CHAPTER 17 CHEMICAL EQUILIBRIUM

Dr. Floyd Beckford
Department of Chemistry
Texas A\&M University © Spring 1998

THE EQUILIBRIUM CONSTANT, K

- At equilibrium, [reactants] is not necessarily equal to [products]
- Relationship between concentrations of reactants and products is called the equilibrium constant expression
- Reactions that do not go to completion are called reversible reactions

Reactants \rightleftharpoons Products

- Chemical equilibrium: exists when two opposing reactions occur simultaneously at the same rate
- Dynamic equilibrium: overall concentrations of species is constant but reactions does not stop

Reactants $\stackrel{\mathbf{k}_{\mathbf{f}}}{\rightleftharpoons} \mathbf{k}_{\mathbf{r}}$ Products

- For the forward reaction; rate $=\mathbf{k}_{\mathrm{f}}$ [products]
- For the reverse reaction; rate $=k_{\mathrm{r}}$ [reactants]
- At equilibrium, $\mathbf{k}_{\mathrm{f}}\left[\right.$ products] $=\mathbf{k}_{\mathrm{r}}[$ reactants $]$

$$
\mathbf{k}_{\mathrm{f}} / \mathbf{k}_{\mathrm{r}}=[\text { Products }] /[\text { Reactants }]
$$

- The ratio k_{f} / k_{r} is called the equilibrium constant, \mathbf{K}_{c}

$$
\mathbf{K}_{\mathrm{c}}=[\text { Products }] /[\text { Reactants }]
$$

- In discussing K_{c} activities are used in preference to concentrations
- The activity of a compound is the ratio of its concentration (or partial pressure) to a standard concentration (1 M or $1 \mathbf{~ a t m}$)
- The values used to calculate the equilibrium
constant are numerically equal to concentration
but has no units
-The equilibrium constant has no units
- For activities

1. For pure liquids and solids, the activity is taken as 1
2. For components in an ideal solution, the activity of each component is taken to be equal to its molar concentration
3. For gases, activity equals the partial pressure

- The larger the value of $K_{c}\left(K_{c}>1\right)$ the more product-favored is the reaction
- The smaller the value of $K_{c}\left(K_{c} \ll 1\right)$ indicates the reaction does not proceed to any extent
- The reaction is reactant-favored

$$
\begin{gathered}
\mathbf{P b I}_{2}(\mathbf{s}) \rightleftharpoons \mathbf{P b}^{2+}(\mathbf{a q})+2 \mathbf{I}(\mathbf{a q}) \\
\mathbf{K}_{\mathrm{c}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}
\end{gathered}
$$

- Recall activity of solids and solvents is 1
- They are not involved in the K_{c} expression
- In general when two or more equations are added to produce a new equation, the equilibrium constant for the net equation is the product of the equilibrium constants for the added reactions

For K_{c}

- The numerical value of K_{c} indicates the extent to which the reaction has proceed
- Can be used to predict if a reaction is productor reactant-favored
- The value varies with only with temperature
- It is constant at a given temperature
- It is independent of the initial concentration

Variation of $\mathbf{K}_{\mathbf{c}}$

- The equilibrium constants for a reaction and its reverse are reciprocals of each other
- When stoichiometric coefficients of a balanced equation are multiplied by some factor f, the equilibrium constant for the new equation ($\mathrm{K}_{\text {new }}$) is the equilibrium constant for the old reaction $\left(\mathrm{K}_{\text {old }}\right)$ raised to the power of the factor, f
$\cdot Q$ is used to determine direction the reaction has to move to reach equilibrium
- \mathbf{Q} < K: Forward reaction predominates until equilibrium is reached
- $\mathbf{Q}=\mathrm{K}:$ Equilibrium is established
- $\mathbf{Q}>\mathrm{K}$: Reverse reaction predominates until equilibrium is established

1. Concentration

$$
A+B \rightleftharpoons C
$$

- Addition of more reactants or products causes the system to shift the equilibrium in the direction that uses up the added species
- Reactants added = Q < K. Forward reaction will dominate to re-establish equilibrium
- Products added $=\mathbf{Q}>\mathbf{K}$. Reverse reaction will dominate to re-establish equilibrium

