr	0
5	Rb -47	Sr (~0)		Ag -125	In -29	Sn -107	Sb -101	Те -190	I -295	Xe	0
6	Cs -45	Ba (~0)		Au -282	Tl -19	Pb -35	Bi -91				

© 2004 Thomson/Brooks Cole

Example: Arrange these elements based on their electron affinities.

Al, Mg, Si, Na

Si < Al < Na < Mg

Cations are always *smaller* than their respective neutral atoms.

IA	IIA	IIIA I	VA VA	VIA	VIIA	VIIIA
Li ⁺ 0.90	Be ²⁺	Ionic radii	N ³⁻	0 ²⁻ 1.26	F ⁻ 1.19	
Na ⁺ 1.16	Mg ²⁺	Al ³⁺ 0.68	1.71	S ²⁻ 1.70	C1 ⁻ 1.67	
K ⁺ 1.52	Ca^{2+} 1.14	Ga ³⁺		Se ²⁻ 1.84	Br ⁻ 1.82	
Rb ⁺ 1.66	Sr ²⁺ 1.32	In ³⁺ 0.94		Te ²⁻ 2.07	I ⁻ 2.06	
Cs ⁺ 1.81 © 2004 Thomson/B	Ba ²⁺ 1.49	$T1^{3+}$		2	Å	

Anions are always *larger* than their neutral atoms.

Cations radii decrease from left to right across a period.
Increasing nuclear charge attracts the electrons and decreases the radius.

Ion	Rb ⁺	Sr ²⁺	In ³⁺
Ionic Radii(Å)	1.66	1.32	0.94

Anions radii decrease from left to right across a period.

 Increasing electron numbers in highly charged ions cause the electrons to repel and increase the ionic radius.

Ion	N ³⁻	O ²⁻	F ¹⁻
Ionic Radii(Å)	1.71	1.26	1.19

Example: Arrange these elements based on their ionic radii.

Ga, K, Ca

 $K^{1+} < Ca^{2+} < Ga^{3+}$

Example: Arrange these elements based on their ionic radii.

Cl, Se, Br, S

 $Cl^{1-} < S^{2-} < Br^{1-} < Se^{2-}$

Isoelectronic ions

An isoelectronic series of ions											
	N ³⁻	O ²⁻	F ⁻	Na ⁺	Mg ²⁺	Al ³⁺					
Ionic radius (Å)	1.71	1.26	1.19	1.16	0.85	0.68					
No. of electrons	10	10	10	10	10	10					
Nuclear charge	+7	+8	+9	+11	+12	+13					

© 2004 Thomson/Brooks Cole

Electronegativity

- Electronegativity is a measure of the relative tendency of an atom to attract electrons to itself when *chemically combined with another element*.
 - Electronegativity is measured on the <u>Pauling</u> scale.
 - Fluorine is the most electronegative element.
 - Cesium and francium are the least electronegative elements.
- For the representative elements, electronegativities usually increase from left to right across periods and decrease from top to bottom within groups.

Electronegativity

	IA																	VIIIA
ļ	1 H 2.1	IIA				Metals Nonme	etals						IIIA	IVA	VA	VIA	VIIA	2 He
2	3 Li 1.0	4 Be 1.5				Metall							5 B 2.0	6 C 2.5	7 N 3.0	8 O 3.5	9 F 4.0	10 Ne
3	11 Na 1.0	12 Mg 1.2	IIIB	 IVB	VB	VIB	VIIB		VIIIB		IB	IIB	13 Al 1.5	14 Si 1.8	15 P 2.1	16 S 2.5	17 Cl 3.0	18 Ar
1	19 K 0.9	20 Ca 1.0	21 Sc 1.3	22 Ti 1.4	23 V 1.5	24 Cr 1.6	25 Mn 1.6	26 Fe 1.7	27 Co 1.7	28 Ni 1.8	29 Cu 1.8	30 Zn 1.6	31 Ga 1.7	32 Ge 1.9	33 As 2.1	34 Se 2.4	35 Br 2.8	36 Kr

© 2004 Thomson/Brooks Cole

Electronegativity

Example: Arrange these elements based on their electronegativity.

Se, Ge, Br, As

Ge < As < Se < Br

Example: Arrange these elements based on PIQUESUA & HAA their electronegativity.

Be, Mg, Ca, Ba

Ba < Ca < Mg < Be