

• Some Types of Chemical Reactions

Types of Chemical Reactions

Rusting iron is a common example of a combination reaction, where two or more substances combine to form a new compound. rust is iron (III) oxide (Fe_2O_3) formed on these crews and bike from the combination of iron and oxygen under moist conditions.

Types of Chemical Reactions

Mercury (II) oxide is decomposed by heat, leaving the silvercolored element mercury behind as oxygen is driven off. This is an example of a decomposition reaction,

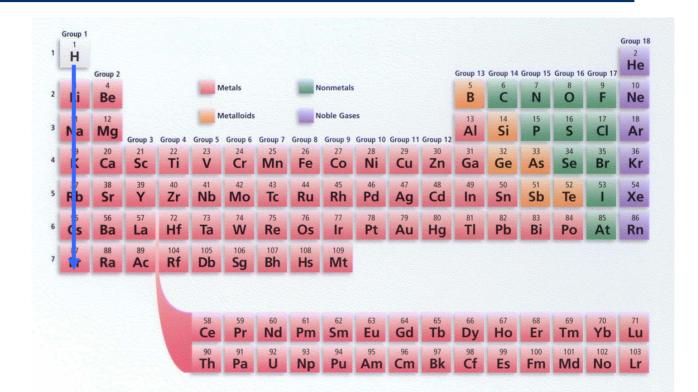
 $2 \text{ HgO} \rightarrow 2 \text{ Hg} + \text{O}_2 \uparrow$

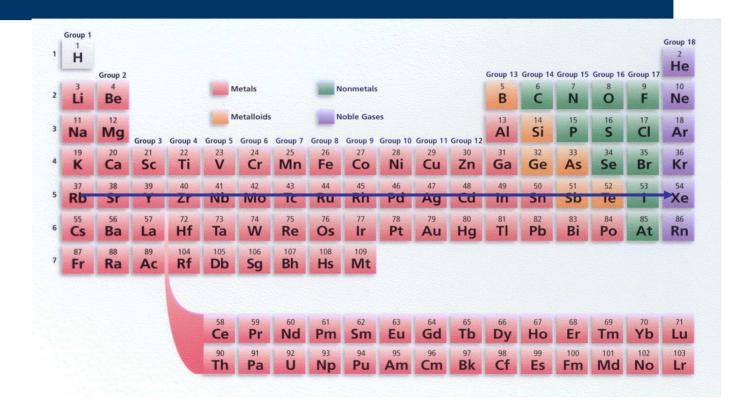
- The Periodic Table: Metals, Nonmetals, and Metalloids
- Aqueous Solutions: An Introduction
- Reactions in Aqueous Solutions
- Oxidation Numbers
- Naming Some Inorganic Compounds
- Classifying Chemical Reactions

The Periodic Table

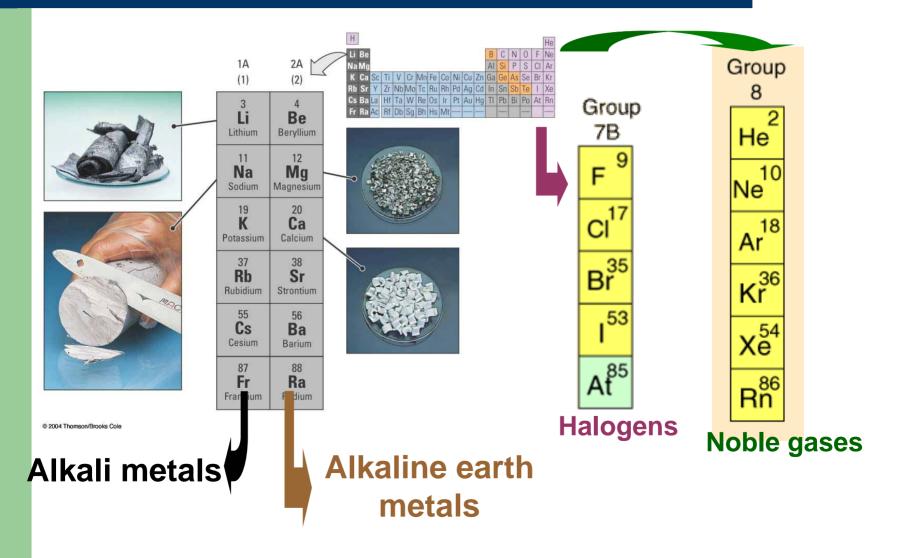
Mendeleev & Meyer

- Discovered the periodic law
 - The properties of the elements are periodic functions of their atomic numbers.




Lothar Meyer

Groups or Families


Vertical Columns: referred to as groups or families and have similar chemical and physical properties (e.g. similar kinds of reactions, and similar kinds of compounds).

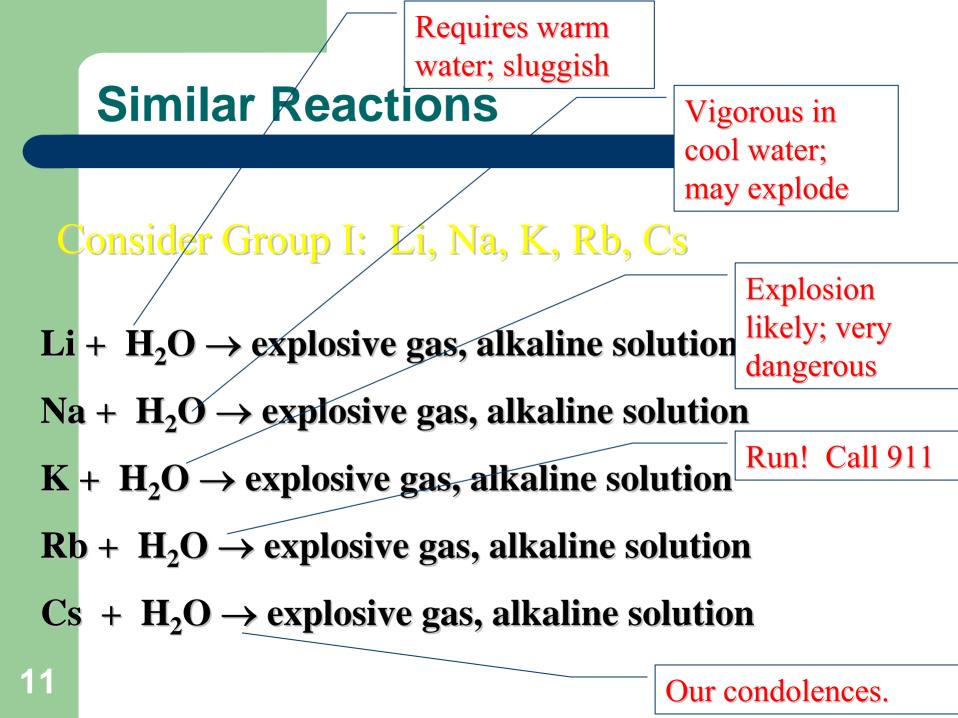
Periods or Series

Horizontal Rows: called periods or series and have properties that change progressively across the table (transition from metals to nonmetals).

