Solubility Guidelines for Compounds in Aqueous Solutions

- It is very important that you know these guidelines and how to apply them in reactions.
- 1) Common inorganic acids and low-molecularweight organic acids are water soluble.
- 2) All common compounds of the Group IA metal ions and the ammonium ion are water soluble.
 - Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, and NH₄⁺

Aqueous Solutions: An Introduction

- 3) Common nitrates, acetates, chlorates, and perchlorates are water soluble.
 - NO₃⁻, CH₃COO⁻, CIO₃⁻, and CIO₄⁻
- 4) Common chlorides are water soluble.
 - Exceptions AgCI, Hg₂Cl₂, & PbCl₂
 - Common bromides and iodides behave similarly to chlorides.
 - Common fluorides are water soluble.
 - Exceptions MgF₂, CaF₂, SrF₂, BaF₂, and PbF₂

Aqueous Solutions: An Introduction

5) Common sulfates are water soluble.

- Exceptions PbSO₄, BaSO₄, & HgSO₄
- Moderately soluble CaSO₄, SrSO₄, & Ag₂SO₄
- Common metal hydroxides are water insoluble.
 - Exceptions LiOH, NaOH, KOH, RbOH & CsOH
 - Common bromides and iodides behave similarly to chlorides.
 - Common fluorides are water soluble.
 - Exceptions MgF₂, CaF₂, SrF₂, BaF₂, and PbF₂

Aqueous Solutions: An Introduction

- Common carbonates, phosphates, and arsenates are water <u>insoluble</u>.
 - CO₃²⁻, PO₄³⁻, & AsO₄³⁻
 - Exceptions- IA metals and NH₄⁺ plus Ca to Ba
 - Moderately soluble MgCO₃
- 8) Common sulfides are water **insoluble**.
 - Exceptions IA metals and NH₄⁺ plus IIA metals

Ionic Equations

- There are three ways to write reactions in aqueous solutions.
- 1. Molecular equation
 - Show all reactants & products in molecular or ionic form

$$Zn_{(s)} + CuSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Cu_{(s)}$$

2. Total ionic equation

Show the ions and molecules as they exist in solution

$$Zn_{(s)} + Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-} \rightarrow Zn_{(aq)}^{2+} + SO_{4(aq)}^{2-} + Cu_{(s)}$$

Ionic Equations

3. Net ionic equation

- Shows ions that participate in reaction and removes spectator ions.
- Spectator ions do not participate in the reaction. Spectator ions in < >'s.

 $Zn_{(s)} + Cu_{(aq)}^{2+} + \langle SO_{4(aq)}^{2-} \rangle \rightarrow Zn_{(aq)}^{2+} + \langle SO_{4(aq)}^{2-} \rangle + Cu_{(s)}$

 $Zn_{(s)} + Cu_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+} + Cu_{(s)}$

•Molecular equation
2 HCl_(aq) + Na₂SO_{3(aq)}
$$\rightarrow$$
 2 NaCl_(aq) + H₂O_(\ell) + SO_{2(g)}
•Total ionic reaction
2 H¹⁺_(aq) + 2 Cl¹⁻_(aq) + 2 Na¹⁺_(aq) + SO²⁻_{3(aq)} \rightarrow
2 Na¹⁺_(aq) + 2 Cl¹⁻_(aq) + H₂O_(\ell) + SO_{2(g)}
•Net ionic reaction
2 H¹⁺_(aq) + SO²⁻_{3(aq)} \rightarrow H₂O_(\ell) + SO_{2(g)}

•Molecular equation

$$Ca(OH)_{2(aq)} + 2 HNO_{3(aq)} \rightarrow Ca(NO_{3})_{2(aq)} + 2 H_{2}O_{(\ell)}$$

