Atomic Number

- The atomic number is equal to the number of protons in the nucleus.
 - Sometimes given the symbol Z.
 - On the periodic chart Z is the uppermost number in each element's box.
- In 1913 <u>H.G.J. Moseley</u> realized that the atomic number determines the element .
 - The elements differ from each other by the number of protons in the nucleus.
 - The number of electrons in a <u>neutral</u> atom is also equal to the atomic number.

Neutrons

- James Chadwick in 1932 analyzed the results of α-particle scattering on thin Be films.
- Chadwick recognized existence of massive neutral particles which he called neutrons.

Chadwick discovered the neutron.

Mass Number and Isotopes

- Mass number is given the symbol A.
- A is the sum of the number of protons and neutrons.
 - Z = proton number N = neutron number
 - A = Z + N
- A common symbolism used to show mass and proton numbers is

$${}^{A}_{Z}E$$
 for example ${}^{12}_{6}C$, ${}^{48}_{20}Ca$, ${}^{197}_{79}Au$

 \bullet Can be shortened to this symbolism. 14 N, $^{63}Cu,\,^{107}Ag,etc.$

Mass Number and Isotopes

- <u>Isotopes</u> are atoms of the same element but with different neutron numbers.
 - Isotopes have different masses and A values but are the same element.
- <u>One example</u> of an isotopic series is the hydrogen isotopes.

¹H or protium: one proton and no neutrons ²H or deuterium: one proton and one neutron ³H or tritium: one proton and two neutrons

Mass Number and Isotopes

- Another example of an isotopic series is the oxygen isotopes.
 ¹⁶O is the most abundant stable O isotope. 8 protons and 8 neutrons
 ¹⁷O is the least abundant stable O isotope. 8 protons and 9 neutrons
 ¹⁸O is the second most abundant stable O isotope.
 - 8 protons and 10 neutrons

- If we define the mass of ¹²C as exactly 12 atomic mass units (amu), then it is possible to establish a relative weight scale for atoms.
 - 1 amu = (1/12) mass of ¹²C by definition

- The atomic weight of an element is the weighted average of the masses of its stable isotopes
- Naturally occurring Cu consists of 2 isotopes. It is <u>69.1% ⁶³Cu</u> with a mass of <u>62.9 amu</u>, and <u>30.9% ⁶⁵Cu</u>, which has a mass of <u>64.9 amu</u>. Calculate the atomic weight of Cu to one decimal place.

⁶³ Cu isotope

⁶⁵ Cu isotope

atomic weight = 63.5 amu for copper

• Naturally occurring chromium consists of four isotopes. It is $4.31\%_{24}{}^{50}Cr$, mass = 49.946 amu, 83.76% $_{24}{}^{52}Cr$, mass = 51.941 amu, 9.55% $_{24}{}^{53}Cr$, mass = 52.941 amu, and 2.38% $_{24}{}^{54}Cr$, mass = 53.939 amu. Calculate the atomic weight of chromium.

atomic weight = $(0.0431 \times 49.946 \text{ amu}) + (0.8376 \times 51.941 \text{ amu})$ + $(0.0955 \times 52.941 \text{ amu}) + (0.0238 \times 53.939 \text{ amu})$ = (2.153 + 43.506 + 5.056 + 1.284) amu = 51.998 amu

- The atomic weight of boron is 10.811 amu. The masses of the two naturally occurring isotopes 5¹⁰B and 5¹¹B, are 10.013 and 11.009 amu, respectively. Calculate the fraction and percentage of each isotope.
- This problem requires a little algebra.
 - A hint for this problem is x + (1-x) = 1

 $10.811 \text{ amu} = \underbrace{x(10.013 \text{ amu})}_{^{10}\text{B isotope}} + \underbrace{(1-x)(11.009 \text{ amu})}_{^{11}\text{B isotope}}$ = (10.013 x + 11.009 - 11.009 x) amu(10.811 - 11.009) amu = (10.013 x - 11.009 x) amu- 0.198 = -0.996 x0.199 = x

- Note that because x is the multiplier for the ¹⁰B isotope, our solution gives us the fraction of natural B that is ¹⁰B.
- Fraction of ${}^{10}B = 0.199$ and % abundance of ${}^{10}B = 19.9\%$.
- The multiplier for ¹¹B is (1-x) thus the fraction of ¹¹B is 1-0.199 = 0.811 and the % abundance of ¹¹B is 81.1%.

