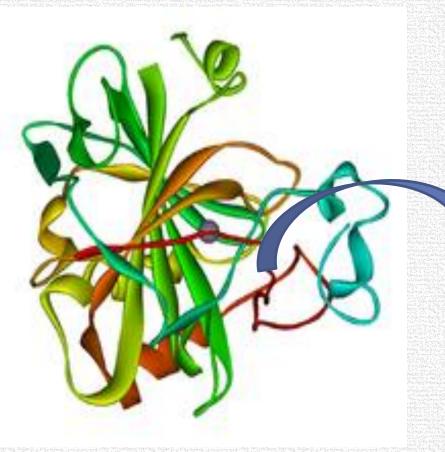
CARBONIC ANHYDRASE

1

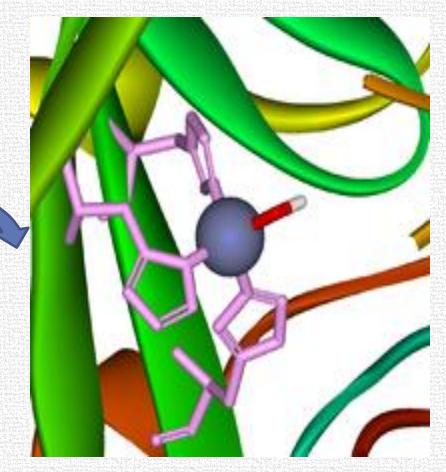
^{By} Randara Pulukkody

04-20-2011


Function of Carbonic Anhydrase

• The **carbonic anhydrases** (CA) form a family of enzymes that catalyze:

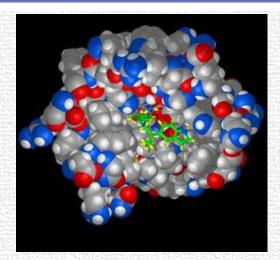
 $CO_2 + H_2O \leftrightarrow H^+ + HCO_3^-$


- The transport of CO₂ around the respiratory system is vital, however the solubility of CO₂ in water at physiological conditions is very small
- Carbonic anhydrase enhances the solubility of CO_2 by catalyzing its conversion to the more soluble HCO_3^- ion
- In mammals, the HCO_3^- ion can then be transported to the lungs by the blood stream where it is converted back to CO_2 and exhaled

The Enzyme..

Ribbon diagram of human carbonic anhydrase II. Active site zinc ion visible at center

http://en.wikipedia.org/wiki/Carbonic_anhydrase

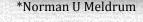


Close-up of active site of human carbonic anhydrase II, showing three histidine residues (in pink) and a hydroxide group (red and white) coordinating the zinc ion (purple).

3

Active Site Architecture..

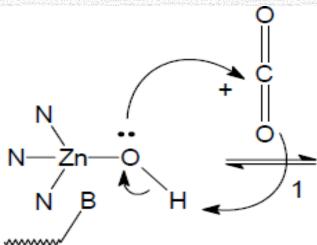
- Active site : a large, cone-shaped cavity 15 Å wide & 15 Å deep
- Zinc (II) ion : ligated by 3 Histidines near the bottom of the cavity

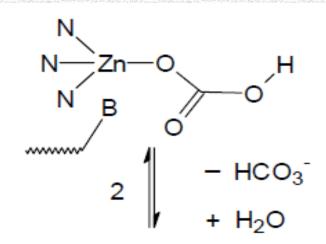

- 4th ligand : OH⁻
- Hydrophilic component : order several water molecules for proton transfer
- Hydrophobic

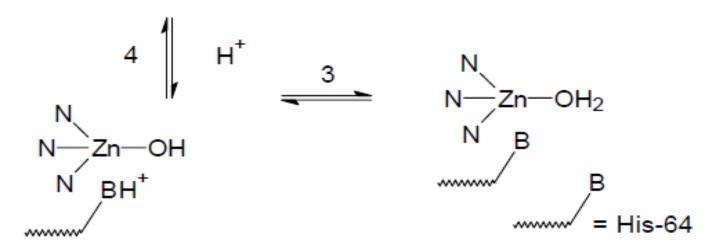
patch: pre-organizes the CO_2 substrate squeezes the HCO_3^- product from the active site

