## UV/Visible spectroscopy

## Electronic Excitation by UV/Vis



Visible region

- Many molecules have chromophores that absorb UV
- Involves electronic transitions
- Useful because timescale is so fast, and sensitivity high.
- e.g: wavelength 300 nm  $\approx 10^{15}$  s<sup>-1</sup> frequency Time for absorption  $\approx 10^{-15}$  s time scale
  - Kinetics, esp. in biochemistry, enzymology

## Rate constant determination

Plot of Absorbance Vs Time

Absorbance of light at a given wavelength is the sum of the absorbance of the different complex ions in solution. It can be seen that

| $A_0$ -initial absorbance (t=0),       | <u> </u> | $A - A_{\infty}$          |
|----------------------------------------|----------|---------------------------|
| A -final absorbance, at infinite time. | —        | <u> </u>                  |
| c -concentration at time t             | Cn       | Ä <u>n</u> – Ä <u>o</u> n |
| $c_0$ -initial concentration           | Ť        | · · ·                     |

A plot of ln [A – A / A<sub>0</sub> – A] vs. time will give a straight line with slope –k, for a first order or pseudo first order reaction.

## A common use: Enzyme kinetics E.g: Effect of enzyme concentration on rate of reaction

- Enzyme assay of varying enzyme concentrations
- Absorbance measured at wavelength of maximum absorbance
- Plot of Absorbance Vs Concentration to compute  $\epsilon$ .
  (A =  $\epsilon$  C /)
- Calculate and plot the reaction rate as a function of enzyme concentration.