Alkali and alkaline earth metals

Periodic Table

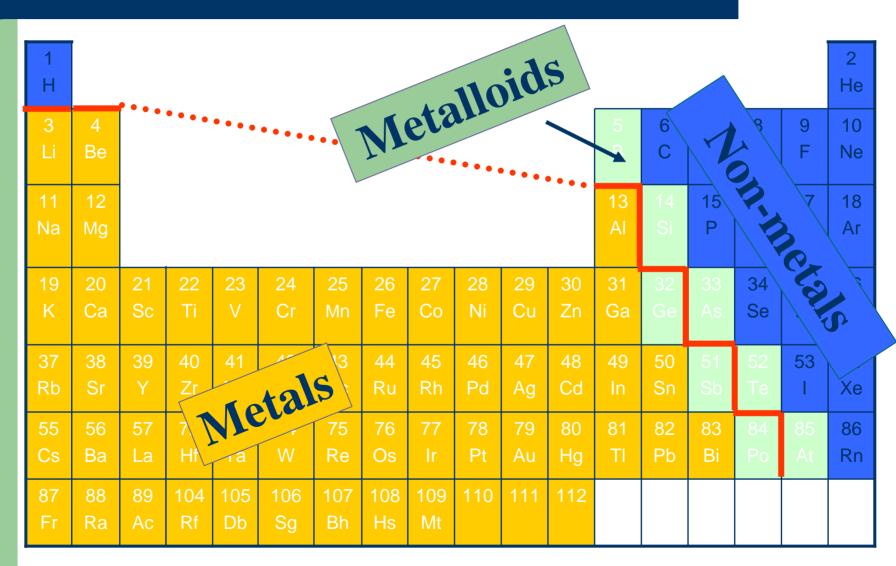
Metals	Nonmetals
 High electrical conductivity that decreases with increasing temperature 	1. Poor electrical conductivity (except carbon in the form of graphite
2. High thermal conductivity	2. Good heat insulators (except carbon in the form of diamond)
 Metallic gray or silver luster* 	3. No metallic luster
4. Almost all are solids [†]	4. Solids, liquids, or gases
5. Malleable (can be hammered into sheets)	5. Brittle in solid state
6. Ductile (can be drawn into wires)	6. Nonductile
2004 Thomson/Brooks Cole	


TABLE 4-4 Some Chemical Properties of Metals and Nonmetals	
Metals	Nonmetals
1. Outer shells contain few electrons—usually three or fewer	1. Outer shells contain four or more electrons*
2. Form cations (positive ions) by losing electrons	2. Form anions (negative ions) by gaining electrons [†]
3. Form ionic compounds with nonmetals	 Form ionic compounds with metals[†] and molecular (covalent) other compounds with nonmetals
4. Solid state characterized by metallic bonding	4. Covalently bonded molecules; noble gases are monatomic

9

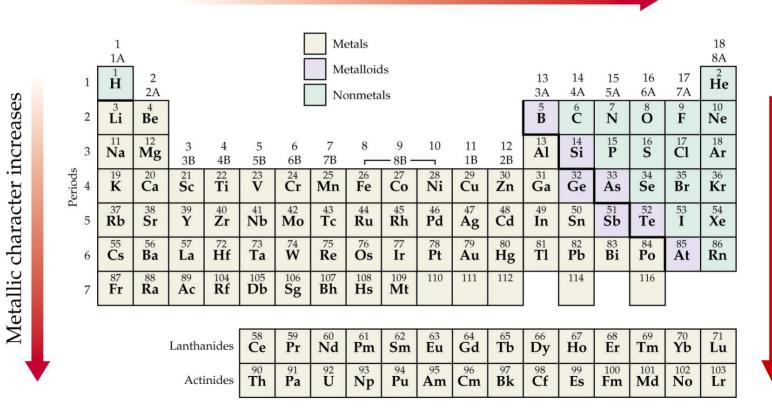
@ 2004 Thomson/Brooks Cole

The Periodic Table: Metals, Nonmetals, and Metalloids


- Some chemical properties of <u>metals</u>
- 1. Outer shells contain <u>few electrons</u>
- 2. Form <u>cations</u> by losing electrons
- 3. Form ionic compounds with nonmetals
- 4. Solid state characterized by metallic bonding

The Periodic Table: Metals, Nonmetals, and Metalloids

- Some chemical properties of <u>nonmetals</u>
- 1. Outer shells contain <u>four or more electrons</u>
- 2. Form <u>anions</u> by gaining electrons
- 3. Form <u>ionic compounds</u> with metals and covalent compounds with other nonmetals
- 4. Form <u>covalently bonded</u> molecules; noble gases are monatomic


Metallic Character

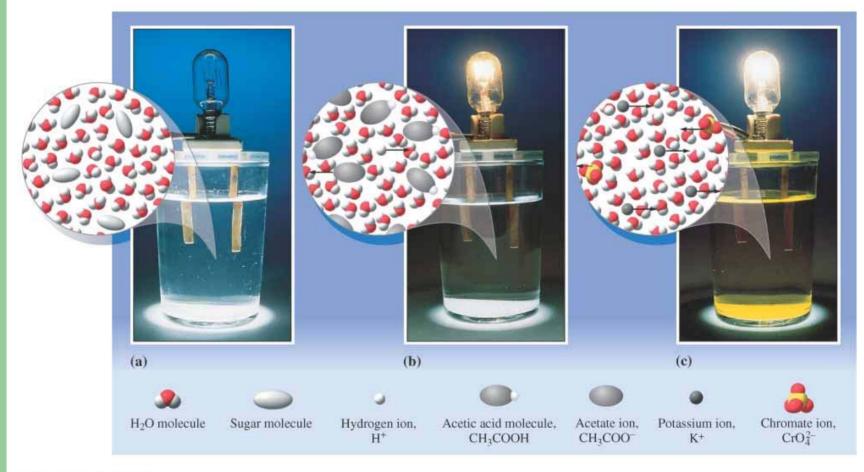
13

Metallic Character

Metallic character decreases

Metallic character increases

- Many reactions take place in water-aqueous solution.
- It is important to know what happens to substances when they are placed in water.
 - 1. Is it soluble in water?
 - 2. If it is soluble, does it break into ions?
 - 3. Terminology: acid, base, and salt

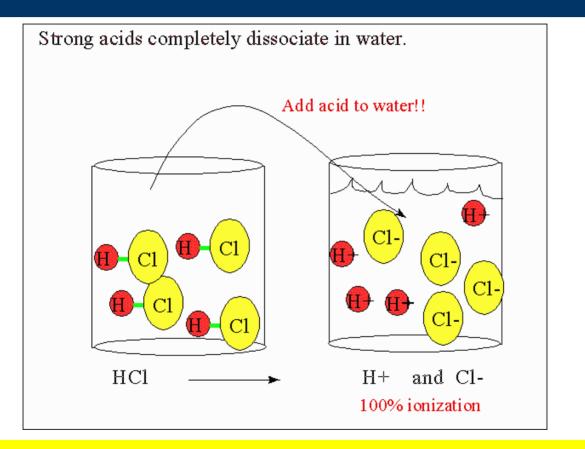

<u>Electrolytes</u>

<u>Classification of solutes</u>:

– <u>Nonelectrolytes</u>: <u>do not conduct</u> electricity in water. The reason nonelectrolytes do not conduct electricity is because they do not form ions in solution. C_2H_5OH .