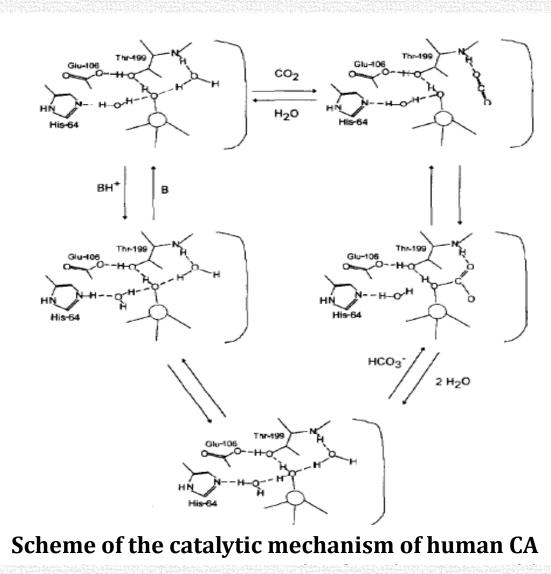
Discovery of CA

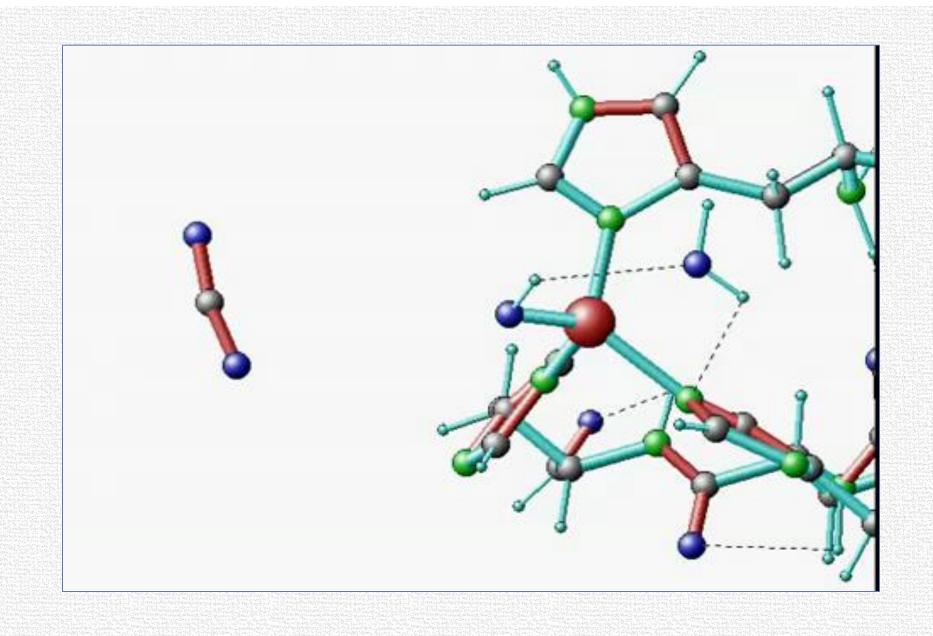
"Uncatalyzed rate of $HCO_3^$ dehydration is too low to support CO_2 excretion during the time blood spent at the gas exchange surface" Jyw Brughten


*Frances J W Roughton

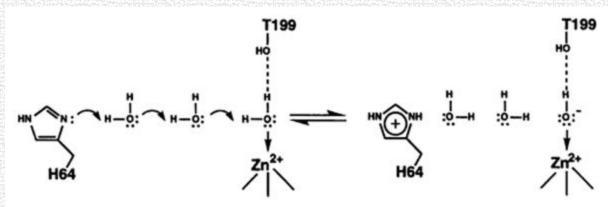



- CA in broad interest because:
 - One of the fastest enzymes known; turnover number(k_{cat}) >1×10⁶ s⁻¹
 - Fundamental to a wide array of physiological processes; may be among the earliest enzymes to appear


Simple Mechanism



The Full Mechanism



Lindskog, S. (1997). "Structure and mechanism of carbonic anhydrase." Pharmacology & Therapeutics 74(1): 1-20.

The Proton Shuttle

- His 64 identified as proton shuttle
- Hydrogen bonded through two bridging solvent molecules to the zinc bound hydroxyl group
- Proton transfer occurs across the bridging solvent network : proton "translocation"

Mechanism of proton transfer between zinc-bound water and His-64. Once protonated, His-64 transfers a proton to a buffer molecule in bulk solvent. If the solventmediated "proton wire" is perturbed, then the rate of proton transfer will be substantially diminished.

