Key F _____ (Print last name in CAPS) SECTION 514-524 (same as your lab section)

1.	Fill in your ID, the department=CHEM, Course no. = 101, and Section= your
	lab section. Blacken the corresponding letters and numbers.
2.	Read each question carefully before answering.
3.	Mark the choice that best answers the question or completes the statement.
4.	Use the scantron provided. Use a no. 2 pencil and clearly mark your choice. If you
	change an answer, completely erase your previous mark.
5.	Answer each question. There is no penalty for guessing. However, multiple
	answers are graded as incorrect, and blank answers are graded as incorrect.
6.	On the scantron, fill in your last name, first name and initial. Blacken the
	corresponding letters.
7.	Use the test for scratch paper.
8.	Mark your answers on the test so you can check them with the key /
9.	***Turning in a blank scantron results in a grade of zero. ***
10.	You may be asked to turn in <u>both</u> the scantron and the exam, have your PHOTO
	ID and your calculator ready to be checked when you do so.
11.	Work at a steady pace and you will have ample time to finish.
12.	The keys will be posted on my class web page as soon as possible. You may
	check your grade at the class web site. Your password is the middle 5 numbers of
	your student ID followed by the first letter of your last name in CAPS. Be patient
	and give the webmaster time to enter all of this information.

There are 30 questions for 150 points. Good Luck!

EX2 CHEM101(DTM) KPN FORM F

22 Oct rm100 HELD (11:30 Class)

Possibly Useful Information

$$M = \frac{\text{mol solute}}{\text{L soln}}$$

$$M_1V_1 = M_2V_2$$

density =
$$\frac{\text{mass}}{\text{volume}}$$

 $\lambda = h/mv$

$$\lambda v = c$$

$$\frac{w}{w}\% = \frac{mass}{total\ mass} \times 100 \quad E = mc^2$$

$$1 \text{ Å} = 1 \times 10^{-10} \text{m}$$

A periodic table is also provided on the last page of this exam.

Q.1 What is (are) the spectator ion(s) in the following reaction?

$$2~\text{HC}\ell\text{O}_3~\text{(aq)}~+~\text{Sr}(\text{OH})_2~\text{(aq)} \rightarrow ~\text{Sr}(\text{C}\ell\text{O}_3)_2~\text{(aq)} + ~2~\text{H}_2\text{O}~(\ell)$$

C. он -

d.

- (e.) Sr^{2^+} and $\mathrm{C}\ell\mathrm{O}_3$
- Q.2 Which response includes all the following statements that are true and no others?
 - I. An s orbital can accommodate a maximum of two electrons.
 - II. A set of d orbitals can accommodate a maximum of ten electrons.
 - III. Each d orbital within a set consists of two lobes, 180° apart. No
 - IV. There are nine f orbitals in a set of f orbitals. no

I, III, and IV

I and IV I and II

II and IV

I, I

II, III, and IV

Q.3 Classify the following reaction by giving the reaction type that applies.

$$2 \text{ NiS (s)} + 3O_2(g) \rightarrow 2 \text{ NiO (s)} + 2 \text{ SO}_2(g)$$

- double displacement a.
- single displacement b.
- decomposition C.
- combination
- **(e.)**

redox

Q.4	Determine the	oxidation number of nitrogen in NH ₂ .
a.	+2	x + z(i) = - l
(b.)	-3 -1	
d.	+3	x = -3
<u>e.</u>	+1	

Q.5	What are the oxidation numbers(o	xidation states) of the elements in HCO ₃ ?
a. b. c. d.	H = +1, C = +5, O = -2 H = +2, C = +2, O = -2 H = +1, C = +2, O = -2 H = +1, C = +3, O = -2 H = +1, C = +4, O = -2	+= + 0 = - 2 C = +4

Q.6	What is the electron co	onfiguration of silicon?
a.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	/
6	1s ² 2s ² 2p ⁶ 3s ² 3p ²	1,50 15252p6 353p2
C.	1s ² 1p ⁶ 2s ² 2p ⁴	14
d.	1s ² 2s ² 2p ⁶ 2d ⁴	
е.	1s ² 1p ⁶ 2s ² 2p ²	

Q.7	Which of the following is not a valid magnetic quantum number for the 3d set of orbitals?
a.	0
b.	2
C.	-2
d.	1
(e.)	-3

- Which of the responses contains all the true statements and no others regarding electromagnetic radiation?