<u>Strong electrolytes</u>: conduct electricity <u>extremely well</u>
 in dilute aqueous solutions. HCI, HNO₃, NaOH, KOH,
 NaCI, KBr etc.

– <u>Weak electrolytes</u> : conduct electricity <u>poorly</u> in dilute aqueous solutions. CH_3COOH .


1. Strong Acids

- Acids are substances that generate H⁺ in aqueous solutions. HCI, HBr, HI, HNO₃, H₂SO₄.
- Strong acids ionize 100% in water.

$$\operatorname{HCl}_{(g)} \xrightarrow{\approx 100\%} \operatorname{H}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)}$$

$$HNO_3 + H_2O_{(\ell)} \xrightarrow{\approx 100\%} H_3O_{(aq)}^+ + NO_{3(aq)}^-$$

or $HNO_3 \xrightarrow{H_2O} H_{(aq)}^+ + NO_{3(aq)}^-$

 $\operatorname{HCl}_{(g)} \xrightarrow{\approx 100\%} \operatorname{H}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)}$

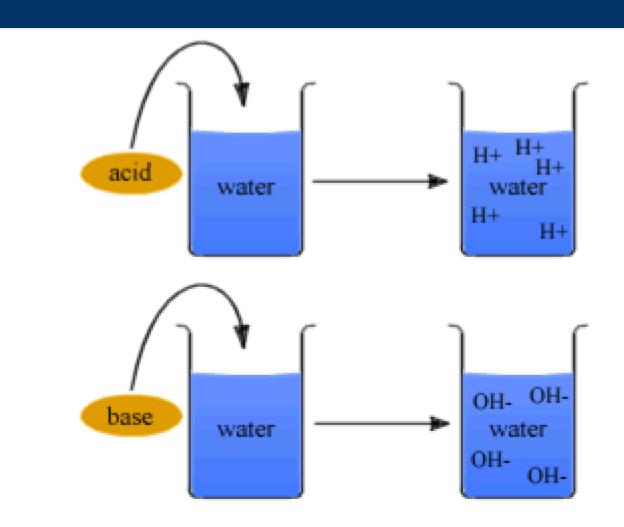
19

- Some Strong Acids and Their Anions
- Formula
- 1. **HCI**
- 2. **HBr**
- 3. **HI**
- 4. HNO₃
- 5. **H**₂**SO**₄
- 6. **HCIO**₃
- 7. **HCIO**₄

Name hydrochloric acid hydrobromic acid hydroiodic acid nitric acid sulfuric acid chloric acid

perchloric acid

2. Weak Acids


- Weak acids ionize significantly less than 100% in water.
 - $\mathsf{HF}, \mathsf{CH}_3\mathsf{COOH}, \mathsf{HCN}, \mathsf{H}_2\mathsf{CO}_3, \mathsf{H}_2\mathsf{SO}_3, \mathsf{H}_3\mathsf{PO}_4.$
- Typically ionize 10% or less!

$$CH_3COOH \xleftarrow{\approx 7\%} CH_3COO_{(aq)} + H_{(aq)}^+$$

- Some Common Weak Acids
- <u>Formula</u>
- 1. **HF**
- 2. CH₃COOH
- 3. HCN
- 4. HNO₂
- 5. **H**₂**CO**₃
- 6. H₂SO₃
- 7. **H**₃**PO**₄
- 8. (COOH)₂

<u>Name</u>

hydrofluoric acid acetic acid (vinegar) hydrocyanic acid nitrous acid carbonic acid (soda water) sulfurous acid phosphoric acid oxalic acid

3. <u>Strong Bases</u>

- Characteristic of common inorganic bases is that they produce OH⁻ ions in solution.
- LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂
- Similarly to strong acids, strong bases ionize 100% in water.

KOH \rightarrow K⁺(aq) + OH⁻(aq) Ba(OH)₂ \rightarrow Ba²⁺(aq) + 2 OH⁻(aq)

- <u>Common Strong Bases</u>
- <u>Formula</u>
- 1. **LiOH**
- 2. **NaOH**
- 3. **KOH**
- 4. RbOH
- 5. CsOH
- 6. Ca(OH)₂
- 7. Sr(OH)₂
- 8. Ba(OH)₂

<u>Name</u>

- lithium hydroxide
- sodium hydroxide
- potassium hydroxide
- rubidium hydroxide
 - cesium hydroxide
 - calcium hydroxide
 - strontium hydroxide
 - barium hydroxide
- Notice that they are all hydroxides of IA and IIA metals

- 4. Insoluble or sparingly soluble bases
- Ionic compounds that are insoluble in water, consequently, not very basic.
- <u>Formula</u> <u>Name</u>
- 1. Cu(OH)₂
- 2. **Fe(OH)**₂
- 3. **Fe(OH)**₃
- 4. **Zn(OH)**₂
- 5. Mg(OH)₂

copper (II) hydroxide iron (II) hydroxide iron (III) hydroxide zinc (II) hydroxide magnesium hydroxide

- 5. <u>Weak bases</u> are covalent compounds that ionize slightly in water.
- Ammonia is most common weak base

$\mathrm{NH}_{3(\underline{g})} + \mathrm{H}_{2}O_{(\underline{f})} \not \rightarrow \mathrm{NH}_{4(\mathrm{aq})}^{+} + \mathrm{OH}_{(\mathrm{aq})}^{-}$

Solubility: A compound that dissolves in water to an appreciable extent is "soluble"; if not, it is "insoluble"

Solubility Rules: rule 1 to rule 8 It is very important that you know these guidelines and how to apply them in reactions.

1- Common inorganic acids and lowmolecular-weight organic acids are water soluble. High-molecular-weight organic acids are water insoluble.

2- All common compounds of the Group IA metal ions, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, and the ammonium ion, NH_4^+ , are water soluble.

3- Common nitrates, acetates, chlorates, and perchlorates are water soluble.

