Nam	e(Print last name in CAPS)				
SECTION(same as your lab section)					
1.	Read each question carefully before answering.				
2.	Mark the choice that best answers the question or completes the statement.				
3.	Use the scantron provided. Use a no. 2 pencil and clearly mark your choice. If you change				
	an answer, completely erase your previous mark.				
4.	Answer each question. There is no penalty for guessing. However, multiple answers are				
	graded as incorrect, and blank answers are graded as incorrect.				
5.	On the scantron, fill in your last name, first name and initial. Blacken the corresponding				
	letters.				
6.	Fill in your ID, the department=CHEM, Course no. = 101, and Section= your lab section.				
	Blacken the corresponding letters and numbers.				
7.	If you want your score posted by a portion of your ID# mark A under the option				
	column. They will be posted on the bulletin board where you got your seat				
	assignment.				
8.	Use the test for scratch paper.				
9.	Mark your answers on the test so you can check them with the key when it is posted.				
10.	***Turning in a blank scantron results in a grade of zero. ***				
11.	Turn in both the scantron and the exam, have your ID and your calculator ready to be				
	checked.				
12.	Work at a steady pace and you will have ample time to finish.				
13.	The keys will be posted on my class web page as soon as possible. You may check your				
	grade at the class web site. Your password is the middle 5 numbers of your student				
	ID followed by the first letter of your last name in CAPS. Be patient and give the				
	webmaster time to enter all of this information.				

There are 35 questions for 125 points. Good Luck!

M

Possibly Useful Information

1 cal = 4.184 J

$$M = \frac{\text{mol solute}}{L \text{ soln}}$$

$$M_1V_1 = M_2V_2$$

 $q = mass \times sp ht \times \Delta T$

$$\left(\frac{\mathbf{w}}{\mathbf{w}}\right)$$
% = $\frac{\text{mass solute}}{\text{total mass}} \times 100$

d = mass/vol

Volume =
$$\ell \times h \times w$$
 $\lambda v = c$ $E = hv$ $\lambda = \frac{h}{mv}$

$$\lambda = \frac{h}{mv}$$

PV = nRT
$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$$
 1 atm = 101.325 kPa

 $P_{total} = P_A + P_B + P_C + ...$ $P_A = X_A P_{total}$

$$P_A = X_A P_{total}$$

$$\frac{\text{Rate A}}{\text{Rate B}} = \sqrt{\frac{\text{MW(B)}}{\text{MW(A)}}} \qquad \qquad \frac{\text{time A}}{\text{time B}} = \sqrt{\frac{\text{MW(A)}}{\text{MW(B)}}}$$

$$\frac{\text{time A}}{\text{time B}} = \sqrt{\frac{MW(A)}{MW(B)}}$$

$$ln\left(\frac{P_2}{P_1}\right) = \frac{\Delta H_{Vap}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

When the following $\frac{1}{2}$ - reaction is balanced in acidic solution, what is the Q.1 $IO_3 \rightarrow I_3$ coefficient of H2O?

- a) 1
- b) 2
- c) 3
- d) 6

What mass of NaOH is required to react exactly with 25.0 mL of 1.2 M H₂SO₄? Q.2

- 1.2 g a)
- H250+ + 2 NaOH -> Na2504+ 2420

- none of these
- 0.025 * 1.2 = 0.030 mol H2504 * (1) H2504

- Q.3 The physical change of going from solid phase to liquid phase is called,
- a) Condensation
- b) Evaporation
- Melting
- d) Sublimation
- e) Deposition
- Q.4 It is found that 250.0 mL of a gas at STP has a mass of 1.00 g. What is the molar mass of this gas?

molar mass of this gas? $PV = nRT = \underbrace{g}_{m\omega} RT$

- b) $\frac{g}{28.0 \frac{g}{mol}}$ $mw = \frac{gRT}{PV} = \frac{1.00 \text{ g} \times .08206 \text{ L.dm} \times 273.15 \text{ K}}{1 \text{ atm} \times .250 \text{ L}}$
- d) $22.4 \frac{g}{mol}$ $m\omega = 89.658 \Rightarrow 89.69/mol$
- e) $11.2 \frac{g}{mol}$ or $\frac{19}{x} = \frac{1 \, \text{mol}}{22.414 \, \text{L}} : x = \frac{22.414}{.250} = \frac{89.656}{.250} = \frac{9}{mol}$
- Q.5 Use the Ideal Gas Law to predict the relationship between n and T as pressure and volume are held constant.