•Total ionic equation
 $Ca_{(aq)}^{2+} + 2 OH_{(aq)}^{-} + 2 H_{(aq)}^{+} + 2 NO_{3(aq)}^{-} \rightarrow Ca_{(aq)}^{2+} + 2 NO_{3(aq)}^{-} + 2 H_{2}O_{(\ell)}$
•Net ionic equation
 $2 OH_{(aq)}^{-} + 2 H_{(aq)}^{+} \rightarrow 2 H_{2}O_{(\ell)}$
or better
 $OH_{(aq)}^{-} + H_{(aq)}^{+} \rightarrow H_{2}O_{(\ell)}$

•Molecular equation

$$Ca(NO_3)_{2(aq)} + K_2CO_{3(aq)} \rightarrow 2 KNO_{3(aq)} + CaCO_{3(s)}$$

•Total ionic reaction
 $Ca_{(aq)}^{2+} + 2 NO_{3(aq)}^{-} + 2 K_{(aq)}^{+} + CO_{3(aq)}^{2-} \rightarrow$
 $2 K_{(aq)}^{+} + 2 NO_{3(aq)}^{-} + CaCO_{3(s)}$
• Net ionic reaction
 $Ca_{(aq)}^{2+} + CO_{3(aq)}^{2-} \rightarrow CaCO_{3(s)}$

• Molecular equation

$$3 \operatorname{CaCl}_{2(aq)} + 2 \operatorname{Na}_{3} \operatorname{PO}_{4(aq)} \rightarrow 6 \operatorname{NaCl}_{(aq)} + \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2(s)}$$

• Total ionic reaction
 $3 \operatorname{Ca}_{(aq)}^{2+} + 6 \operatorname{Cl}_{(aq)}^{1-} + 6 \operatorname{Na}_{(aq)}^{1+} + 2 \operatorname{PO}_{4(aq)}^{3-} \rightarrow 6 \operatorname{Na}_{(aq)}^{1+} + 6 \operatorname{Cl}_{(aq)}^{1-} + \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2(s)}$
• Net ionic reaction
 $3 \operatorname{Ca}_{(aq)}^{2+} + 2 \operatorname{PO}_{4(aq)}^{3-} \rightarrow \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2(s)}$

Oxidation Numbers

- Guidelines for assigning oxidation numbers.
- 1. The oxidation number of any <u>free</u>, <u>uncombined element</u> is <u>zero</u>.
- 2. The oxidation number of an element in a simple (monatomic) ion is the charge on the ion.
- 3. In the formula for any compound, the <u>sum</u> of the oxidation numbers of all elements in the compound is zero.
- 4. In a polyatomic ion, the <u>sum</u> of the oxidation numbers of the constituent elements is equal to the charge on the ion.

Oxidation Numbers

- 5. Fluorine has an oxidation number of –1 in its compounds.
- Hydrogen, H, has an oxidation number of +1 unless it is combined with metals, where it has the oxidation number -1.
 - Examples LiH, BaH₂
- 7. Oxygen usually has the oxidation number -2.
 - Exceptions:
 - In peroxides O has oxidation number of –1.
 - Examples H_2O_2 , CaO_2 , Na_2O_2
 - In OF_2 : O has oxidation number of +2.

Oxidation Numbers

- Use the periodic table to help with assigning oxidation numbers of other elements.
 - a. IA metals have oxidation numbers of +1.
 - b. IIA metals have oxidation numbers of +2.
 - c. IIIA metals have oxidation numbers of +3.
 - There are a few rare exceptions.
 - d. VA elements have oxidation numbers of -3 in *binary* compounds with H, metals or NH_4^+ .
 - e. VIA elements below O have oxidation numbers of –2 in *binary* compounds with H, metals or NH₄⁺.

Assign oxidation numbers to the element specified in each group of compounds

- N in NaNO₃
- Sn in K₂Sn(OH)₆
- P in H_3PO_4
- S in SO₃²⁻
- Cr in $Cr_2O_7^{2-}$

Assign oxidation numbers to the element specified in each group of compounds

• N in NH₃

• O in Na_2O_2

Assign oxidation numbers to the element specified in each group of compounds

• P in $H_4P_2O_7$

• Hg in Hg₂Cl₂

• Li in LiH

• S in $S_4O_6^{2-}$