- NO_3^- , CH_3COO^- , CIO_3^- , and CIO_4^-

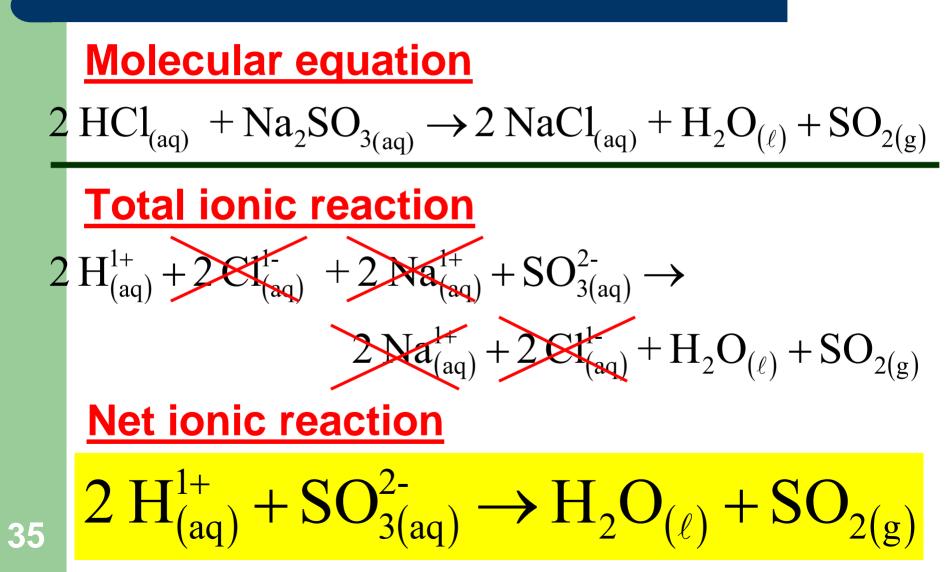
4- (a) Common chlorides, Cl⁻, are water soluble.

- Exceptions AgCl, Hg₂Cl₂, & PbCl₂
- (b) Common bromides, Br⁻, and iodides, I⁻, behave similarly to chlorides.
- (c) Common fluorides, **F**⁻, are water soluble.
 - Exceptions MgF₂, CaF₂, SrF₂, BaF₂, and PbF₂

- 5- Common sulfates, SO₄²⁻, are water soluble.
 - Exceptions PbSO₄, BaSO₄, & HgSO₄
 - Moderately soluble CaSO₄, SrSO₄, & Ag₂SO₄
- 6- Common metal hydroxides, OH⁻, are water insoluble.
 - Exceptions: group IA metals, LiOH, NaOH, KOH, RbOH & CsOH
 - Exceptions: group IIA metals, beginning with Ca(OH)₂, Sr(OH)₂, and Ba(OH)₂

- 7- Common carbonates, CO_3^{2-} , phosphates, PO_4^{3-} , and arsenates, AsO_4^{3-} , are water <u>insoluble</u>.
 - Exceptions- group IA metals and NH₄+ plus
 Ca to Ba
 - Moderately soluble MgCO₃
- 8- Common sulfides, S²⁻, are water <u>insoluble</u>.
 Exceptions group IA metals, group IIA metals, and NH₄+

- There are three ways to write reactions in aqueous solutions.
- Formula unit (molecular) equation: shows all reactants
 & products in "molecular" form (remember to balance)


$$Zn_{(s)} + CuSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Cu_{(s)}$$

2. <u>Total ionic equation</u>: Show the ions and molecules as they exist in solution

$$Zn_{(s)} + Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-} \rightarrow Zn_{(aq)}^{2+} + SO_{4(aq)}^{2-} + Cu_{(s)}$$

- 3. <u>Net ionic equation</u>: shows ions that participate in reaction and removes spectator ions.
- <u>Spectator ions</u>: represented as < >'s, do not participate in the reaction. The spectators can be cancelled off from both sides of the equation and the equation is reduced to the NET IONIC EQUATION.

$$Zn_{(s)} + Cu_{(aq)}^{2+} + \langle SO_{4(aq)}^{2-} \rangle \rightarrow Zn_{(aq)}^{2+} + \langle SO_{4(aq)}^{2-} \rangle + Cu_{(s)}$$
$$Zn_{(s)} + Cu_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+} + Cu_{(s)}$$

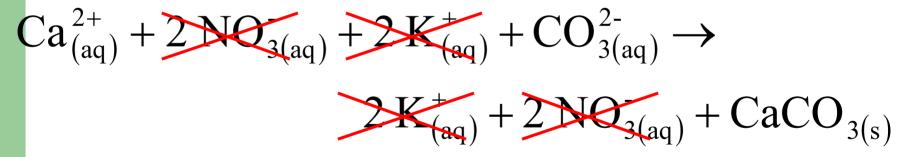
Molecular equation

$$Ca(OH)_{2(aq)} + 2 HNO_{3(aq)} \rightarrow Ca(NO_3)_{2(aq)} + 2 H_2O_{(\ell)}$$

Total ionic equation

$$Ca_{(aq)}^{2+} + 2OH_{(aq)}^{-} + 2H_{(aq)}^{+} + 2NO_{3(aq)}^{-} \rightarrow Ca_{(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2H_2O_{(\ell)}$$

Net ionic equation


$$2 \text{ OH }_{(aq)}^{-} + 2 \text{ H}_{(aq)}^{+} \rightarrow 2 \text{ H}_{2} \text{ O}_{(\ell)}$$

or better
OH $_{(aq)}^{-} + \text{ H}_{(aq)}^{+} \rightarrow \text{ H}_{2} \text{ O}_{(\ell)}$

Reactions in Aqueous Solutions

Molecular equation

$$Ca(NO_3)_{2(aq)} + K_2CO_{3(aq)} \rightarrow 2 KNO_{3(aq)} + CaCO_{3(s)}$$

Total ionic reaction

Net ionic reaction

$$Ca_{(aq)}^{2+} + CO_{3(aq)}^{2-} \rightarrow CaCO_{3(s)}$$

Reactions in Aqueous Solutions

Molecular equation

$$3 \operatorname{CaCl}_{2(aq)} + 2 \operatorname{Na}_{3} \operatorname{PO}_{4(aq)} \rightarrow 6 \operatorname{NaCl}_{(aq)} + \operatorname{Ca}_{3} (\operatorname{PO}_{4})_{2(s)}$$

Total ionic reaction

$$3 \operatorname{Ca}_{(\operatorname{aq})}^{2+} + 6 \operatorname{Cl}_{(\operatorname{aq})}^{1+} + 6 \operatorname{Na}_{(\operatorname{aq})}^{1+} + 2 \operatorname{PO}_{4(\operatorname{aq})}^{3-} \rightarrow 6 \operatorname{Na}_{(\operatorname{aq})}^{1+} + 6 \operatorname{Cl}_{(\operatorname{aq})}^{1+} + 6 \operatorname{Cl}_{(\operatorname{aq})}^{1+} + C \operatorname{a}_{3} (\operatorname{PO}_{4})_{2(\operatorname{s})}$$
Net ionic reaction

$$3 \operatorname{Ca}_{(\mathrm{aq})}^{2+} + 2 \operatorname{PO}_{4(\mathrm{aq})}^{3-} \rightarrow \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2(\mathrm{s})}$$

- Many reactions, called oxidation-reduction or redox reactions, involve the transfer of electrons from 1 species to another.
- In order to keep track of the number of electrons lost or gained during a redox reaction, the concept of oxidation number is used.

