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Introduction

We have undertaken an investigation of the structure of the active center of
luciferase through the wuse of a combination of random and site directed
mutagenesis and chemical modification of the wild-type and variant enzymes.
The sites for mutagenesis were within the o subunit at positions 106, the site of
the reactive thiol (1), 113, the site of the lesion of AK-6 (Asp— Asn; 2) and 227, the
site of the lesion of AK-20 (Ser— Phe; 3). Our approach has been to focus on
residues or regions that appear to contribute to the structure, function or folding
and assembly of the enzyme.

Results and Discussion

Position al06. The potential role of the reactive thiol at position 106 of the «

subunit of luciferase has been the subject of much speculation. We have
demonstrated that the thiol at this position plays no role in the chemistry of the
luciferase-catalyzed reaction (4, 5). Luciferases from V. fischeri (5), Photo-

bacterium leiognathi (5) and P. phosphoreum have valine at the same position.
Furthermore, by site directed mutagenesis, we have previously constructed V.
harveyi luciferase variants with serine, alanine and valine at this position, and
all function in the bioluminescence reaction (4). It is interesting that the al06
valine variant has a greatly reduced quantum yield in the bioluminescence
reaction relative to the wild-type luciferase, even though the homologous
position in the other three wild-type luciferases is occupied by valine (4, 5). To
investigate the cause of this reduced quantum yield, in the initial study of the
a 106Val vanant, we reported the affinity of the enzyme for the reduced flavin
and aldehyde substrates. The FMNH2 binding affinity 1s not greatly altered for

the a106Val enzyme, but is decreased by about 50-fold for the «106Ser variant; the
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spectroscopic probes, indicate that the functional group of the cysteinyl residue,
and by inference the wild-type aspartyl residue, is oriented away from solvent,
such that reaction with alkylating groups i1s not possible. A Dburied aspartyl
residue suggests the existence of another residue within the luciferase structure
which interacts with the anionic functional group of the aspartyl residue (and
presumably with the glutamic acid and cysteine, since the luciferase will
function with these residues at position «113). The cationic functional group of a
lysyl residue could serve such a role, and could explain the dramatic deleterious
effect of the a113Lys mutation.

Position a227. One of the more interesting mutants isolated by Cline and Hastings
was AK-20, which produces a luciferase with a reduced quantum yield when n-

decanal is used as the aldehyde substrate, a reversal of the aldehyde chainlcnglh'
dependence of the decay of bioluminescence, and a slightly higher affinity for

the flavin substrate (6). We have determined that the lesion 1s Ser— Phe at
position «227, and have constructed several other variants, including a227Ala,
a227Tyr and oa222Trp (3). The kinetic features are similar for AK-20 (x227Phe)
and the «o227Tyr and o227Trp variants, while the a227Ala variant shows
essentially the same activity as the wild-type.

We measured the production of the chemical product of the reaction, the aliphatic
acid, and compared the chemical yield with the yield of light (Table I). The
a227Phe enzyme (AK20) and the «227Tyr variant both produce the acid product
with essentially the same yield as the wild-type enzyme. This observation
demonstrates clearly that the production of light and the chemistry of the
luciferase-catalyzed reaction are not obligatorily coupled.

Table I: Quantitation of n-decanoic acid production by V. harveyi wild-type and
o227 mutant luciferases?.

Imax © . Total Quanta 9 RCOOH ¢ Q/moleculef
Source sec-! Q/sec, 1010 , 1012) molecules, 1014
m ~ 44+19

AK-20 0.053 0.88 3.4 2.5 0.0005
aS227Y | 0.116

aS227V | 0.116 57516 ~0.0005

a l4C.labelled n-decanal was produced from !4C n-decanol by the action of
alcohol dehydrogenase, essentially as described (8).

b Decay rate of bioluminescence under conditions of limiting aldehyde and in the
presence of n-decanol, the source of the n-decanal.

¢ Initial light intensity in quanta/sec based on a liquid light standard (9).
d Total quanta emitted during one turnover of the luciferase enzyme.

© Number of acid molecules produced per turnover calculated based on the
specific radioactivity of the label, the definition of a Curie, and Avogadro's
number.

f The quantum vyield of the reaction based on carboxylic acid production.
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Conclusions

1. The reactive thiol at position 106 is not required for bioluminescence, but 1t

does reside in a critical location 1n oOr near the active site.
2. The reduced quantum yield of the a106Val variant is a consequence of weak

aldehyde binding and an increased rate of breakdown of the intermediate II (the
4a peroxyflavin), which forms at the same rate as for the wild type, and thus does

not involve any fundamental change in mechanism, e.g., to an oxidase (10).
3. It appears that a functional group capable of ionization to an anion 1S
required at position a1l3 for a high quantum yield reaction. Residues at this

position are not exposed to solvent.
4  The residue at position «227 is not involved mechanistically in the

bioluminescence reaction, but' the structure of residues at this site does have a
strong impact on the quantum yield of the bioluminescence reaction without

altering the ability of the enzyme to carry out the chemistry of the reaction.
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