2. Pressure/Volume changes

- Important only for gas phase reactions
- A volume decrease (pressure increase) is counter-balanced by shifting the equilibrium position to the side with fewer gas molecules
- The reverse is true
- No change in the number of moles means volume (pressure) change does not affect the equilibrium position

Factors affecting equilibrium

- Systems at equilibrium are governed by

LeChateliers' Principle: If a change of conditions is applied to a system at equilibrium, the system responds in such a way as to reduce the effect of the change in attaining a new equilibrium

- The reaction quotient helps
- Four factors: concentration, temperature, volume and catalysis

[C]or [D]

3. Temperature

Generally,

- Increasing in temperature moves the reaction in
a direction that absorbs energy
- Decreasing in temperature moves the reaction in
a direction that releases energy
- Depends on the type of reaction
- Temperature increase favors endothermic rxns
- Temperature decrease favors exothermic rxns

4. Catalyst

- Introduction of a catalyst has NO effect on the equilibrium position
- Equilibrium is established faster
- A catalyst only speeds up a reaction. Both forward and reverse reactions are affected equally

Free energy and the equilibrium constant

- Standard free energy change is $\Delta \mathbf{G}^{\mathbf{0}}$
- For other concentrations free energy change is
Δ G

$$
\Delta G=\Delta G^{0}+R T \ln Q
$$

At equilibrium, $\Delta \mathbf{G}=\mathbf{0}$, and $\mathbf{Q}=\mathbf{K}$

$$
\begin{aligned}
& 0=\Delta G^{0}+R T \ln K \\
& \Delta G^{0}=-R T \ln K
\end{aligned}
$$

Pressure and the equilibrium constant

- For a gas phase reaction

$$
\mathbf{P}=(\mathbf{n} / \mathbf{V}) \mathbf{R T}=\mathbf{M R T}
$$

$$
\mathbf{a A}(\mathrm{g})+\mathrm{bB}(\mathrm{~g}) \leftrightarrow \mathbf{c C}(\mathrm{g})+\mathrm{dD}(\mathrm{~g})
$$

$$
\mathbf{K}_{\mathrm{p}}=\left(\mathbf{P}_{\mathbf{C}}\right)^{\mathrm{c}}\left(\mathbf{P}_{\mathrm{D}}\right)^{\mathrm{d}} /\left(\mathbf{P}_{\mathrm{A}}\right)^{\mathrm{a}}\left(\mathbf{P}_{\mathbf{B}}\right)^{\mathrm{b}}
$$

$\mathbf{P}_{\mathrm{C}}, \mathbf{P}_{\mathrm{D}}, \ldots$ are partial pressures in atmospheres

- As with K_{c}, K_{p} has no units

$$
\begin{aligned}
& K_{c}=K_{p}(R T)^{-\Delta n} \\
& \Delta n=n_{\text {gas prod }}-n_{\text {gas react }}
\end{aligned}
$$

\cdot For $\Delta \mathbf{G}^{0}<\mathbf{0}$, $\ln \mathrm{K}>\mathbf{0}, \mathrm{K}>1$: Products are favored over reaction (spontaneous reaction) - $\Delta \mathbf{G}^{\mathbf{o}}>0$: Reactants are favored and reaction is nonspontaneous

- The magnitude of K relates directly to $\Delta \mathbf{G}^{\mathbf{o}}$
- A very negative ΔG^{0} means K is large and the reaction goes to "completion"

Temperature - \mathbf{K}_{c} relationship

- Equilibrium constants can be calculated at different temperatures from the van't Hoff equation
- Must know $\Delta \mathbf{H}^{\mathbf{0}}$ for the reaction

$$
\ln \left(K_{1} / K_{2}\right)=\Delta H^{0} / R\left(1 / T_{1}-1 / T_{2}\right)
$$

$K_{1}=$ equilibrium constant at temperature T_{1}
$K_{1}=$ equilibrium constant at temperature \mathbf{T}_{1}