- Guidelines for assigning oxidation numbers:
- 1. The oxidation number of any free, uncombined element is zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

2. The oxidation number of an element in a simple (monatomic) ion is the charge on the ion.

3. In the formula for any compound, the <u>sum</u> of the oxidation numbers of all elements in the compound is zero.

4. In a polyatomic ion, the <u>sum</u> of the oxidation numbers of the constituent elements is equal to the charge on the ion.

- 5. Fluorine, F, has an oxidation number of –1 in its compounds.
- 6. Hydrogen, H, has an oxidation number of +1 unless it is combined with metals, where it has the oxidation number -1.
 - Examples LiH, BaH₂
- 7. Oxygen, O, usually has the oxidation number -2.
 - Exceptions:

42

- In peroxides O has oxidation number of -1.
 - Examples H₂O₂, CaO₂, Na₂O₂
- In OF₂ O has oxidation number of +2.

- 8. Use the periodic table to help with assigning oxidation numbers of other elements.
 - a. IA metals have oxidation numbers of +1.
 - b. **IIA metals** have oxidation numbers of +2.
 - c. IIIA metals have oxidation numbers of +3.
 •There are a few rare exceptions.
 - d. VA elements have oxidation numbers of -3 in *binary* compounds with H, metals or NH₄⁺.
 - e. VIA elements below O have oxidation numbers of -2 in *binary* compounds with H, metals or NH₄⁺.
- **3** Summary in Table 4-10.

- Assign oxidation numbers to each element in the following compounds:
 - N in NaNO₃
 - Sn in K₂Sn(OH)₆
 - S in SO₃²⁻
 - N in NH₃
 - P in H₄P₂O₇
 - Li in LiH

44

- C in HCO₃-

- B in BO₃-
- P in H₃PO₄
- Cr in Cr₂O₇²⁻
- -Fe
- Hg in Hg₂Cl₂
- S in S₄O₆²⁻
- C in C_6H_6

- NaNO₃
- Na = +1 (Rule 8)
- O = -2 (Rule 7)
- N = +5
 - Calculate using rule 3. +1 + 3(-2) + x = 0x = +5

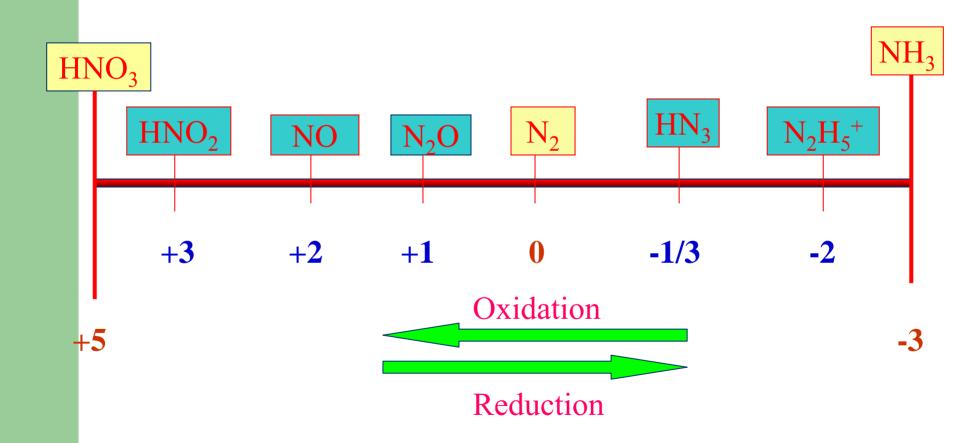
- K_2 Sn(OH)₆
- K = +1
- O = -2 (Rule 7)
- H = +1 (Rule 6)
- Sn = +5
 - Calculate using rule 3. 2(+1) + 6(-2) + 6(+1) + x = 0x = +5

(Rule 8)

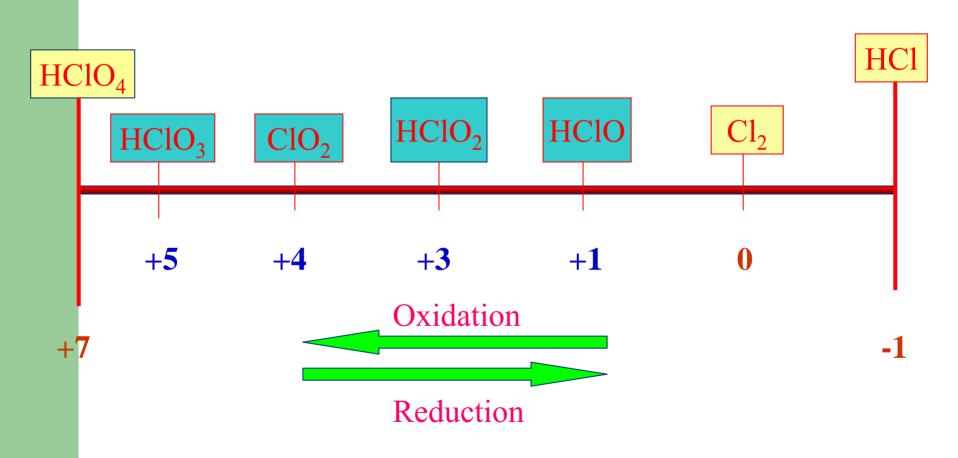
• SO₃²⁻ • **O** = -2 (Rule 7) • S = +4 - Calculate using rule 4. 3(-2) + x = -2x = +4

You do it!

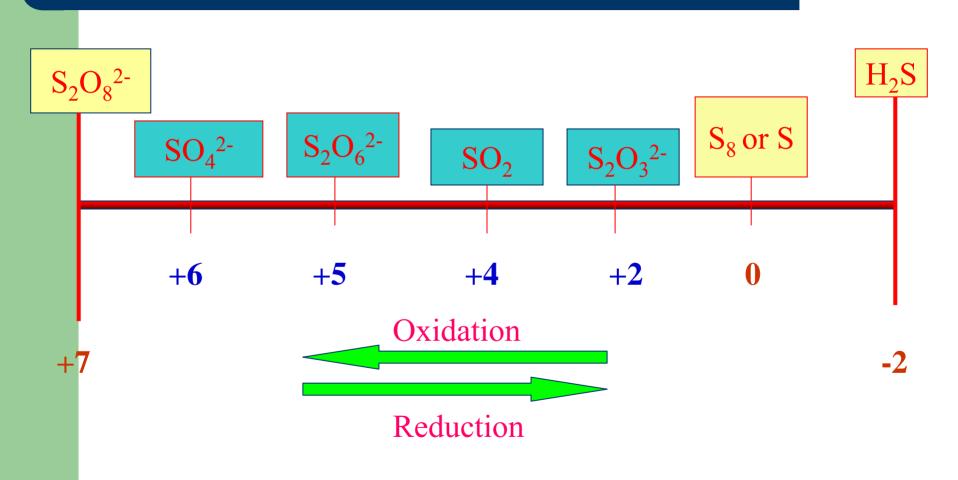
• O = -2 • Cr = +6


• $Cr_2O_7^{2-}$

HCO_{3}^{-} $O = -2 \quad H = +1$ 3x(-2) + 1 + ? = -1C = +4


- Assign oxidation numbers to each element in the following compounds:
 - N in NaNO₃
 - Sn in K₂Sn(OH)₆
 - S in SO₃²⁻
 - N in NH₃ (N = -3)
 - P in $H_4P_2O_7(P = +5)$
 - Li in LiH (Li = +1)
 - C in HCO₃-

