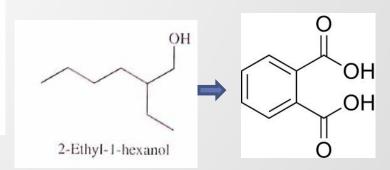
Hydroformylation

Chem 462 Inorganic Chemistry Marcetta. Y. Darensbourg

Sergio Sanchez and Junsang Cho 11/6 (Thursday)

Contents

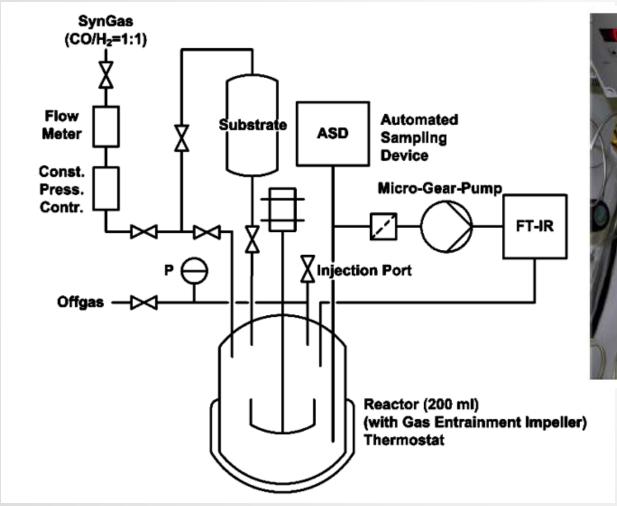
- I. Introduction (concept and importance)
- II. Hydroformylation Reaction
- Cyclic mechanism (monometallic and bimetallic)
- Different type of ligands and metals
- Currently developed rhodium catalysts
- III. Conclusion


Introduction

- What is hydroformylation?
 - produces aldehyde from alkene via
 - addition of a CO and H₂ to a alkene

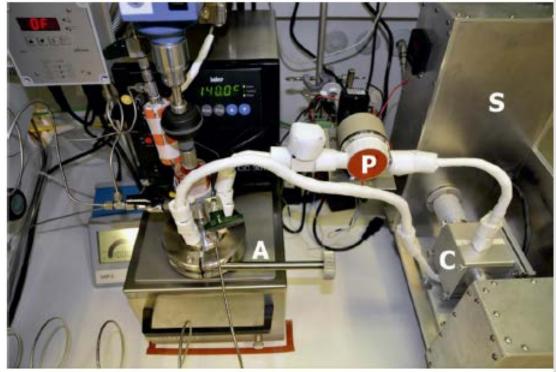
Introduction

- Why hydroformylation is industrially important:
 - ready availability of 1-alkene from the petrochemical industry
 - the large increase in production of plastics, which require plasticizing agents (diester of phthalic acid), derived from hydroformylation
- industrially useful compounds produced by hydroformylation (long carbon chain alcohols (detergents))


$$C_{11}\text{--}C_{15} \text{ Alkenes:}$$

$$CH_{3}(CH_{2})_{10}CH\text{--}CH_{2} \xrightarrow{CO/H_{2}} CH_{3}(CH_{2})_{10}CH\text{--}CH_{2}CH_{2}CH_{2}OH$$

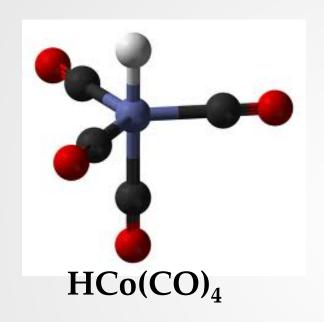
$$CH_{3}(CH_{2})_{10}CH\text{--}CH_{2}CH_{2}OH$$

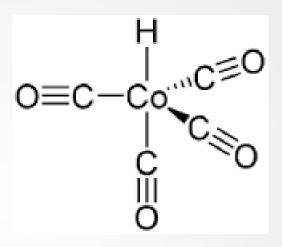


Introduction

- Various catalysts employed in hydroformylation reaction
- 1) Cobalt Catalyst: HCo(CO)₄
- 2) Cobalt Phosphine-Modified Catalyst: HCo(CO)₃(PR₃)
- 3) Rhodium Phosphine Catalyst: HRh(CO)(PPh₃)₃
- 4) Aqueous phase Rhodium Catalyst: TPPTS (Triphenylphosphinetrisulfonate)
- 5) New generation of Rhodium Catalyst: bidentate phosphine ligands

