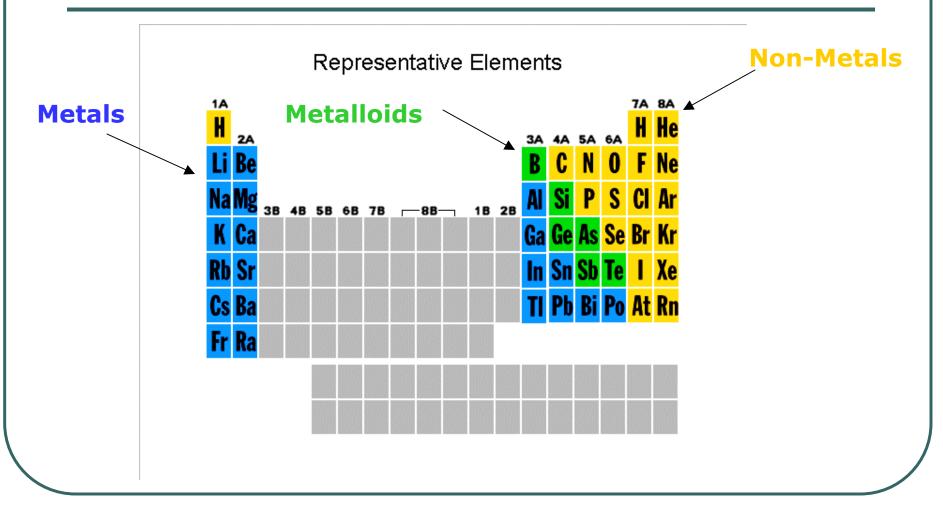
CHAPTER 4: Some Types of Chemical Reactions

Chapter Four Goals

- The Periodic Table
- Aqueous Solutions
- Oxidation Numbers
- Naming Some Inorganic Compounds
- Chemical Reactions

Mendeleev & Meyer

The periodic law


The properties of the elements are periodic functions of their atomic numbers.

Groups or Families

- Vertical group of elements on periodic table
- Similar chemical and physical properties

Periods

- Horizontal group of elements on periodic table
- Transition from metals to nonmetals

Some chemical properties of metals

- Outer shells contain few electrons
- Form <u>cations</u> by losing electrons
- Form <u>ionic compounds</u> with nonmetals
 - Solid state characterized by metallic bonding

 Group IA metals alkali metals
 Li, Na, K, Rb, Cs, Fr
 Group IIA metals alkaline earth metals
 Be, Mg, Ca, Sr, Ba, Ra

Alkali and alkaline earth metals

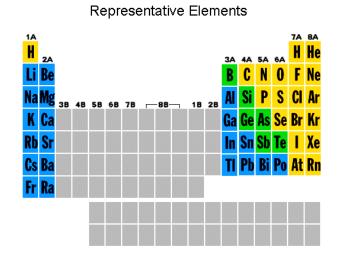
© 2004 Thomson/Brooks Cole

Some chemical properties of nonmetals

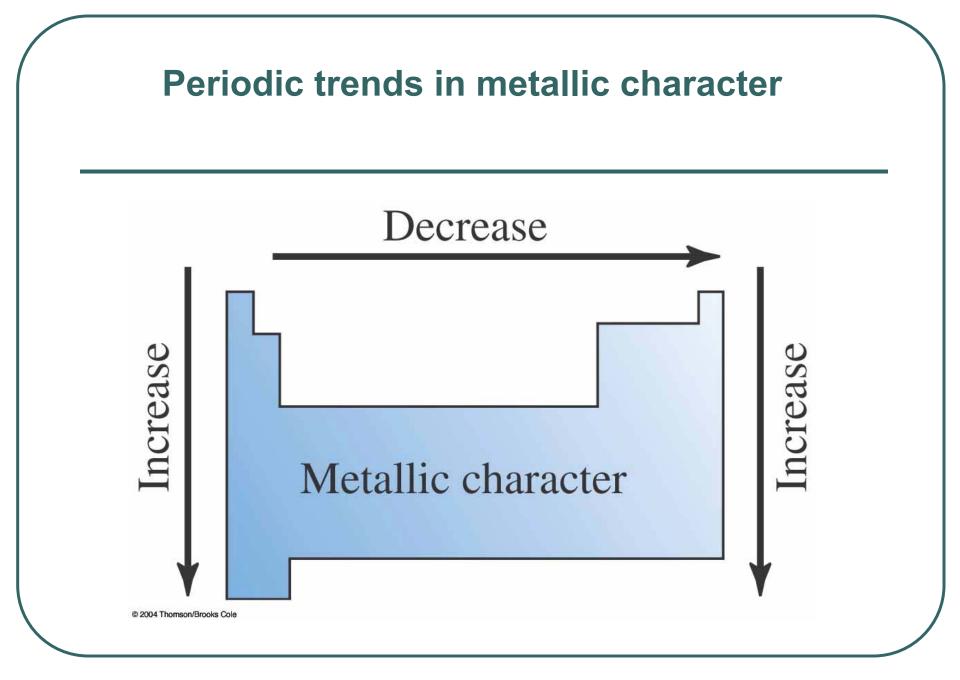
- Outer shells contain <u>four or more electrons</u>
- Form <u>anions</u> by gaining electrons
- Form ionic compounds with metals and covalent compounds with other nonmetals
- Form covalently bonded molecules; noble gases are monatomic

