
Classifying Chemical Reactions

- Oxidation-Reduction Reactions
- Combination Reactions
- Decomposition Reactions
- Displacement Reactions
- Metathesis Reactions
- Acid-Base (neutralization) Reactions
- Precipitation reactions

Oxidation-Reduction Reactions

- Oxidation is an increase in the oxidation number.
 - Corresponds to the loss of electrons.
- <u>Reduction</u> is a decrease in the oxidation number.
 - Corresponds to the gain of electrons

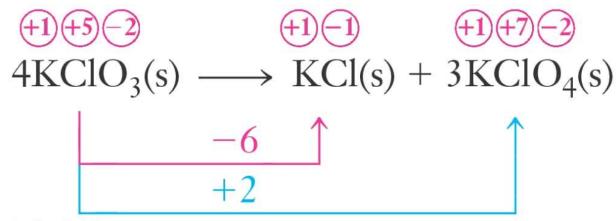
Oxidation-Reduction Reactions

- Oxidizing agents are chemical species that:
 - 1. oxidize some other substance
 - 2. contain atoms that are reduced
 - 3. gain electrons
- Reducing agents are chemical species that:
 - 1. reduce some other substance
 - 2. contain atoms that are oxidized
 - Iose electrons

Combination Reactions

- <u>Combination reactions</u> occur when two or more substances combine to form a compound.
- There are three basic types of combination reactions.
 - Two elements react to form a new compound
 - 2. An element and a compound react to form one new compound
 - 3. Two compounds react to form one compound

Combination Reactions


Element + Element → Compound A. Metal + Nonmetal \rightarrow Binary Ionic Compound $2 \operatorname{Na}_{(s)} + \operatorname{Cl}_{2(g)} \rightarrow 2 \operatorname{NaCl}_{(s)}$ $2 Mg_{(s)} + O_{2(g)} \rightarrow 2 MgO_{(s)}$ B. Nonmetal + Nonmetal \rightarrow Covalent Binary Compound $P_{4(s)} + 5 O_{2(g)} \rightarrow P_4 O_{10(s)}$ $P_{4(s)} + 6 \operatorname{Cl}_{2(g)} \rightarrow 4 \operatorname{PCl}_{3(\ell)}$

Combination Reactions

Compound + Element → Compound 2. $\operatorname{AsCl}_{3(s)} + \operatorname{Cl}_{2(g)} \rightarrow \operatorname{AsCl}_{5(s)}$ $SF_{4(s)} + F_{2(g)} \rightarrow SF_{6(g)}$ 3. Compound + Compound \rightarrow Compound $Li_2O + SO_2 \rightarrow Li_2SO_3$ $NH_{3(g)} + HCl_{(g)} \rightarrow NH_4Cl_{(s)}$

Disproportionation Reactions

Is a redox reaction in which the same element is oxidized and reduced.

© 2004 Thomson/Brooks Cole

Decomposition Reactions

- Decomposition reactions occur when one compound decomposes to form:
 1. Two elements
 2. One or more elements and one or more compounds
 - 3. Two or more compounds

Decomposition Reactions

Compound \rightarrow Element + Element 1. $2 N_2 O_{(g)} \xrightarrow{\Delta} 2 N_{2(g)} + O_{2(g)}$ 2. Compound \rightarrow Element + Compound(s) $2 H_2 O_{2(aa)} \xrightarrow{\text{hv or Fe}^{3+} \text{ or Mn}} \rightarrow 2 H_2 O_{(\ell)} + O_{2(g)}$ 3. Compound \rightarrow Compounds $NH_4HCO_{3(s)} \xrightarrow{\Delta} NH_{3(g)} + H_2O_{(g)} + CO_{2(g)}$

Displacement Reactions

 Displacement reactions occur when one element displaces another element from a compound.

$$\begin{array}{c|c} \textcircled{+1} & \textcircled{0} & \textcircled{+2} & \textcircled{0} \\ 2Ag^{+}(aq) + Cu(s) & \longrightarrow & Cu^{2+}(aq) + 2Ag(s) \end{array}$$

Displacement Reactions

- The following metals are active enough to displace hydrogen
 - K, Ca, Na, Mg, Al, Zn, Fe, Sn, & Pb

 $2 \operatorname{Al}_{(s)} + 3 \operatorname{H}_2 \operatorname{SO}_{4(aq)} \rightarrow \operatorname{Al}_2(\operatorname{SO}_4)_{3(aq)} + 3 \operatorname{H}_{2(g)}$

Displacement Reactions

 Each halogen will displace less active (heavier) halogens from their binary salts; that is, the order of decreasing activities is

$$F_2 > CI_2 > Br_2 > I_2$$

 $\operatorname{Cl}_{2(g)} + 2\operatorname{NaI}_{(aq)} \rightarrow \operatorname{I}_{2(s)} + 2\operatorname{NaCl}_{(aq)}$

Metathesis Reactions

 <u>Metathesis reactions</u> occur when two ionic aqueous solutions are mixed and the ions switch partners.