Experimental setup with reactor system

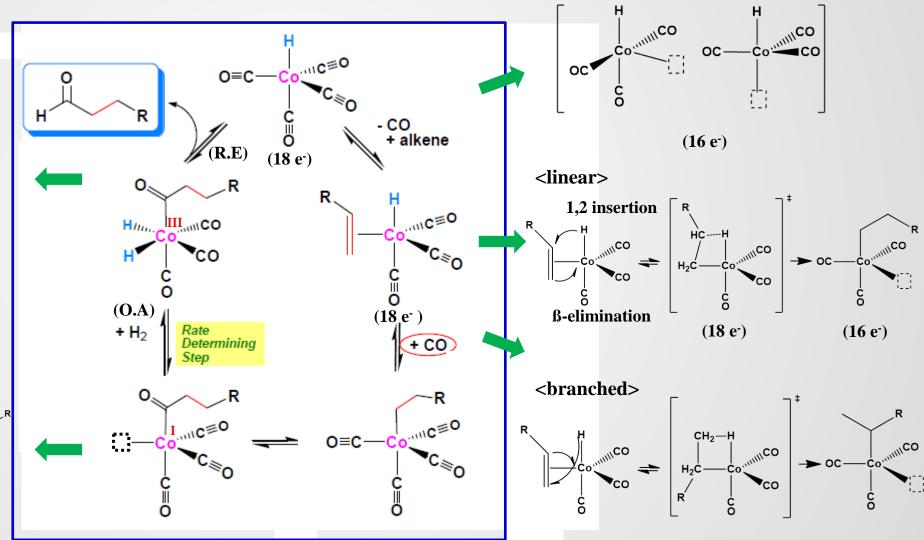

A: autoclave unit


C: IR transmission cell

P: micro-gear pump

S: FTIR spectrometer

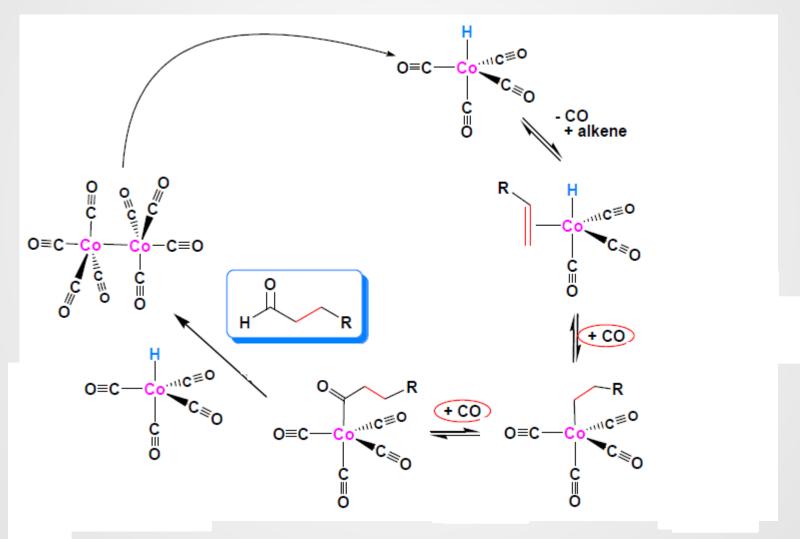
Cobalt Catalyst: HCo(CO)₄



- oldest homogeneous catalysis process still in use
- total H_2/CO (ratio= 1:1) pressures of 200- 300 bar and 110- 180 °C
- ratio of linear to branched aldehyde: ca. 4 to 1
- decomposed to metallic Co at high temperature and low CO pressure

Hydroformylation Mechanism

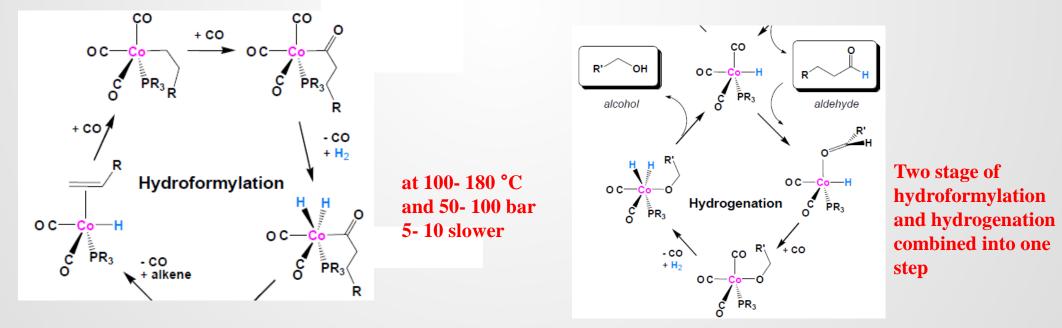
Monometallic


1,1 insertion (alkyl migration)