- B in BO₃⁻ (B = +5)
- P in H₃PO₄ (P = +5)
- Cr in Cr₂O₇²⁻ (Cr = +6)
- Fe (Fe = 0)
- Hg in Hg₂Cl₂ (Hg = +1)
- S in $S_4 O_6^{2-} (S = +2.5)$
- C in $C_6H_6(C = -1)$


Oxidation States of Nitrogen

Oxidation States of Chlorine

Oxidation States of Sulfur

53

- This is definitely IMPORTANT!
- **Binary compounds** are made of two elements.
 - metal + nonmetal = ionic compound
 - nonmetal + nonmetal = covalent compound
- Name the more metallic element first.
 - Use the element's name.
- Name the less metallic element second.
 - Add the suffix "ide" to the element's stem.

- **Binary Ionic Compounds** are made of a metal cation and a nonmetal anion.
 - Cation named first
 - Anion named second
- LiBr <u>lithium</u> bromide
- MgCl₂ <u>magnesium</u> chloride
- Li₂S <u>lithium</u> sulfide
- Al₂O₃ <u>aluminum</u> oxide
- Na₃P <u>sodium</u> phosphide
- Mg₃N₂ <u>magnesium</u> nitride

55

- Binary ionic compounds containing metals that exhibit more than one oxidation state
- Metals exhibiting multiple oxidation states are:
 - 1. most of the transition metals
 - 2. metals in groups IIIA (except AI), IVA, & VA

- There are two methods to name these compounds.
- 1. Older method
 - add suffix "ous" to element's Latin name for lower oxidation state
 - add suffix "ic" to element's Latin name for higher oxidation state
- 2. Modern method

57

- use Roman numerals in parentheses to indicate
- metal's oxidation state

- Compound Old System
- FeBr₂

SnO

SnO₂

TiCl₂

TiCl₃

TiCl₄

- FeBr₃ ferric bromide
 - stannous oxide

ferrous bromide

- stannous oxide
- stannic oxide
- titanous chloride
- titanic chloride
- does not work

- **Modern System** iron(II) bromide iron(III) bromide tin(II) oxide tin(IV) oxide titanium(II) chloride titanium(III) chloride
- titanium(IV) chloride

- Pseudobinary ionic compounds
- There are three polyatomic ions that commonly form binary ionic compounds.

Anion

- 1. OH⁻ hydroxide
- 2. CN⁻ cyanide

Cation

1. NH₄⁺ ammonium

• Use binary ionic compound naming system.

- KOH
- Ba(OH)₂
- Fe(OH)₂
- Fe(OH)₃
- Ba(CN)₂
- NH₄CN
- (NH₄)₂S
- NH₄CN

potassium hydroxide barium hydroxide iron (II) hydroxide iron (III) hydroxide barium cyanide ammonium cyanide ammonium sulfide ammonium cyanide

Number Binary covalent molecular compounds 2 composed of two 3 nonmetals other than hydrogen 5 Nomenclature must 6 include prefixes that specify the number of atoms of each element

in the compound.

Prefix di tri tetra penta hexa hepta octa nona deca

9

- Formula Name
- CO

• OF_2

• P_4O_6

• P₄O₁₀

- CO₂ carbon dioxide
- SO₃ sulfur trioxide
 - oxygen difluoride
 - tetraphosphorus hexoxide
 - tetraphosphorus decoxide

(mono)carbon monoxide

- The oxides of nitrogen illustrate why covalent compounds need prefixes and ionic compounds do not.
- Formula Old Name
- N₂O nitrous oxide
- NO nitric oxide
- N₂O₃ nitrogen trioxide
- NO₂ nitrogen dioxide
- N₂O₄ nitrogen tetroxide
 - N₂O₅ nitrogen pentoxide

Modern Name

- dinitrogen monoxide
- nitrogen monoxide
- dinitrogen trioxide
- nitrogen dioxide
- dinitrogen tetroxide
- dinitrogen pentoxide

- <u>Binary Acids</u> are binary compounds consisting of hydrogen and a nonmetal (group VIA element other than O or group VIIA elements).
- Compounds are usually gases at room temperature and pressure.
 - Nomenclature for the gaseous compounds is hydrogen (stem)ide.
- When the compounds are dissolved in water they form acidic solutions.

 Nomenclature for the acidic solutions is hydro (stem)ic acid.

• <u>Formula</u>	<u>Name</u>	Aqueous solution
• HF	hydrogen fluoride	hydrofluoric acid
• HCI	hydrogen chloride	hydrochloric acid
• HBr	hydrogen bromide	hydrobromic acid
• H ₂ S	hydrogen sulfide	hydrosulfuric acid

65

- Ternary Acids and Their Salts are made of three elements, H, O, & a nonmetal.
- Two of the compounds are chosen as the basis for the nomenclature system.
 - Higher oxidation state for nonmetal is named (stem)ic acid.
 - Lower oxidation state for nonmetal is named (stem)ous acid
- Salts are named based on the acids.
 - Anions of -ic acids make "ate" salts.
 - Anions of -ous acids make "ite" salts.

 TABLE 4-12
 Formulas of Some "-ic" Acids

Periodic Group of Central Elements					
IIA	IVA	VA	VIA	VILA	
H ₃ BO ₃ boric acid	H_2CO_3 carbonic acid	HNO3 nitric acid			
	H_4SiO_4 silicic acid	H ₃ PO ₄ phosphoric acid	H_2SO_4 sulfuric acid	HClO ₃ chloric acid	
		H ₃ AsO ₄ arsenic acid	H_2SeO_4 selenic acid	HBrO ₃ bromic acid	
			$H_6 TeO_6$ telluric acid	HIO ₃	

@ 2004 Thomson/Brooks Cole

67 Memorize the names and formulas of these acids.

- <u>Name</u>
- carbonic acid
- nitric acid
- boric acid
- phosphoric acid
- sulfuric acid
- chloric acid
- bromic acid
- iodic acid
- silicic acid

Formula H_2CO_3 HNO₃ H₃BO₃ H₃PO₄ H₂SO₄ HCIO₃ HBrO₃ HIO₃ H₄SiO₄

- Salts are formed by the reaction of the acid with a strong base.
- <u>Acid</u>
- HNO₂ nitrous acid
- HNO₃
 nitric acid
- H₂SO₃ sulfurous acid
- H₂SO₄ sulfuric acid
- HCIO₂ chlorous acid
- HCIO₃
 chloric acid

69

Salt NaNO₂ sodium nitrite NaNO₃ sodium nitrate Na₂SO₃ sodium sulfite Na₂SO4 sodium sulfate NaClO₂ sodium chlorite NaClO₃ sodium chlorate

- Acids that have a higher oxidation state than the "ic" acid are given the prefix "per".
 - These acids and salts will have one more O atom than the "ic" acid.