 PV= nRT

 Cmtat= nT
 - a) $n \propto T$ (b) $n \propto \frac{1}{T}$ (c) $\frac{n}{T}$ = constant (d) PT=nRV (e) $\frac{PV}{T}$ = R
- Q.6 A gas sample is held at constant pressure. The gas occupies 3.62 L of volume when the temperature is 21.6°C. Determine the temperature at which the volume of the gas is 3.45 L.
 - a) 309 K (b) 281 K c) 20.6 K d) 294 K e) 326 K

$$\frac{R_{U_1}}{R_1T_1} = \frac{P_2U_2}{N_2T_2} \implies T_2 = \frac{V_2}{V_1} * T_1$$

$$T_2 = \frac{3.45 L}{3.62 L} * (21.6 + 273.15)K$$

$$T_2 = 280.9 = 281 K$$

- Which one of the following substances would exhibit dipole -dipole Q.7 intermolecular forces?
 - a) CC_{ℓ4}
- b) $C\ell_2$
- c) N₂
- (d) $NC\ell_3$
- e) CH₄
- Which would have a higher rate of effusion than C₂H₂? Q.8

28 32 270 216 244 a) N₂ b) O₂ c) Cℓ₂ d) CH₄ e) CO₂

molar mass C2 H2 = 26.037 9/mal

- In the reaction Fe_2O_3 (s) + 3 H₂ (g) \rightarrow 2 Fe (s) + 3 H₂O (ℓ), how many moles Q.9 of iron can be produced using 17.4 liters of hydrogen at STP?
 - (a))0.518
- b) 1.17
- c) 0.858
- d) 11.6
- e) 0.777

$$\frac{\text{X moles}}{17.4 \text{ L}} = \frac{1 \text{ mol}}{22.414 \text{ L}}$$

$$\therefore \text{ X} = \frac{17.4}{22.414} = 0.7763 \text{ mol s} \text{ H}_2 * \frac{\text{(3) Fe}}{\text{(3) H}_2} : \frac{0.5175}{\text{mol Fe}}$$

- Which of the following substances show(s) significant hydrogen bonding? Give Q.10 the "best" answer.
- CH3OH WS a)
- NH3 YES
- a and c only a, b, and c
- Carbon tetrachloride has a vapor pressure of 680 torr at 70°C. Which Q.11 temperature would most likely be its normal boiling point?
 - a) 50°C
- b) 70°C

- e) 16°C

Slightly greater than 70°C.

- Q.12 A gaseous hydrocarbon weighing 0.290 g occupies a volume of 125 mL at 25 °C and 760 mm Hg. What is the molar mass of this compound?
- a) 113 g/mol b) 4.76×10^3 g/mol c) 43.1 g/mol d) 10.5 g/mol e) 56.8 g/mol PV: $\frac{9}{mw}$ RT $\frac{1}{290}(.0821)(.25+.273)$ (1) (.125)= 56.76 \Rightarrow 56.8 $\frac{3}{mw}$
- Q.13 The volume correction in the van der Waals equation is due to the fact that
- a) manometers are not reliable
- b) gas molecules attract each other
- c) gas molecules repel each other
- gas molecules occupy a volume
- e) none of these
- Q.14 What volume would be occupied by 4.4 g of oxygen gas, O₂, at 0.40 atm and

- $V = 11.23 L \Rightarrow 11 L$ 359 L
- Q.15 When the following ½ reaction is balanced in acid using the smallest integer coefficients, the sum of the coefficients(including moles of electrons) is ...

$$4 \text{ Hz}0 + \text{Cr}^{3+} \rightarrow \text{Cr}O_4^{2-} + 8 \text{ H}^+ + 3 \text{ e}^-$$

- a) 12 $\sum 4+1+1+8+3=17$
- b) 15 (c) 17
- d) 16
- e) 14

Ė

A soft drink contains an unknown amount of citric acid, C₆H₈O₇. If 100.0 mL of Q.16 the soft drink requires 33.51 mL of 0.0102 M NaOH to completely neutralize the citric acid, how many grams of citric acid (molar mass = 192.13 g/mol) does the soft drink contain per 100 mL? The reaction is:

 $C_6H_8O_7(aq) + 3 \text{ NaOH (aq)} \rightarrow \text{Na}_3C_6H_5O_7(aq) + 3 H_2O (\ell)$

Choose the Brønsted-Lowry acids and bases in the following equation: Q.17

a) acids
$$NH_4^+$$
, OH^- bases H_2O , NH_3
b) acids H_2O , OH^- bases NH_4^+ , NH_3

- acids NH_4^+ , OH^- bases H_2O , NH_4^+
- acids NH_4^+ , H_2O bases OH^- , NH_3 . acids NH₄+, NH₃ bases H₂O, OH⁻
- Q.18 In the following reaction: $BF_3 + NH_3 \rightarrow BF_3 NH_3$, BF₃ acts as a
- Lewis base a)
- Brønsted acid
- Lewis acid Brønsted base
- Arrhenius acid

Which of the following would you expect to have the highest boiling point? Q.19 (d) C₂H₅OH a) CH₃OH c) 02 b) CH₄

Q.20 Calculate the density of SO₃ gas at 35°C and 715 torr.

a)
$$0.0285 \text{ g/L}$$

b) 1.43 g/L

b) 1.43 g/L
c) 2.15 g/L
2.98 g/L
e) 3.57 g/L
$$\frac{P}{V} = \frac{(715/760)}{(.0821)(273+35)} = .0372 \frac{mol}{L} \times \frac{80.069}{10001503}$$

Q.21 Consider three 1-L flasks at STP. Flask A contains NH₃ gas, flask B contains NO₂ gas, and flask C contains N₂ gas. Which flask contains the largest number of molecules?

