Atomic Number

- The atomic number is equal to the number of protons in the nucleus.
- Sometimes given the symbol Z.
- On the periodic chart Z is the uppermost number in each element's box.
- In 1913 H.G.J. Moseley realized that the atomic number determines the element.
- The elements differ from each other by the number of protons in the nucleus.
- The number of electrons in a neutral atom is also equal to the atomic number.

Neutrons

- James Chadwick in 1932 analyzed the results of α-particle scattering on thin Be films.
- Chadwick recognized existence of massive neutral particles which he called neutrons.
${ }^{\circ}$ Chadwick discovered the neutron.

Mass Number and Isotopes

Mass number is given the symbol A.
A is the sum of the number of protons and neutrons.

- $Z=$ proton number $N=$ neutron number
- $\mathrm{A}=\mathrm{Z}+\mathrm{N}$

A common symbolism used to show mass and proton numbers is
${ }_{Z}^{A} \mathrm{E}$ for example ${ }_{6}^{12} \mathrm{C},{ }_{20}^{48} \mathrm{Ca},{ }_{79}^{197} \mathrm{Au}$

- Can be shortened to this symbolism.

$$
{ }^{14} \mathrm{~N},{ }^{63} \mathrm{Cu},{ }^{107} \mathrm{Ag}, \text { etc. }
$$

Mass Number and Isotopes

- Isotopes are atoms of the same element but with different neutron numbers.
- Isotopes have different masses and A values but are the same element.
One example of an isotopic series is the hydrogen isotopes.
${ }^{1} \mathrm{H}$ or protium: one proton and no neutrons ${ }^{2} \mathrm{H}$ or deuterium: one proton and one neutron ${ }^{3} \mathrm{H}$ or tritium: one proton and two neutrons

Mass Number and Isotopes

Another example of an isotopic series is the oxygen isotopes.
${ }^{16} \mathrm{O}$ is the most abundant stable O isotope.
8 protons and 8 neutrons
${ }^{17} \mathrm{O}$ is the least abundant stable O isotope.
8 protons and 9 neutrons
${ }^{18} \mathrm{O}$ is the second most abundant stable O isotope.
8 protons and 10 neutrons

The Atomic Weight Scale and Atomic Weights

If we define the mass of ${ }^{12} \mathrm{C}$ as exactly 12 atomic mass units (amu), then it is possible to establish a relative weight scale for atoms.

- 1 amu $=(1 / 12)$ mass of ${ }^{12} \mathrm{C}$ by definition

The Atomic Weight Scale and Atomic Weights

The atomic weight of an element is the weighted average of the masses of its stable isotopes

- Naturally occurring Cu consists of 2 isotopes. It is $69.1 \%{ }^{63} \mathrm{Cu}$ with a mass of 62.9 amu , and $30.9 \%{ }^{65} \mathrm{Cu}$, which has a mass of 64.9 amu . Calculate the atomic weight of Cu to one decimal place.

The Atomic Weight Scale and Atomic Weights

atomic weight $=\underbrace{(0.691)(62.9 \mathrm{amu})}_{{ }^{6} \text { Cu isotope }}+\underbrace{(0.309)(64.9 \mathrm{amu})}_{{ }^{6} \mathrm{Cu} \text { i isotope }}$
atomic weight $=63.5 \mathrm{amu}$ for copper

The Atomic Weight Scale and Atomic Weights

Naturally occurring chromium consists of four isotopes. It is $4.31 \% ~ 24{ }^{50} \mathrm{Cr}$, mass $=49.946 \mathrm{amu}, 83.76 \%{ }_{24}{ }^{52 \mathrm{Cr}}$, mass $=$ $51.941 \mathrm{amu}, 9.55 \%{ }_{24}{ }^{53} \mathrm{Cr}$, mass = 52.941 amu , and $2.38 \%{ }_{24}{ }^{54} \mathrm{Cr}$, mass = 53.939 amu. Calculate the atomic weight of chromium.

The Atomic Weight Scale and Atomic Weights

$$
\begin{aligned}
\text { atomic weight }= & (0.0431 \times 49.946 \mathrm{amu})+(0.8376 \times 51.941 \mathrm{amu}) \\
& +(0.0955 \times 52.941 \mathrm{amu})+(0.0238 \times 53.939 \mathrm{amu}) \\
= & (2.153+43.506+5.056+1.284) \mathrm{amu} \\
= & 51.998 \mathrm{amu}
\end{aligned}
$$

The Atomic Weight Scale and Atomic Weights

- The atomic weight of boron is 10.811 amu. The masses of the two naturally occurring isotopes $5^{10} \mathrm{~B}$ and $5^{11} \mathrm{~B}$, are 10.013 and 11.009 amu, respectively. Calculate the fraction and percentage of each isotope.
This problem requires a little algebra.
- A hint for this problem is $x+(1-x)=1$

The Atomic Weight Scale and Atomic Weights

$$
\begin{aligned}
10.811 \mathrm{amu} & =\underbrace{x(10.013 \mathrm{amu})}_{{ }^{10}{ }_{\text {Bistotope }}}+\underbrace{}_{{ }^{11} \text { Bisotope }^{(1-x)}(11.009 \mathrm{amu})} \\
& =(10.013 x+11.009-11.009 x) \mathrm{amu} \\
(10.811-11.009) \mathrm{amu} & =(10.013 x-11.009 x) \mathrm{amu} \\
-0.198 & =-0.996 x \\
0.199 & =x
\end{aligned}
$$

The Atomic Weight Scale and Atomic Weights

Note that because x is the multiplier for the ${ }^{10} \mathrm{~B}$ isotope, our solution gives us the fraction of natural B that is ${ }^{10} \mathrm{~B}$.
Fraction of ${ }^{10} \mathrm{~B}=0.199$ and \% abundance of ${ }^{10} \mathrm{~B}=19.9 \%$.
The multiplier for ${ }^{11} \mathrm{~B}$ is $(1-x)$ thus the fraction of ${ }^{11} \mathrm{~B}$ is $1-0.199=0.811$ and the \% abundance of ${ }^{11} \mathrm{~B}$ is 81.1%.