- Acids that have a lower oxidation state than the "ous" acid are given the prefix "hypo".
 - These acids and salts will have one less O atom than the "ic" acid.

ber	Ternary Acid	Anion	s s
Decreasing oxidation numb of central atom	<i>perXXXic</i> acid XXX <i>ic</i> acid XXX <i>ous</i> acid <i>bypo</i> XXX <i>ous</i> acid	perXXXate XXXate XXXite hypoXXXite	becreasing num f oxygen atoms n central atom

@ 2004 Thomson/Brooks Cole

• <u>Acid</u>

atom

chlorine

Increasing Oxid. # of

- HCIO (CI = +1) hypochlorous acid
- HCIO₂ (CI = +3)
 chlorous acid
- HCIO₃ (CI = +5) chloric acid
- HCIO₄ (CI = +7)
 perchloric acid

Na Salt **NaCIO** sodium hypochlorite NaClO₂ sodium chlorite NaCIO₃ sodium chlorate NaCIO₄ sodium perchlorate

Naming Some Inorganic Compounds

- Acidic Salts are made from ternary acids that retain one or more of their acidic hydrogen atoms.
 - Made from acid base reactions where there is an insufficient amount of base to react with all of the hydrogen atoms.
- Old system used the prefix "bi" to denote the hydrogen atom.
- Modern system uses prefixes and the word hydrogen.

Naming Some Inorganic Compounds

- NaHCO₃
 <u>Old system</u> sodium bicarbonate
 <u>Modern system</u> sodium hydrogen carbonate
- KHSO₄
 <u>Old system</u> potassium bisulfate
 <u>Modern system</u> potassium hydrogen sulfate
- KH₂PO₄
 <u>Old system</u> potassium *bis* biphosphate
 <u>Modern system</u> potassium dihydrogen phosphate
- K₂HPO₄
 <u>Old system</u> potassium biphosphate
 <u>Modern system</u> potassium hydrogen phosphate

Classifying Chemical Reactions

- Oxidation-Reduction Reactions (Redox reactions)
- Combination Reactions
- Decomposition Reactions
- Displacement Reactions
- Metathesis Reactions
- Acid-Base (neutralization) Reactions
- Precipitation reactions

Classifying Chemical Reactions Reaction Change in Oxidation State? YES NO **Metathesis or Decomposition Redox <u>Displacement:</u>** $M+2HCl \rightarrow MCl_2+H_2(g)$ **Decomposition**

Decomposition: $A \rightarrow B + C + \dots$

<u>Combination:</u> $A + B \rightarrow C$

76

<u>Disproportionation:</u> $M^+ \rightarrow M^{3+} + M^0$

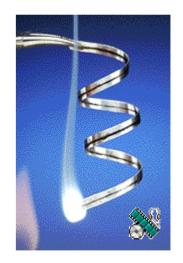
Precipitation:Ag⁺+Cl⁻→AgCl(s)

Neutralization: $H^++OH^-\rightarrow H_2O$

Metathesis

No change in OS

Oxidation-Reduction Reactions


- Oxidation is an increase in the oxidation number.
 - Corresponds to the loss of electrons.
- <u>Reduction</u> is a <u>decrease</u> in the oxidation number.
 - Corresponds to the gain of electrons

Oxidation-Reduction Reactions

- **Oxidizing agents** are chemical species that:
 - 1. oxidize some other substance
 - 2. contain atoms that are reduced
 - 3. gain electrons
- **<u>Reducing agents</u>** are chemical species that:
 - 1. reduce some other substance
 - 2. contain atoms that are oxidized
 - 3. lose electrons

Oxidation-Reduction Reactions:

- Example of oxidation-reduction or redox reaction.
- Combustion reactions are redox reactions
- Combustion of Mg
 - Mg is oxidized to MgO
 - O₂ is reduced to O²⁻

$2Mg + O_2 \rightarrow 2MgO$

Combination Reactions

- <u>Combination reactions</u> occur when two or more substances combine to form a compound.
- There are three basic types of combination reactions.
 - 1. Two elements react to form a new compound
 - 2. An element and a compound react to form one new compound
 - 3. Two compounds react to form one compound

Combination Reactions

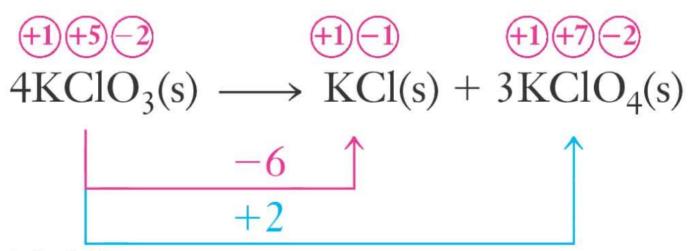
Element + Element → Compound
 A. Metal + Nonmetal → Binary Ionic Compound

$$2 \operatorname{Na}_{(s)} + \operatorname{Cl}_{2(g)} \rightarrow 2 \operatorname{NaCl}_{(s)}$$

$$2 \operatorname{Mg}_{(s)} + \operatorname{O}_{2(g)} \rightarrow 2 \operatorname{MgO}_{(s)}$$

B. Nonmetal + Nonmetal → Covalent Binary Compound

$$P_{4(s)} + 5 O_{2(g)} \rightarrow P_4 O_{10(s)}$$


$$P_{4(s)} + 6 \operatorname{Cl}_{2(g)} \to 4 \operatorname{PCl}_{3(\ell)}$$

Combination Reactions

Compound + Element → Compound 2. $\operatorname{AsCl}_{3(s)} + \operatorname{Cl}_{2(g)} \rightarrow \operatorname{AsCl}_{5(s)}$ $SF_{4(s)} + F_{2(g)} \rightarrow SF_{6(g)}$ Compound + Compound → Compound 3. $Li_{2}O + SO_{2} \rightarrow Li_{2}SO_{3}$ $NH_{3(g)} + HCl_{(g)} \rightarrow NH_4Cl_{(s)}$

Disproportionation Reactions

Disproportionation raction is a redox reaction in which the same element is oxidized and reduced.