R. F. Heck and D. S. Breslow, *J. Am. Chem. Soc.*, 1961, 83, 4023

Hydroformylation Mechanism

Bimetallic

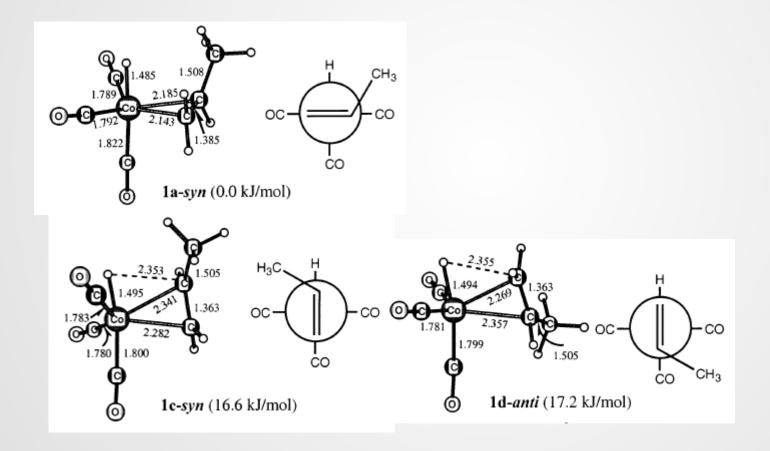

Cobalt Catalyst

Kinetics

$$\frac{d(\text{aldehyde})}{dt} = k[\text{alkene}][\text{Co}][\text{H}_2][\text{CO}]^{-1}$$

- inversely proportional to CO concentration because CO dissociation from the coordinatively saturated 18e⁻ species is required
- using a 1:1 ratio of H_2/CO , the reaction rate is independent of pressure
- HCo(CO)₄ is only stable under certain minimum CO partial pressures at a given temperature
- CO pressure $\uparrow \rightarrow$ reaction rate $\downarrow \&$ high ratio of linear to branched product
- CO pressure $\downarrow \rightarrow$ reaction rate $\uparrow \&$ branched alkyl \uparrow (reverse &-elminination)

- The addition of PR₃ ligands cause a dramatic change in rate and regioselectivity due to electronic and steric effect of substitution of PR₃
 - > Electronic effect of PR₃:
 - stronger Co-CO bond (do not decompose) → less CO pressure
 - stronger Co-CO bond \rightarrow less active than $HCo(CO)_4 \rightarrow 5$ 10 times slower
 - hydridic characteristic of hydride → increase the hydrogenation capability


• The addition of PR₃ ligands causes a dramatic change in rate and regioselectivity due to electronic and steric effect of substitution of PR₃

> Steric effect of PR₃:

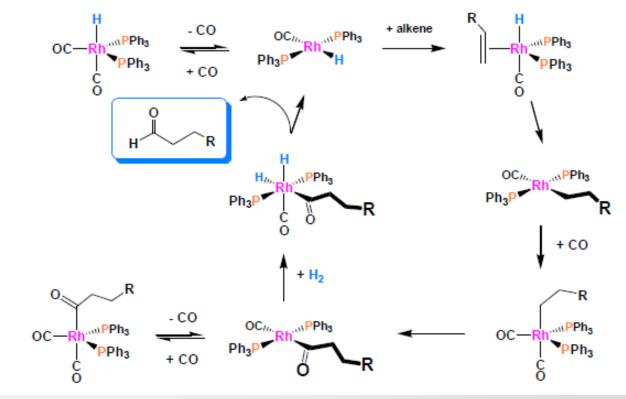
- Bulky PR₃ group influences the insertion direction of alkene to Co complex and geometry of intermediate (favors Anti-Markovnikov; Hydrogen transferred to carbon with bulkier R group)

Linear: Branched = 9: 1

• Geometry and relative energies of alkene adducts from HCo(CO)₄ calculated by DFT

Relationship between steric effect and regio-selectivity

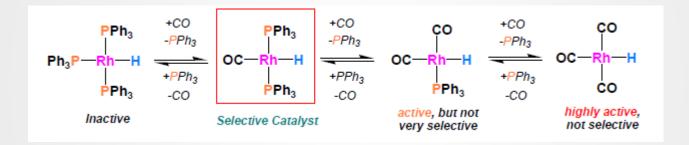
Table 1. Hydroformylation of 1-hexene using Co₂(CO)₈/2P as catalyst precursor. 160°C, 70 atm, 1.2:1 H₂/CO


