


Oxidation States of Nitrogen

Oxidation States of Chlorine

- Binary compounds are made of two elements.
 - metal + nonmetal = ionic compound
 - nonmetal + nonmetal = covalent compound
- Name the <u>more metallic</u> element <u>first</u>.
 - Use the element's name.
- Name the <u>less metallic</u> element <u>second</u>.
 - Add the suffix "ide" to the element's stem.

- LiBr lithium bromide
- Li₂S lithium sulfide
- Al₂O₃ aluminum oxide
- Na₃P sodium phosphide
- Mg₃N₂ magnesium nitride

- Binary ionic compounds containing metals that exhibit more than one oxidation state
- There are two methods to name these compounds.
- Older method
 - add suffix "<u>ic</u>" to element's Latin name for <u>higher</u>
 <u>oxidation state</u>
 - add suffix "ous" to element's Latin name for lower oxidation state
- Modern method
 - use <u>Roman numerals</u> in parentheses to indicate <u>Transition Metal's oxidation state</u>

- Compound
- FeBr₂
- FeBr₃
- TiCl₂
- TiCl₃
- TiCl₄

Old System
ferrous bromide
ferric bromide
titanous chloride
titanic chloride
does not work

Modern System
iron(II) bromide
iron(III) bromide
titanium(II) chloride
titanium(III) chloride
titanium(IV) chloride

- Binary Acids are binary compounds consisting of hydrogen and a nonmetal.
- Compounds are usually gases at room temperature and pressure.
 - Nomenclature for the <u>gaseous</u> compounds is <u>hydrogen (stem)ide</u>.
- When the compounds are <u>dissolved in water</u> they form acidic solutions.
 - Nomenclature for the <u>acidic solutions</u> is <u>hydro (stem)ic acid</u>.

- Formula
- HF
- HCI
- HBr
- H₂S

<u>Name</u>

hydrogen fluoride

hydrogen chloride

hydrogen bromide

hydrogen sulfide

Aqueous solution

hydrofluoric acid

hydrochloric acid

hydrobromic acid

hydrosulfuric acid

- Binary covalent molecular compounds composed of two nonmetals other than hydrogen
 - Nomenclature must include prefixes that <u>specify the number</u> <u>of atoms</u> of each element in the compound.

Number	Prefix	
2	di	
3	tri	
4	tetra	
5	penta	
6	hexa	
7	hepta	
8	octa	
9	nona	
10	deca	

© 2004 Thomson/Brooks Cole

- Formula
- CO
- CO₂
- SO₃
- OF₂
- P₄O₆

Name

(mono)carbon monoxide

carbon dioxide

sulfur trioxide

oxygen difluoride

tetraphosphorus hexoxide

- Formula
- N₂O
- NO
- N_2O_3
- NO₂
- N_2O_4
- N₂O₅

Old Name

nitrous oxide

nitric oxide

nitrogen trioxide

nitrogen dioxide

nitrogen tetroxide

nitrogen pentoxide

Modern Name

dinitrogen monoxide

nitrogen monoxide

dinitrogen trioxide

nitrogen dioxide

dinitrogen tetroxide

dinitrogen pentoxide

- Ternary Acids and Their Salts are made of three elements.
 - The elements are H, O & a nonmetal.
- Two of the compounds are chosen as the basis for the nomenclature system.
 - Higher oxidation state for nonmetal is named (stem)ic acid.
 - Lower oxidation state for nonmetal is named (stem)ous acid
- Salts are named based on the acids.
 - Anions of -ic acids make "ate" salts.
 - Anions of -ous acids make "ite" salts.

TABLE 4-12 Formulas of Some "-ic" Acids

Periodic Group of Central Elements							
IIA	IVA	VA	VIA	VIIA			
1	0	(f)					
H ₃ BO ₃ boric acid	H ₂ CO ₃ carbonic acid	HNO ₃ nitric acid					
				•			
	H ₄ SiO ₄ silicic acid	H ₃ PO ₄ phosphoric acid	H ₂ SO ₄ sulfuric acid	HClO ₃ chloric acid			
		€3	€	€3			
		H_3AsO_4	H_2SeO_4	$HBrO_3$			
		arsenie acid	selenie acid	bromic acid			
			⊕	(13)			
			$H_6 TeO_6$	HIO_3			
			telluric acid	iodic acid			

© 2004 Thomson/Brooks Cole

Name Formula

carbonic acid H_2CO_3

nitric acid HNO₃

boric acid H_3BO_3

phosphoric acid H₃PO₄

sulfuric acid H₂SO₄

chloric acid HCIO₃

bromic acid HBrO₃

iodic acid HIO₃

silicic acid H₄SiO

- Salts are formed by the reaction of the acid with a strong base.
- Acid
- HNO₂
 nitrous acid
- HNO₃
 nitric acid
- H₂SO₃
 sulfurous acid

Salt

NaNO₂ sodium nitrite

NaNO₃ sodium nitrate

Na₂SO₃ sodium sulfite

- Acids that have a higher oxidation state than the "ic" acid are given the prefix "per".
 - These acids and salts will have one more O atom than the "ic" acid.
- Acids that have a lower oxidation state than the "ous" acid are given the prefix "hypo".
 - These acids and salts will have one less O atom than the "ic" acid.

ber	Ternary Acid	Anion	nber s
Decreasing oxidation numl of central atom	perXXXic acid XXXic acid XXXXous acid hypoXXXXous acid	perXXXate XXXate XXXite hypoXXXite	Decreasing nun of oxygen atom on central atom

@ 2004 Thomson/Brooks Cole

- Acid
- HCIO
 hypochlorous acid
- HCIO₂
 chlorous acid
- HCIO₃
 chloric acid
- HCIO₄
 perchloric acid

Na Salt

NaCIO sodium hypochlorite

NaClO₂ sodium chlorite

NaCIO₃ sodium chlorate

NaClO₄ sodium perchlorate

- Acidic Salts are made from ternary acids that retain one or more of their acidic hydrogen atoms.
 - Made from acid base reactions where there is an insufficient amount of base to react with all of the hydrogen atoms.
- Old system used the prefix "bi" to denote the hydrogen atom.
- Modern system uses prefixes and the word hydrogen.

NaHCO₃ Old system

Modern system

KHSO₄

Old system

Modern system

KH₂PO₄

Old system

Modern system

K₂HPO₄

Old system

Modern system

sodium bicarbonate sodium hydrogen carbonate

potassium bisulfate

potassium hydrogen sulfate

potassium bis biphosphate

potassium dihydrogen phosphate

potassium biphosphate

potassium hydrogen phosphate

Q59, P 168. Write formulas for the compounds that are expected to be formed by the following pairs of ions:

	A. Cl	В. ОН-	C. SO ₄ ²⁻	D. PO ₄ ³⁻	E. NO ₃
1. NH ₄ ⁺		Omit – see note			
2. Na ⁺					
3. Mg ²⁺					
4. Ni ²⁺					
5. Fe ³⁺					
6. Ag ⁺					

@ 2004 Thomson/Brooks Cole