- a) A b) B c) C (d) all are the same e) A & B
- Q.22 The forces which exist between noble gas atoms in the solid and liquid phases are :
- a) Hydrogen bonds
- b) lonic forces
- c) Dipole-dipole forces
- d) lon-dipole forces
- e) Dispersion forces

Q.23 A sample of N_2 gas effuses through a small hole in 19.0 s. How long would it take for a sample of N_2O_2 (g) to effuse under the same conditions?

a) 27.8 s
b) 13.0 s
time Nz0z =
$$\sqrt{\frac{N_2O_2}{N_2}} = \sqrt{\frac{60}{28}} = 1.463$$

- c) 8.87 s d) 40.7 s
- e) 19.0 s
- time (N202) = 1.463 (19.05) = 27.85

0.045 L * 0.0052 mol = 2.34 × 10 md Nacl

Q.24 How many moles of NaC ℓ are needed to make up 45 mL of a 0.0052 M NaC ℓ solution?

- a) 4.6×10⁻⁴ mol
- b) 5.0×10^{-3} mol
- c) 1.7×10⁻⁴ mol
- d) 6.0×10^2 mol
- (e) 2.3×10⁻⁴ mol

Q.25	The normal boiling point of CS_2 is 46°C. Based upon this, the attraction between CS_2 molecules is than the attraction between H_2O							
	molec	cules in the liqu	uid state.					
a) equa	l to	b) greater	©)ess	d) more in	formation	is needed t	to answer this	
Q.26 a) HS	The c	onjugate base b) HS ²⁻		HS ²⁺	@ e ²	2-	e) H ₂ S	
u) 110		2) 110	9,		9		-) · · <u>Z</u> -	
Q.27 a) b) c) d) e)	A Lev A Lev A Brø A Brø	ton acceptor b vis acid vis base nsted-Lowry a nsted-Lowry b rhenius acid	ıcid	∋s ,				
Q.28	Which	n of the follow	ng is the str	ongest acid?	•			
a) HC	;l	b) HF	c) HBr	⊚ ⊦	łI	e) H ₂ CO ₃		
Q.29 a) b) c) d) e)	is a sprefers is a w	ogen bonding, pecial case of pecial case of to the covale reak dispersion of the above	strong dipo nt bond of H n force	le-dipole inte I to O	raction			
Q.30	The point in a phase diagram in which the solid, liquid and gas exist in equilibrium is called the, ${\bf l}$						xist in	
a) b) c) e)	critica norma triple	al point al pressure al pressure po point ensation point	int					

421 APa + 1 atm = 4.15 atm

- Which of the following are correctly paired? Q.31
- a) critical point : solid phase
- b) hydrogen bonding: H₂
- heat of fusion: melting a solid
- d) Clausius-Clapeyron Equation: ideal gas
- condensation point : STP
- Q.32 Molecules that have strong cohesive forces will have,
- High vapor pressures
- Low vapor pressures
- Low boiling points
- Will be easily vaporized
- None of these are correct.
- Q.33 Convert 421 kPa to atmospheres.
- a) $4.27 \times 10^5 \text{ atm}$
- b) 320 atm
- 0.554 atm C)
- 0.00415 atm
- 4.16 atm
- Q.34 Which of the following is an endothermic process?
- Combustion
- Acid-base neutralization reaction b)
- **Fusion**
- Condensation

205 g

- None of these are endothermic
- How many grams of Na₂CO₃ (molar mass = 106.0 g/mol) are required for complete reaction with 25.0 mL of 0.155 M HNO3?

 Na_2CO_3 (s) + 2 HNO₃ (aq) \rightarrow 2 NaNO₃ (aq) + CO_2 (g) + H_2O (ℓ)

a)
$$0.122 g$$

 $0.205 g$ $0.205 g$ $0.410 g$
d) $20.5 g$
e) $205 g$ = $0.205 37$ = $0.205 2$ Na₂CO₃ = $0.205 2$ Na₂CO₃

End of Test

Total points = 125

Each question = 3.572 points

1	E		
2	C		
3	C		
4	A		
5	В		
6	В		
7	D		
8	D		
9	A		
10	D		
11	D		
12	E		
13	D		
14	В		
15	Č		
16	Ā		
17	D		
18	<u> </u>		
19	D		
20	D		
21	D		
22	<u> </u>		
23	Δ		
24	<u> </u>		
25	<u> </u>		
26	D.		
1 2 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	E C C A B B D D A D D E D D D D E A E C D D D		
28	<u>p</u>		
29	D		
30	l D		
31	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
32	D B D C B E C		
l	<u>D</u>		
33	<u> </u>		
34	<u> </u>		
35	B		