 - II.
 - III.
 - As wavelength increase frequency decrease. T
 As energy increases frequency decreases. F
 As wavelength increases energy decreases. T
 The product of wavelength and frequency is constant. T IV.

a.	III and IV	
b.	I, II, and IV	I, III, W
C. ,	I and II	_, _, _
(i.)	I, III, IV	
e.	II, III, and IV	

Q.9	What is the frequency of	light of wavelength 7000 Å?	
a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 00 × 18 m = 1	14 -1
6.	$4.28 \times 10^{14} \text{s}^{-1}$	-10 TION TO THE	4,285 x 10 14 5"
C.	$8.41 \times 10^{15} \text{s}^{-1}$	7000 x 1510 m	. 4
d.	$4.72 \times 10^{14} s^{-1}$		4.28 × 10145
e.	$2.48 \times 10^{13} \text{s}^{-1}$		

Q.10		vaves witl	h a w	gy forms of EMR. What is the energy of a avelength of 150. m?
a.	2.22 × 10 ⁻¹⁹ J	F:	hc	= 6.626×10 34 J.5 x 3.00 x 10 m.5
6.	$1.33 \times 10^{-27} \text{J}$		X	
C.	1.38 × 10 ⁻²⁶ J			150 ~
d.	$3.30 \times 10^{-27} J$	E	=	1.325 × 10 -27 J
e.	1.10 × 10 ⁻¹⁷ J			

Q.14	Which of the following pairs of elements are most likely to show the same oxidation state?
a)	Ba, Ca
b.	Cℓ, P
C.	Si, P
d.	Ca, F
е	Ba, F
Q.15	Which response contains all of the following that are oxidation-reduction
	reactions and no others?
	I. $PC\ell_3(\ell) + 3H_2O(\ell) \rightarrow 3HC\ell (aq) + H_3PO_3 (aq)$
	II. Fe_2O_3 (s) + 3 CO (g) \rightarrow 2 Fe (s) + 3 CO ₂ (g)
	III. $CaCO_3$ (s) + 2 $HC\ellO_3$ (aq) \rightarrow $Ca(C\ellO_3)_2$ (aq) + CO_2 (g) + H_2O (ℓ)
<u></u>	I and II
b.	
C.	
<u>d</u> ,	II and III
<u>(e.)</u>	
-	
Q.16	Which of the following statements is false?
a.	CaO is the basic anhydride of calcium hydroxide.
b.	Metal oxides are usually basic. ✓
C.	Carbon dioxide is the acidic anhydride of carbonic acid.
d_	Nonmetal oxides are usually acidic.
(e.)	Sulfur dioxide is the acidic anhydride of hydrosulfuric acid.
Q.17	Paramagnetism is characteristic of systems containing
a.	no paired electrons.
©	one or more unpaired electrons.
ç.	only p electrons.
d.	only d electrons as valence electrons.
e.	only s electrons as valence electrons.
	
Q.18	Which of the following, if any, is incorrect?
a.	The electron has both particle and wave properties.
b.	EMR can be thought of as a stream of particles called photons. T
C.	The energy of matter is not continuous, it is quantized.
d.	Energy can only occur in discrete units called quanta. T
(e.)	All the above are correct. 🗸

Q.19	Identify the net ionic equation for the reaction of hydrochloric acid and lithium hydroxide.
a.	$2 \text{ HC}\ell O_2 \text{ (aq)} + \text{LiOH (aq)} \rightarrow \text{LiC}\ell O_2 \text{ (aq)} + \text{H}_2 O \text{ (}\ell \text{)}$
b.	$2 \text{ HC}\ell \text{ (aq)} + 2 \text{ OH}^{-} \text{ (aq)} \rightarrow 2 \text{ C}\ell_{2}^{-} \text{ (aq)} + 2 \text{ H}_{2}\text{O} (\ell)$ $+ \text{HC}\ell \text{ (aq)} + 2 \text{ OH}^{-} \text{ (aq)} \rightarrow \text{ C}\ell \text{O}_{2}^{-} \text{ (aq)} + 2 \text{ H}_{2}\text{O} (\ell)$ $+ \text{Strong and } + \text{Strong and }$
C.	$HC\ell$ (aq) + 2 OH (aq) \rightarrow $C\ell O_2$ (aq) + 2 $H_2O(\ell)$
d.	$HC\ell$ (aq) + OH^{-} (aq) $\rightarrow C\ell^{-}$ (aq) + $H_2O(\ell)$
<u>@</u>	H^{+} (aq) + OH^{-} (aq) $\rightarrow H_{2}O(\ell)$