Enzyme Kinetics: Michaelis-Menten Equation

$$E+S \xrightarrow{k_1} ES \xrightarrow{k_2} E+P$$

Using Steady State Approximation;

$$V_0 = \frac{V_{\text{max}} [S]}{K_{\text{m}} + [S]}$$

Michaelis-Menten Equation

- V₀ Initial velocity
 - [Enzyme]

F,

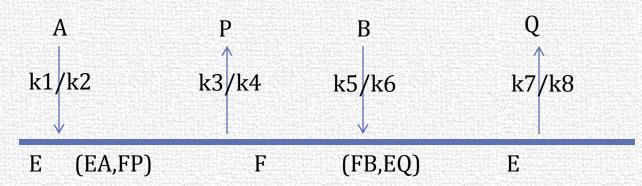
S

- [Substrate] P [P
- ES [Enzyme-substrate complex]
- $k_{\rm cat}$ turnover number for the enzyme

 $k_{\text{cat}}/k_{\text{M}}$ – specificity constant

k_M

$$K_{\rm m} = \frac{k_2 + k_{-1}}{k_1}$$


- V_{max} Maximum velocity
 - Michaelis Constant
 - [Product]

Simple Michaelis-Menten Kinetics:
$$R = \frac{d(P)}{dt} = k_2(ES) = v$$
 $enzyme$ $E + S \leftrightarrow k_1$ $ES \rightarrow E + P$ $R = \frac{d(P)}{dt} = k_2(ES) = v$ $velocity$ $ubstrate$ $ES \rightarrow E + P$ Steady-state approx. on ES: $\frac{d(ES)}{dt} = 0 = k_1(E)(S) - k_{-1}(ES) - k_2(ES)$ E_0 is the total amount of
enzyme present $k_1E_o(S) - k_1(ES)(S) - k_{-1}(ES) - k_2(ES) = 0$ E_0 is the total amount of
enzyme present $k_1E_o(S) - k_1(ES)(S) - k_{-1}(ES) - k_2(ES) = 0$ E_0 is the total amount of
enzyme present $(ES)_{ss} = \frac{k_1E_o(S)}{k_{-1}+k_2+k_1(S)}$ $v = \frac{k_1k_2E_o(S)}{k_{-1}+k_2+k_1(S)} = \frac{k_2E_o(S)}{k_1}$ $v = \frac{k_1k_2E_o(S)}{k_{-1}+k_2+k_1(S)} = \frac{k_2E_o(S)}{k_1} = \frac{k_2E_o(S)}{k_1}$ Michaelis constant

http://course.ucsf.edu/pc111/PowerptNotes/8.enzyme_catalysis.pdf

Ping-Pong Mechanism

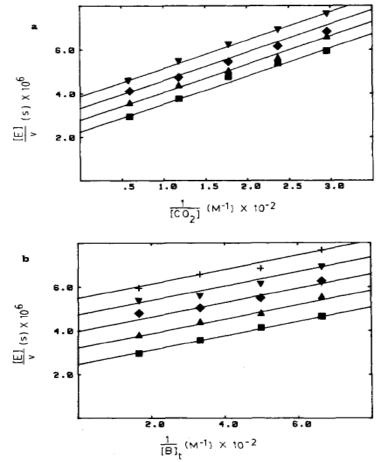
- A type of multisubstrate mechanism
- A product is released before all of the substrates are bound.
- Eg: Ping Pong Bi Bi Mechanism

- E- unsubstituted enzyme
- F- substituted enzyme

Implications of a Rate-Limiting Protolysis of Water

- Suggested that the rate-limiting step is the protolysis of water rather than the new carbon-oxygen bond formation in $HCO_3^ H_2^0 \Rightarrow 0H^- + H^+$
- Mechanism proposed: $EZnOH^{-} + CO_{2} \rightleftharpoons EZn(OH^{-})CO_{2} \rightleftharpoons EZnHCO_{3}^{-} \rightleftharpoons EZnH_{2}O + HCO_{3}^{-} \iff EZnH_{2}O + HCO_{3}^{-}$ (3) $EZnH_{2}O \rightleftharpoons EZnOH^{-} + H^{+}$ (4)
- Direct nucleophilic attack of Zn-bound OH⁻ to CO₂
- PING-PONG type mechanism: Interconversion between CO₂ and HCO₃⁻ is temporally separated from the release of the proton