- Group VIA nonmetals
 - O, S, Se

Group VIIA nonmetals

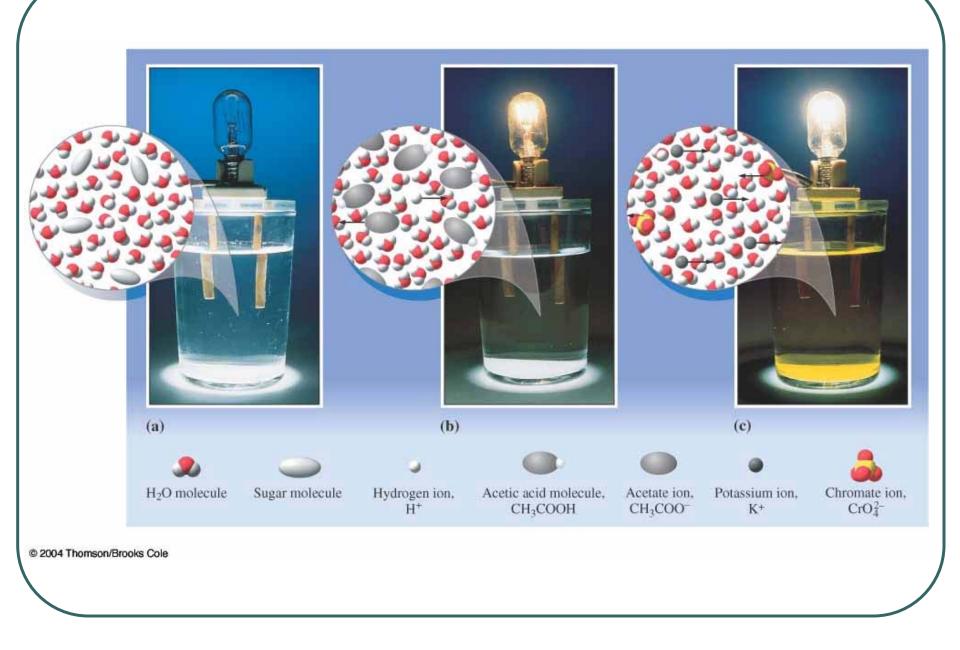

- halogens
- F, CI, Br, I, At
- Group 0 nonmetals
 - noble, inert or rare gases
 - He, Ne, Ar, Kr, Xe, Rn

Metals	Nonmetals
 High electrical conductivity that decreases with increasing temperature 	1. Poor electrical conductivity (except carbon in the form of graphite
2. High thermal conductivity	2. Good heat insulators (except carbon in the form of diamond)
 Metallic gray or silver luster* 	3. No metallic luster
4. Almost all are solids ⁺	4. Solids, liquids, or gases
5. Malleable (can be hammered into sheets)	5. Brittle in solid state
6. Ductile (can be drawn into wires)	6. Nonductile
2004 Thomson/Brooks Cole	


TABLE 4-4 Some Chemical Properties of Metals and Nonmetals	
Metals	Nonmetals
1. Outer shells contain few electrons—usually three or fewer	1. Outer shells contain four or more electrons*
2. Form cations (positive ions) by losing electrons	2. Form anions (negative ions) by gaining electrons [†]
3. Form ionic compounds with nonmetals	 Form ionic compounds with metals[†] and molecular (covalent) other compounds with nonmetals
4. Solid state characterized by metallic bonding	4. Covalently bonded molecules; noble gases are monatomic
© 2004 Thomson/Brooks Cole	

Stair step function on the periodic table separates metals from nonmetals.

- <u>Metals</u> are to the <u>left</u> of stair step.
- Best metals are on the far left of the table.
- Metalloids have one side of the box on the stair step.



- Nonmetals are to the <u>right</u> of stair step.
- Best nonmetals are on the far right of the table.

Electrolytes

- Classification of solutes:
 - <u>Nonelectrolytes</u> <u>do not conduct</u> electricity in water. The reason nonelectrolytes do not conduct electricity is because they do not form ions in solution. C_2H_5OH .
 - <u>Strong electrolytes</u> conduct electricity <u>extremely</u> <u>well</u> in dilute aqueous solutions. HCI, HNO₃, NaOH, KOH, NaCI, KBr etc.
 - Weak electrolytes conduct electricity poorly in dilute aqueous solutions. CH₃COOH.

1. Strong Acids

- Acids are substances that generate H⁺ in aqueous solutions. HCl, HBr, HI, HNO₃, H₂SO₄.
- Strong acids ionize 100% in water.

HNO₃ + H₂O<sub>(
$$\ell$$
)</sub> $\xrightarrow{\approx 100\%}$ H₃O⁺_(aq) + NO⁻_{3(aq)}
or
HNO₃ $\xrightarrow{H_2O}$ H⁺_(aq) + NO⁻_{3(aq)}

2. Weak acids

- ionize significantly less than 100% in water.
- HF, CH_3COOH , HCN, H_2CO_3 , H_2SO_3 , H_3PO_4 .
 - Typically ionize 10% or less!

$$CH_{3}COOH \xrightarrow{\approx 7\%} CH_{3}COO_{(aq)} + H_{(aq)}^{+}$$

3. Strong Bases

 Characteristic of common inorganic bases is that they produce OH- ions in solution. LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂

 $KOH \rightarrow K^{+}(aq) + OH^{-}(aq)$ $Ba(OH)_{2} \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$

4. Insoluble or sparingly soluble bases

 Ionic compounds that are insoluble in water, consequently, not very basic.

Cu(OH)₂, Fe(OH)₃, Zn(OH)₂, Mg(OH)₂

5. Weak bases

 are covalent compounds that ionize slightly in water.

NH₃

Ammonia is most common weak base

 $NH_{3(g)} + H_2O_{(\ell)} \rightleftharpoons NH_{4(aq)}^+ + OH_{(aq)}^-$

Hiamistry is tur