 $AX + BY \rightarrow AY + BX$

- Metathesis reactions remove ions from solution in two ways:
 - 1. form unionized molecules like H₂O
 - 2. form an insoluble solid
- Ion removal is the driving force of metathesis reactions.

Metathesis Reactions

1. Acid-Base (neutralization) Reactions

- Formation of the nonelectrolyte H₂O
- acid + base \rightarrow salt + water
- HCI + NaOH \rightarrow NaCI + H₂O
- Precipitation reactions are metathesis reactions in which an insoluble compound is formed.

$$\begin{array}{ccc} \textcircled{+1} & \textcircled{+5} \textcircled{-2} & & \textcircled{+1} \textcircled{+5} \textcircled{-2} \\ 3 \operatorname{Ag}^{+}(\operatorname{aq}) + \operatorname{PO}_{4}^{3-}(\operatorname{aq}) & \longrightarrow \operatorname{Ag}_{3} \operatorname{PO}_{4}(\operatorname{s}) \end{array}$$

c 115. Which of the following is a reduction-oxidation (redox) reaction?

FeCl₂(aq) + 2AgNO₃(aq) → 2AgCl(s) + Fe(NO₃)₂(aq) AgNO₃(aq) + NaBr(aq) → AgBr(s) + NaNO₃(aq) Zn(s) + 2AgNO₃(aq) → 2Ag(s) + Zn(NO₃)₂(aq) CaO(s) + CO₂(g) → CaCO₃(s) 3HCl(aq) + Cr(OH)₃(s) → CrCl₃(aq) + 3H₂O(l)

b 85. Which of the following reactions is a combination reaction?

(a) $\operatorname{AgNO}_3(\operatorname{aq}) + \operatorname{HCl}(\operatorname{aq}) \rightarrow \operatorname{AgCl}(s) + \operatorname{HNO}_3(\operatorname{aq})$ (b) $\operatorname{Na}_2\operatorname{O}(s) + \operatorname{CO}_2(g) \rightarrow \operatorname{Na}_2\operatorname{CO}_3(s)$ (c) $\operatorname{C}_3\operatorname{H}_8(g) + 5\operatorname{O}_2(g) \rightarrow 3\operatorname{CO}_2(g) + 4\operatorname{H}_2\operatorname{O}(1)$ (d) $2\operatorname{H}_2\operatorname{O}(1) \rightarrow 2\operatorname{H}_2(g) + \operatorname{O}_2(g)$ (e) $\operatorname{KOH}(\operatorname{aq}) + \operatorname{HCl}(\operatorname{aq}) \rightarrow \operatorname{KCl}(\operatorname{aq}) + \operatorname{H}_2\operatorname{O}(1)$

Chapter 5 The Structure of Atoms

Outline

- 1. Fundamental Particles
- 2. The Discovery of Electrons
- 3. Canal Rays and Protons
- 4. Rutherford and the Nuclear Atom
- 5. Atomic Number
- 6. Neutrons
- 7. Mass Number and Isotopes
- 8. Mass spectrometry and Isotopic Abundance

Chapter Goals

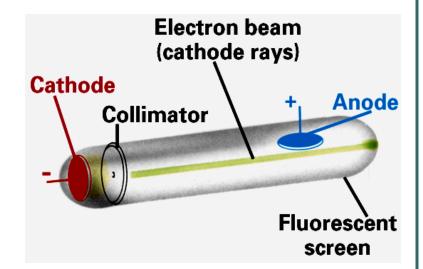
- 9. The Atomic Weight Scale and Atomic Weights
- 10. Electromagnetic radiation
- 11. The Photoelectric Effect
- 12. Atomic Spectra and the Bohr Atom
- 13. The Wave Nature of the Electron
- 14. The Quantum Mechanical Picture of the Atom

Chapter Goals

- 15. Quantum Numbers
- 16. Atomic Orbitals
- 17. Electron Configurations
- 18. Paramagnetism and Diamagnetism
- 19. The Periodic Table and e Configurations

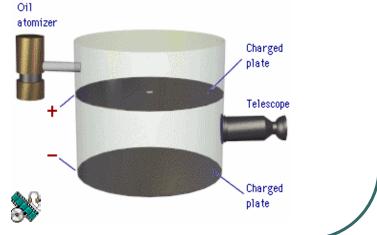
Reading Assignment

Please read 1-4.