Quantum Numbers ($\mathbf{n}, \ell, \mathbf{m}_{\ell}, \mathbf{m}_{\mathbf{s}}$)

Quantum Numbers

The principal quantum number has the symbol n.

$\mathrm{n}=1,2,3,4, \ldots .$. "shells"
$\mathrm{n}=\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \ldots .$.

The electron's energy depends principally on n .

Quantum Numbers

The angular momentum quantum number has the symbol ℓ.

$$
\begin{aligned}
& \ell=0,1,2,3,4,5, \ldots \ldots . .(\mathrm{n}-1) \\
& \ell=\mathrm{s}, \mathrm{p}, \mathrm{~d}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \ldots \ldots . .(\mathrm{n}-1)
\end{aligned}
$$

- ℓ tells us the shape of the orbitals.

These orbitals are the volume around the atom that the electrons occupy $90-95 \%$ of the time.

Quantum Numbers

- The symbol for the magnetic quantum number is m_{ℓ}.
$\mathbf{m}_{\ell}=-\ell,(-\ell+1),(-\ell+2), \ldots . .0, \ldots \ldots . .,(\ell-2),(\ell-1), \ell$
If $\ell=0$ (or an s orbital), then $\mathrm{m}_{\ell}=0$.
- Notice that there is only 1 value of m_{ℓ}.

Thus there is one s orbital per n value. $\mathrm{n} \geq 1$

- If $\ell=1$ (or a p orbital), then $\mathrm{m}_{\ell}=-1,0,+1$.
- There are 3 values of \mathbf{m}_{ℓ}.
- Thus there are $3 p$ orbitals per n value. $n \geq 2$

Quantum Numbers

If $\ell=2$ (or a d orbital), then $\mathrm{m}_{\ell}=-2,-1,0,+1,+2$.

- There are 5 values of \mathbf{m}_{ℓ}.

Thus there are five d orbitals per n value.
$\mathrm{n} \geq 3$

- If $\ell=3$ (or an f orbital), then $\mathrm{m}_{\ell}=-3,-2,-$ $1,0,+1,+2,+3$.
- There are 7 values of \mathbf{m}_{ℓ}.

Thus there are seven f orbitals per n value, n

Quantum Numbers

- The last quantum number is the spin quantum number which has the symbol m_{s}.
- The spin quantum number only has two possible values.

$$
\begin{aligned}
& m_{\mathrm{s}}=+1 / 2 \text { or }-1 / 2 \\
& m_{\mathrm{s}}= \pm 1 / 2
\end{aligned}
$$

- This quantum number tells us the spin and orientation of the magnetic field of the electrons.
- No two electrons in an atom can have the same set of 4 quantum numbers.

Atomic Orbitals

- Atomic orbitals are regions of space where the probability of finding an electron about an atom is highest.
- s orbital properties:
s orbitals are spherically symmetric.
- There is one s orbital per n level.
- $\ell=0$
- 1 value of m_{ℓ}

Atomic Orbitals

- p orbital properties:
- The first p orbitals appear in the $\mathrm{n}=2$ shell.
- p orbitals are peanut or dumbbell shaped volumes.
- They are directed along the axes of a Cartesian coordinate system.
There are $3 p$ orbitals per n level.
- The three orbitals are named p_{x}, p_{y}, p_{z}.
- They have an $\ell=1$.
- $m_{\ell}=-1,0,+1 \quad 3$ values of m_{ℓ}

Atomic Orbitals

- p orbitals are peanut or dumbbell shaped.

© 2004 Thomson/Brooks Cole

Atomic Orbitals

- d orbital properties:
- The first d orbitals appear in the $\mathrm{n}=3$ shell.

The five d orbitals have two different shapes:

- 4 are clover leaf shaped.
- 1 is peanut shaped with a doughnut around it.
- The orbitals lie directly on the Cartesian axes or are rotated 45° from the axes.
-There are 5 d orbitals per n level.
-The five orbitals are named $d_{x y}, d_{y z}, d_{x z}, d_{x^{2}-y^{2}}, d_{z^{2}}$
-They have an $\ell=2$.
$-\mathrm{m}_{\ell}=-2,-1,0,+1,+25$ values of m_{ℓ}

Atomic Orbitals

- d orbital shapes

Atomic Orbitals

- f orbital properties:
- The first f orbitals appear in the $\mathrm{n}=4$ shell.
- The forbitals have the most complex shapes.
There are seven f orbitals per n level.
- The f orbitals have complicated names.
- They have an $\ell=3$
- $\mathrm{m}_{\ell}=-3,-2,-1,0,+1,+2,+3 \quad 7$ values of m_{ℓ}

Atomic Orbitals

- Spin quantum number effects:
- Every orbital can hold up to two electrons. - Consequence of the Pauli Exclusion Principle.
- The two electrons are designated as having
- one spin up \uparrow and one spin down \downarrow
- Spin describes the direction of the electron's magnetic fields.