<u>The principal quantum number</u> has the symbol n.

n = 1, 2, 3, 4, "shells"

n = K, L, M, N,

The electron's energy depends principally on n.

- The angular momentum quantum number has the symbol *l*.
 - ℓ = 0, 1, 2, 3, 4, 5,(n-1)
 - $\ell = s, p, d, f, g, h, \dots(n-1)$
- ℓ tells us the shape of the orbitals.
- These orbitals are the volume around the atom that the electrons occupy 90-95% of the time.

- The symbol for the magnetic quantum number is m_{ℓ} .
 - $m_{\ell} = -\ell$, (- ℓ + 1), (- ℓ +2),0,, (ℓ -2), (ℓ -1), ℓ
- If $\ell = 0$ (or an s orbital), then $m_{\ell} = 0$.

Notice that there is only 1 value of m_ℓ.
 Thus there is one s orbital per n value. n ≥ 1

- If $\ell = 1$ (or a p orbital), then $m_{\ell} = -1,0,+1$.
 - There are 3 values of m_l.
 - Thus there are 3 p orbitals per n value. $n \ge 2$

 If ℓ = 2 (or a d orbital), then m_ℓ = -2,-1,0,+1,+2.
 There are 5 values of m_ℓ. Thus there are five d orbitals per n value. n ≥ 3

 If ℓ = 3 (or an f orbital), then m_ℓ = -3,-2,-1,0,+1,+2, +3.

There are 7 values of m_l.
 Thus there are seven f orbitals per n value, n

- The last quantum number is the <u>spin quantum</u> <u>number</u> which has the symbol m_s.
- The spin quantum number only has two possible values.
 - $m_s = +1/2 \text{ or } -1/2$
 - $m_s = \pm 1/2$
- This quantum number tells us the spin and orientation of the magnetic field of the electrons.
 - <u>No two electrons in an atom can have the same set of</u> <u>4 quantum numbers.</u>

- Atomic orbitals are regions of space where the probability of finding an electron about an atom is highest.
- s orbital properties:
 - s orbitals are spherically symmetric.
 - There is one s orbital per n level.
 - $\ell = 0$
 - 1 value of m_{ℓ}

- <u>p orbital properties</u>:
 - The first p orbitals appear in the n = 2 shell.
- p orbitals are peanut or dumbbell shaped volumes.
 - They are directed along the axes of a Cartesian coordinate system.
- There are 3 p orbitals per n level.
 - The three orbitals are named p_x, p_y, p_z.
 - They have an $\ell = 1$.
 - m_{ℓ} = -1,0,+1 3 values of m_{ℓ}

• p orbitals are peanut or dumbbell shaped.

- <u>d orbital properties</u>:
 - The first d orbitals appear in the n = 3 shell.
- The five d orbitals have two different shapes:
 - 4 are clover leaf shaped.
 - 1 is peanut shaped with a doughnut around it.
 - The orbitals lie directly on the Cartesian axes or are rotated 45° from the axes.
- •There are 5 d orbitals per n level.
 - -The five orbitals are named d_{xy}

$$d_{xy}, d_{yz}, d_{xz}, d_{x^2-y^2}, d_{z^2}$$

-They have an $\ell = 2$.

 $-m_{\ell}$ = -2,-1,0,+1,+2 5 values of m_{ℓ}

- f orbital properties:
 - The first f orbitals appear in the n = 4 shell.
- The f orbitals have the most complex shapes.
- There are seven f orbitals per n level.
 - The f orbitals have complicated names.
 - They have an $\ell = 3$

• $m_{\ell} = -3, -2, -1, 0, +1, +2, +3$ 7 values of m_{ℓ}

- Spin quantum number effects:
 - Every orbital can hold up to two electrons.
 - Consequence of the Pauli Exclusion Principle.
 - The two electrons are designated as having
 - ullet one spin up $igtsymbol{\uparrow}$ and one spin down $\,igstarrow\,$
- Spin describes the direction of the electron's magnetic fields.