PR ₃	pK _a	Tolman ν (cm ⁻¹)	Cone Angle °	k _r x 10 ³ (min ⁻¹)	% Linear Prod	Aldehyde to alcohol
P(<i>i</i> -Pr) ₃	9.4	2059.2	160	2.8	85.0	
PEt ₃	8.7	2061.7	132	2.7	89.6	0.9
PPr_3	8.6	2060.9	132	3.1	89.5	1.0
PBu ₃	8.4	2060.3	136	3.3	89.6	1.1
$PEt_{2}Ph$	6.3	2063.7	136	5.5	84.6	2.2
PEtPh ₂	4.9	2066.7	140	8.8	71.7	4.3
PPh_3	2.7	2068.9	145	14.1	62.4	11.7

[→] Steric and electronic effect of substituion of PR₃ affects the linear to branched ratio

Rhodium Catalyst

- Advantage of Rh catalyst over Co catalyst:
- Rh complex 100-1000 more active than Co complex
- at ambient condition (15-25 bar, 80-120 °C)
- energy saving process
- linear to branched ratios as high as 15 to 1


Mechanism

J. A. Osborn; G. Wilkinson; J. F. Young. Chem. Commun. 1965, 17-17

Rhodium Catalyst

- Selective catalyst with the substitution of PR₃ ligands
- Rate determining steps are not fully understood

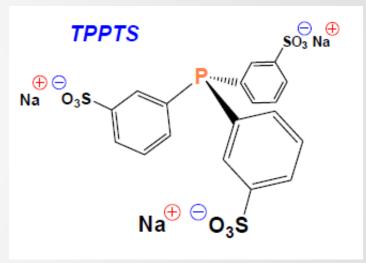
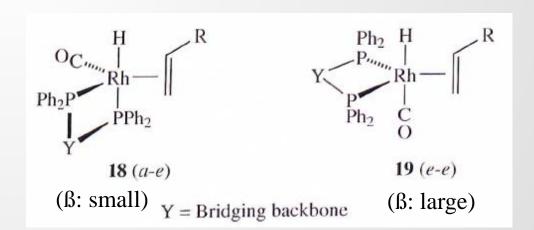


Table 2. Rate constants and Regioselectivities for the Hydroformylation of 1-Hexene using Rh(acac)(CO)₂ with Different PPh₃ Concentrations. Reaction Conditions: 90 psig (6.2 bar), 1:1 H₂/CO, 90° C.

[Rh] (mM)	[PPh3] (M)	PPh ₃ /Rh ratio	k _{obs} (min- ¹ mM Rh- ¹)	l:b ratio
0.5	0.41	820	0.032	11
1	0.82	820	0.016	17

Water Soluble Rhodium Catalysts

- Water soluble catalyst are made using sulfonated PR₃ ligands
 (3,3',3"-Phosphanetriyltris (benzenesulfonic acid) trisodium salt; TPPTS)
- Runs at mild conditions (at 18 bar and 85- 90 C°)
- Easily separated because water-soluble catalysts remain in aqueous phase and aldehyde is separated Into organic phase with higher regioselective ratio between linear and branch.

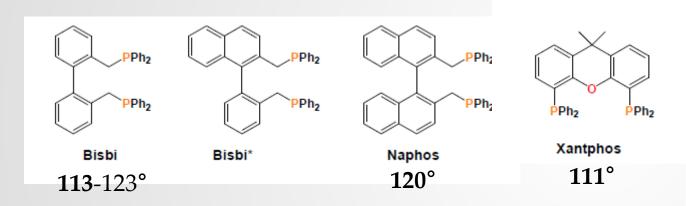

Triphenylphosphinetrisulfonate

●17

Bidendate Phosphine Rh Catalyst

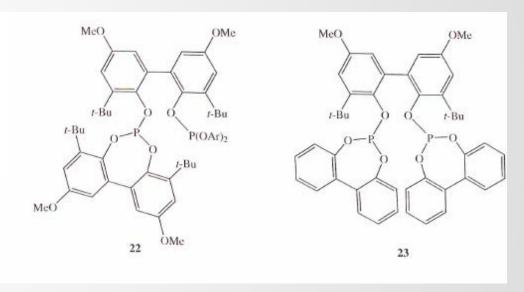
- Over the past 20 years, research was focused on bidentate ligands because
 of remarkably increased regioselectivity between linear and branched aldehydes
- Bite angle: P-M-P angle
- High regioselectivity is the related to the stereochemistry of complex combined with the electronic and steric factors of bidendate PR₃