Fundamental Particles

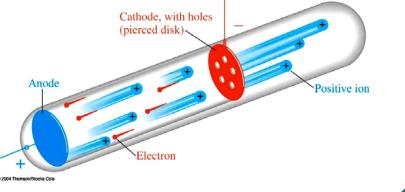
• Three fundamental particles make up atoms. The following table lists these particles together with their masses and their charges.

<u>Particle</u>	<u>Mass (amu</u>)	<u>Charge</u>
Electron (e ⁻)	0.00054858	-1
Proton (p,p ⁺)	1.0073	+1
Neutron(n,n ⁰)	1.0087	0

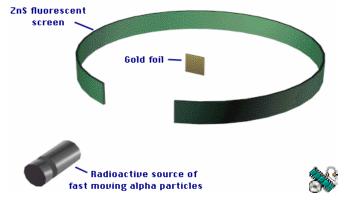

- <u>Humphrey Davy</u> in the early 1800's passed electricity through compounds and noted:
 - that the compounds decomposed into elements.
 - Concluded that compounds are held together by electrical forces.
- <u>Michael Faraday</u> in 1832-1833 realized that the amount of reaction that occurs during electrolysis is proportional to the electrical current passed through the compounds.

- <u>Cathode Ray Tubes</u> experiments performed in the late 1800's & early 1900's.
 - Consist of two electrodes sealed in a glass tube containing a gas at very low pressure.
 - When a voltage is applied to the cathodes a glow discharge is emitted.

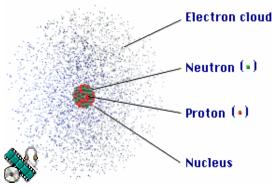
- These "rays" are emitted from cathode (- end) and travel to anode (+ end).
 - Cathode Rays must be negatively charged!
- J.J. Thomson modified the cathode ray tube experiments in 1897 by adding two adjustable voltage electrodes.
 - Studied the amount that the cathode ray beam was deflected by additional electric field.


- <u>Robert A. Millikan</u> won the 1st American Nobel Prize in 1923 for his famous oil-drop experiment.
- In 1909 Millikan determined the charge and mass of the electron.

- Millikan determined that the charge on a single electron = -1.60218 x 10⁻¹⁹ coulomb.
- Using Thomson's charge to mass ratio we get that the mass of one electron is 9.11 x 10⁻²⁸ g.
 - e/m = -1.75881 x 10⁸ coulomb
 - e = -1.60218 x 10⁻¹⁹ coulomb
 - Thus m = 9.10940 x 10⁻²⁸ g


Canal Rays and Protons

- <u>Eugene Goldstein</u> noted streams of positively charged particles in cathode rays in 1886.
 - Particles move in opposite direction of cathode rays.
 - Called "Canal Rays" because they passed through holes (channels or canals) drilled through the negative electrode.
- Canal rays must be positive.
 - Goldstein postulated the existence of a positive fundamental particle called the "proton".


Rutherford and the Nuclear Atom

- <u>Ernest Rutherford</u> directed Hans Geiger and Ernst Marsden's experiment in 1910.
 - α particle scattering from thin Au foils
 - Gave us the basic picture of the atom's structure.

Rutherford and the Nuclear Atom

- In 1912 <u>Rutherford</u> decoded the αparticle scattering information.
 - Explanation involved a nuclear atom with electrons surrounding the nucleus

Rutherford and the Nuclear Atom

- Rutherford's major conclusions from the αparticle scattering experiment
 - 1. The atom is mostly empty space.
 - 2. It contains a very small, dense center called the nucleus.
 - 3. Nearly all of the atom's mass is in the nucleus.
 - 4. The nuclear diameter is 1/10,000 to 1/100,000 times less than atom's radius.

Rutherford and the Nuclear Atom

- Because the atom's mass is contained in such a small volume:
 - The nuclear density is 10¹⁵g/mL.
 - This is equivalent to 3.72 x 10⁹ tons/in³.
 - Density inside the nucleus is almost the same as a neutron star's density.