Silverman, D. N. and S. Lindskog (1988). "The Catalytic Mechanism of Carbonic-Anhydrase - Implications of a Rate-Limiting Protolysis of Water." Accounts of Chemical Research **21**(1): 30-36.


	release of H ⁺ from the active		$EZnOH^{-} + CO_{2} \rightleftharpoons EZn(OH^{-})CO_{2} \rightleftharpoons EZnHCO_{3}^{-} \rightleftharpoons EZnH_{2}O + HCO_{3}^{-} \iff EZnH_{2}O + HCO_{3}^{-} (3)$		
	site presents a problem			$EZnH_2O \rightleftharpoons EZnOH^- + H^+$	(4)

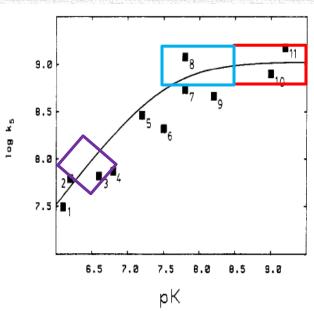
14

- Maximal rate constant for the transfer of a proton from a catalytic group of pKa = 7 to bulk water is about 10³ s⁻¹ : *1000 slower than the maximal turnover number
- [OH⁻] which is a good proton acceptor, is too small at physiological pH to provide an explanation of the large catalytic turnover.
- Alberty and Eigen and Hammes :
 - buffers in solution are involved
 - much better proton acceptors than H_20 and
 - much more concentrated at physiological pH than OH-

Silverman, D. N. and S. Lindskog (1988). "The Catalytic Mechanism of Carbonic-Anhydrase - Implications of a Rate-Limiting Protolysis of Water." Accounts of Chemical Research **21**(1): 30-36.

Verification of the involvement of Buffers

Two double-reciprocal plots showing the parallel patterns characteristic of Ping-Pong mechanisms for both CO_2 (top) and buffer (bottom) as substrates. The initial velocity of catalyzed hydration of CO_2 was measured by stopped flow using a changing pH indicator method; [B]_t is the total concentration of buffer. Human red cell carbonic anhydrase II was present at 69 nM, and ionic strength was maintained at 0.2 M with Na₂SO₄. Temperature was 25 °C and pH 8.5. (top) [1,2-dimethylimidazole] = 6.0 mM (\blacksquare), 3.0 mM (▲), 2.0 mM (\blacklozenge), 1.5 mM (\blacktriangledown). (bottom) Replot of the same data with B = 1,2-dimethylimidazole, [CO₂] = 17 mM (\blacksquare), 8.5 mM (▲), 5.6 mM (\blacklozenge), 4.2 mM (\blacktriangledown), 3.4 mM (+). Reproduced from ref 13.


- As the buffer concentration was decreased:
 - Decrease in the initial velocity
 - Buffers in solution participate as proton-transfer agents

$$EZnH_2O + buffer \xrightarrow{k_5}_{k_{-5}} EZnOH^- + bufferH^+$$
(5)

- Initial velocity patterns consistent with Ping-Pong mechanism of eq3 and eq5
- Verify the initial hypothesis: Intermolecular H^+ transfer occurs in a step separate from the inter-conversion of CO_2 and HCO_3^-

Further Evidence

 13C NMR measurements of rates of the inter-conversion between CO₂ and HCO₃⁻ at equilibrium showed no buffer effect

The variation of the logarithm of k_5 of eq 5 showing a dependence on the pK_a of the external buffers as proton acceptors very similar to the plots of proton transfer between small molecules described by Eigen.²⁵ The external buffers are (1) Mes, (2) 3,5-lutidine, (3) 3,4-lutidine, (4) 2,4-lutidine, (5) 1-methylimidazole, (6) Hepes, (7) triethanolamine, (8) 4-methylimidazole, (9) 1,2-dimethylimidazole, (10) Ted, and (11) Ches. The curve drawn through the points was calculated for $k_5 = 1.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ and a pK_a for the donor group on the enzyme of 7.6. ReInteraction between enzyme and buffer has little structural specificity