Q.20	Which ele	ement has the smallest radius?	
6 .	K Cℓ	Period 3 & Na Ma	@
d. <u>e.</u>	Na Mg Rb		at. radius

Q.21	The el	lectron c	onfiguration:			
	1s	2s	2p	3s	3р	4s
	<u>↑↓</u>	<u>↑↓</u>	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	<u>↑↓</u>	$\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$	<u>↑↓</u>
		ents the	element			
a.	Rb					
b.	Sr		5	^-	_'. Ca	
	Ca		2		- · Ca	
C :)	Ou					
©	Ti					

Q.22	What would be the outer electron configuration of the halogens?
a.	ns ² np ⁴
6.)	ns np ⁵
C.	ns np 6
d.	ns ² np ⁷
e.	$ns^2nd^5p^0$

Q.23	Which element has the largest atomic radius?				
	B				
a. 6.	<u> </u>				
c.	All in GPILA				
d.	ln .				
e.	Ga				
Q.24	Which of the following responses contains all true statements and no others?				
	I. The elements at the far right of the periodic table, except the noble				
	gases, have the tendency to form anions. II. The elements with the least tendency to form ions are those at the				
	far left of the periodic table.				
	III. Bonds in compounds consisting of two adjacent elements in the				
	periodic table are likely to be covalent.				
	IV. The elements at the far left of the periodic table possess poor				
***************************************	electrical conductivity.				
a.	II and IV				
b.	IV I and III				
©	I and III I, II, and III				
и. е.	I, II, and IV				
	III TI WILL IT				
Q.25	Which of the following is incorrect?				
a.	HIO ₃ iodic acid ✓				
b.					
©	Sr(ClO ₄) ₂ strontium perchlorate LiClO ₃ lithium chlorate				
<u>پ</u>	•				
u.	HCℓO ₂ chlorous acid ✓				
<u>e.</u>	HBrO hypobromous acid 🗸				
Q.26	Which of the following compounds is not a strong electrolyte?				
a.	HNO ₃				
b.	Mg(NO ₃) ₂				
c.	RbF				
d.	Ni(CℓO ₃) ₂				
(e.)	HF week aid				
<u> </u>	111				

	D. L. A. A. Gillion 1900				
	In interpreting the results of his oil drop experiment in 1909, Robert Millikan was				
Q.27	able to determine				
a	the charge on the proton.				
<u>ب</u>	the design on the electron				
a. 5. c. d.	that electrically neutral particles(neutrons) are present in the reason of				
e.	the extremely dense nature of the nuclei of atoms.				
Q.28	Which statement is false?				
a b.	The nucleus occupies nearly all of the volume of an atom.				
Б.	Atomic nuclei are very dense.				
c.	Electrons contribute only little to the mass of an atom.				
d.	Ordinary chemical reactions do not involve changes in nuclei.				
е.	Nuclei are positively charged.				
	2-				
Q.29	Determine the oxidation number of sulfur in $SO_3^{2^{-}}$.				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
a. © c. d.	X + 5(-c)-				
9	-3 \rightarrow -6 = -2				
d.	+3				
e.	+2 X - 4 4				
Q.30	Gallium has two naturally occurring isotopes. Ga-69 (68.9257 amu) is the more				
	abundant isotope at 60.40%. If the atomic mass of games to				
	is the mass of the other isotope?				
a.	is the mass of the other isotope? 39.60 amu 71.51 amu 69.723 = .6040 (68.9257) + .3960				
b.	71.51 amu 69.723 3				
C.	71.00 amu 69.98				
d.	09.90 ama				
(e.)	70.94 amu				
	, 3960				

End of Test

Key F Exam 2

Magnuson 22 Oct 2003

30 questions each 5 points for a total of 150 points

Q1	E
Q2	С
Q3	E
Q4	В
Q5	E
Q6	B
Q7	E
Q8	D
Q9	В
Q10	В
Q11	D
Q12	E
Q13	В
Q14	B A E B
Q15	E
Q16	E
Q17	В
Q18	E
Q19	E
Q20	В
Q21	B
Q22	2
Q23	В
Q24	C
Q25	C
Q26	E
Q27	В
Q28	Α
Q29	8 C E 8 A
Q30	E