© 2004 Thomson/Brooks Cole

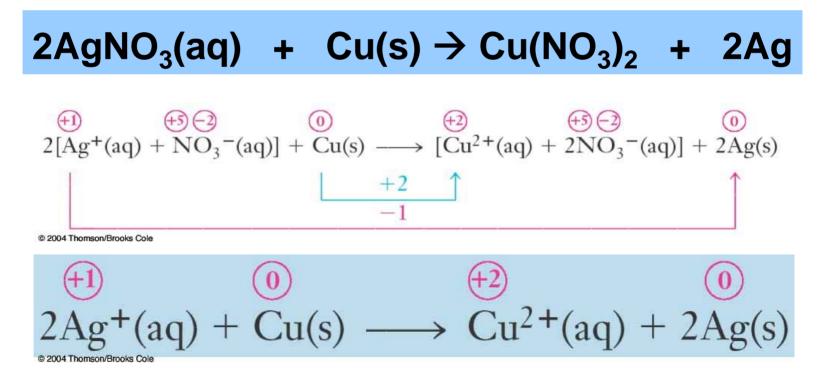
Decomposition Reactions

- <u>Decomposition reactions</u> occur when one compound decomposes to form:
 - 1. Two elements
 - 2. One or more elements and one or more compounds
 - 3. Two or more compounds

Decomposition Reactions

1. Compound → Element + Element

$$2 \operatorname{N}_2 \operatorname{O}_{(g)} \xrightarrow{\Delta} 2 \operatorname{N}_{2(g)} + \operatorname{O}_{2(g)}$$


2. Compound → Element + Compound(s)

$$2 \operatorname{H}_2\operatorname{O}_{2(\operatorname{aq})} \xrightarrow{\operatorname{hv or Fe}^{3+} \operatorname{or Mn}} \rightarrow 2 \operatorname{H}_2\operatorname{O}_{(\ell)} + \operatorname{O}_{2(g)}$$

3. Compound \rightarrow Compounds $NH_4HCO_{3(g)} \xrightarrow{\Delta} NH_{3(g)} + H_2O_{(g)} + CO_{2(g)}$

Displacement Reactions

 <u>Displacement reactions</u> occur when one element displaces another element from a compound.

Displacement Reactions

- The following metals are active enough to displace hydrogen
 - K, Ca, Na, Mg, Al, Zn, Fe, Sn, & Pb

 $2 \operatorname{Al}_{(s)} + 3\operatorname{H}_2 \operatorname{SO}_{4(aq)} \to \operatorname{Al}_2(\operatorname{SO}_4)_{3(aq)} + 3 \operatorname{H}_{2(g)}$

Displacement Reactions

 Each halogen will displace less active (heavier) halogens from their binary salts; that is, the order of decreasing activities is

$$F_2 > Cl_2 > Br_2 > l_2$$

 $\operatorname{Cl}_{2(g)} + 2 \operatorname{NaI}_{(aq)} \rightarrow \operatorname{I}_{2(s)} + 2 \operatorname{NaCl}_{(aq)}$

Metathesis Reactions

 Metathesis reactions occur when two ionic aqueous solutions are mixed and the ions switch partners.

 $AX + BY \rightarrow AY + BX$

- Metathesis reactions remove ions from solution in two ways:
 - 1. form unionized molecules like H₂O
 - 2. form an insoluble solid
- <u>Ion removal</u> is the driving force of metathesis reactions.

Metathesis Reactions

1. Acid-Base (neutralization) Reactions

- Formation of the nonelectrolyte H₂O
- acid + base \rightarrow salt + water
- HCI + NaOH \rightarrow NaCI + H₂O
- 2. Precipitation reactions are metathesis reactions in which an insoluble compound is formed.

$$\begin{array}{ccc} \textcircled{+1} & \textcircled{+5} \textcircled{-2} & & \textcircled{+1} \textcircled{+5} \textcircled{-2} \\ 3 \operatorname{Ag}^{+}(\operatorname{aq}) + \operatorname{PO}_{4}^{3-}(\operatorname{aq}) & \longrightarrow \operatorname{Ag}_{3} \operatorname{PO}_{4}(\operatorname{s}) \end{array}$$

91

Classifying Chemical Reactions

Which of the following is a reduction-oxidation (redox) reaction?

 $\begin{aligned} & \operatorname{FeCl}_{2}(\operatorname{aq}) + 2\operatorname{AgNO}_{3}(\operatorname{aq}) \xrightarrow{} 2\operatorname{AgCl}(\operatorname{s}) + \operatorname{Fe}(\operatorname{NO}_{3})_{2}(\operatorname{aq}) \\ & \operatorname{AgNO}_{3}(\operatorname{aq}) + \operatorname{NaBr}(\operatorname{aq}) \xrightarrow{} \operatorname{AgBr}(\operatorname{s}) + \operatorname{NaNO}_{3}(\operatorname{aq}) \\ & \operatorname{Zn}(\operatorname{s}) + 2\operatorname{AgNO}_{3}(\operatorname{aq}) \xrightarrow{} 2\operatorname{Ag}(\operatorname{s}) + \operatorname{Zn}(\operatorname{NO}_{3})_{2}(\operatorname{aq}) \\ & \operatorname{CaO}(\operatorname{s}) + \operatorname{CO}_{2}(\operatorname{g}) \xrightarrow{} \operatorname{CaCO}_{3}(\operatorname{s}) \\ & \operatorname{3HCl}(\operatorname{aq}) + \operatorname{Cr}(\operatorname{OH})_{3}(\operatorname{s}) \xrightarrow{} \operatorname{CrCl}_{3}(\operatorname{aq}) + \operatorname{3H}_{2}\operatorname{O}(l) \end{aligned}$

Classifying Chemical Reactions

Which of the following reactions is a combination reaction?

(a) $\operatorname{AgNO}_3(\operatorname{aq}) + \operatorname{HCl}(\operatorname{aq}) \rightarrow \operatorname{AgCl}(\operatorname{s}) + \operatorname{HNO}_3(\operatorname{aq})$ (b) $\operatorname{Na}_2\operatorname{O}(\operatorname{s}) + \operatorname{CO}_2(\operatorname{g}) \rightarrow \operatorname{Na}_2\operatorname{CO}_3(\operatorname{s})$ (c) $\operatorname{C}_3\operatorname{H}_8(\operatorname{g}) + 5\operatorname{O}_2(\operatorname{g}) \rightarrow 3\operatorname{CO}_2(\operatorname{g}) + 4\operatorname{H}_2\operatorname{O}(\operatorname{l})$ (d) $2\operatorname{H}_2\operatorname{O}(\operatorname{l}) \rightarrow 2\operatorname{H}_2(\operatorname{g}) + \operatorname{O}_2(\operatorname{g})$ (e) $\operatorname{KOH}(\operatorname{aq}) + \operatorname{HCl}(\operatorname{aq}) \rightarrow \operatorname{KCl}(\operatorname{aq}) + \operatorname{H}_2\operatorname{O}(\operatorname{l})$

Naming Compounds

Write formulas for the compounds that are expected to be formed by the following pairs of ions:

		A. Cl^{-}	$B. OH^{-}$	C. SO_4^{2-}	D. PO ₄ ^{3–}	E. NO_3^-
	1. NH ₄ ⁺		Omit – see note			
	2. Na ⁺					
	3. Mg ²⁺					
	4. Ni ²⁺					
	5. Fe ³⁺					
	6. Ag ⁺					

93

@ 2004 Thomson/Brooks Cole

One-line Web Learning (OWL): Chapter 4 Exercises and Tutors – Required Due by 03/08 (11:00 pm).

94