• When pK_a of the buffer > pK_a of the catalytic group;

- k_5 independent of the pK_a value **of** the buffer
- $k_5 = 10^9 M^{-1} s^{-1}$ a diffusion-controlled process
- When pK_a donor = pK_a acceptor;
 - Transition
- When pK_a of the buffer < pK_a of enzyme as donor;
 - region of the plot of slope equal to unity
- Indicates a pK_a of the donor group on the enzyme = 7.6 ± 0.6

Silverman, D. N. and S. Lindskog (1988). "The Catalytic Mechanism of Carbonic-Anhydrase -Implications of a Rate-Limiting Protolysis of Water." Accounts of Chemical Research **21**(1): 30-36.

Intramolecular Proton Transfer

• Hypothesis by Steiner *et al.*:

H⁺ donor of $pK_a \approx 7$ previously described is not the zincbound water at all but another residue closer to the surface of the enzyme

Testing..

- Sufficiently high [buffer] used to ensure that intermolecular proton transfer is not rate-limiting
- Compared the Michaelis Menten parameters for carbonic anhydrase II in H_2O and D_2O

Results..

- Isotope effect of 3.8 in k_{cat} for hydration
- Isotope effect of 1 in the ratio k_{cat}/k_M

Silverman, D. N. and S. Lindskog (1988). "The Catalytic Mechanism of Carbonic-Anhydrase - Implications of a Rate-Limiting Protolysis of Water." Accounts of Chemical Research **21**(1): 30-36.

Interpretation

 $EZnOH^{-} + CO_{2} \rightleftharpoons EZn(OH^{-})CO_{2} \rightleftharpoons EZnHCO_{3}^{-} \rightleftharpoons EZnH_{2}O + HCO_{3}^{-} (3)$

 $EZnH_2O + buffer \xrightarrow{k_5}_{k_{-5}} EZnOH^- + bufferH^+$ (5)

k_{cat}/k_{M}

- k_{cat}/k_{M} : contains rate constants for steps from the initial encounter of substrate with enzyme through the first irreversible step \longrightarrow Departure of product HCO₃⁻ from the enzyme
- Thus, k_{cat}/k_{M} contains rate constants for eq3 only, **not** eq5
- Isotope effect of 1 in the ratio k_{cat}/k_M

Steps in eq3 do not involve a change in bonding to H in a rate-contributing step

Inter-conversion of CO_2 and HCO_3^- occurs by direct nucleophilic attack of zinc-bound hydroxide on CO_2 without rate-contributing proton transfer

No general base mechanism in which zinc-bound hydroxide abstracts a proton from an adjacent water

20 Eliminated rate-contributing intermolecular proton transfer: large [buffer] used

Isotope effect of 3.8 in k_{cat} for hydration: Large enough to indicate a primary intramolecular proton transfer in the catalysis

 $EZnOH^{-} + CO_{2} \rightleftharpoons EZn(OH^{-})CO_{2} \rightleftharpoons EZnHCO_{3}^{-} \rightleftharpoons EZnH_{2}O + HCO_{3}^{-} (3)$

$$EZnH_{2}O + buffer \xrightarrow{k_{5}} EZnOH^{-} + bufferH^{+}$$
(5)

k_{cat} contains rate constants for the entire catalysis

Overall isotope effect = 1

Intramolecular proton transfer involved

suggested that proton transfer was the protolysis of zinc-bound water by transfer of a proton to a nearby residue of the enzyme with a similar pK, value near 7

Hints on the proton shuttle

- X-ray diffraction structure of HCA II suggested His-64 as the foremost candidate for this nearby residue
- His-64 :
 - $pK_a = 7.1$
 - Situated 6 Å from the Zn
- The proton is transferred from His-64 to buffer in solution completing the catalytic cycle

His-64 is a "proton shuttle"

 Yet, transfer of H⁺ between the metal site and His-64 seems to be the "most difficult" step in the catalysis.

Bridging Water Molecules

- Thorough investigation of the solvent hydrogen isotope effect on k_{cat} for hydration showed an exponential dependence on the atom fraction of deuterium in solvent water
- This result strongly suggests proton transfer through intervening water bridges
- Later confirmed to be correct by detailed interpretation of the refined crystal structure of carbonic anhydrase II