$$L_2P$$
 β_n
 PL_2
 M



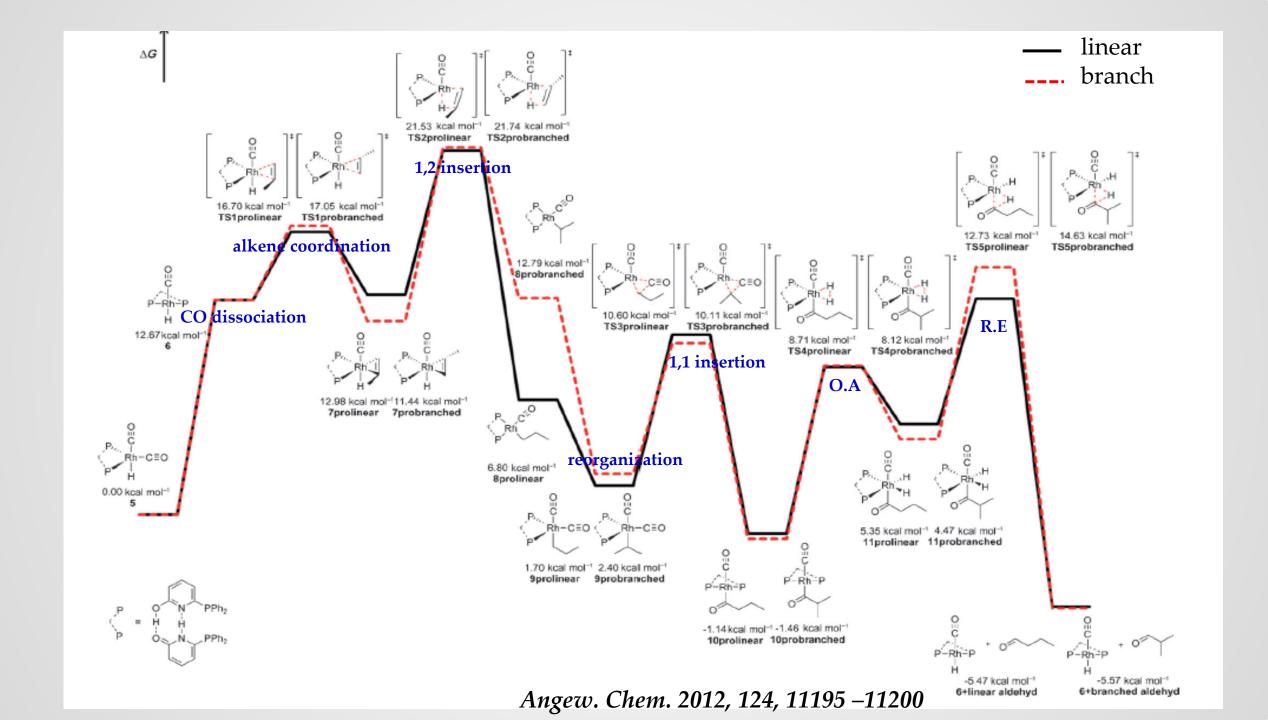
BISPI

(2,2'-bis[diphenylphosphinomethyl]-1,1'-biphenyl)


Bidendate Phosphine Rh Catalyst

• Various bidendate phosphine and phosphite ligands

Hydroformylation of 1-hexene (at 90 °C, 6.2 bar, 1:1 H₂/CO, acetone solvent)

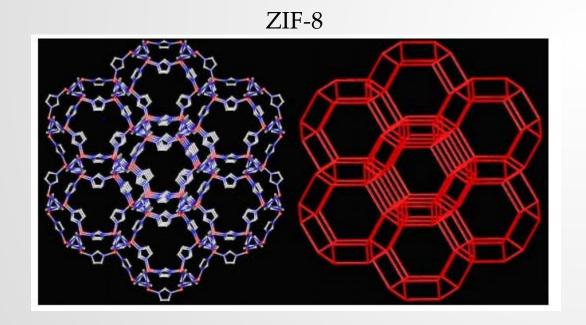

Catalyst (1 mM)	Init TOF (min ⁻¹)	Aldehyde L:B	% iso
Rh/PPh ₃ (1:400)	13(1)	9:1	< 0.5
Rh/Bisbi (1:5)	25(2)	70:1	< 0.5
Rh/Naphos (1:5)	27(1)	120:1	1.5
Rh/Xantphos (1:5)	13(2)	80:1	5.0

$$\rightarrow$$
 L:B = 30:1, 98% conversion

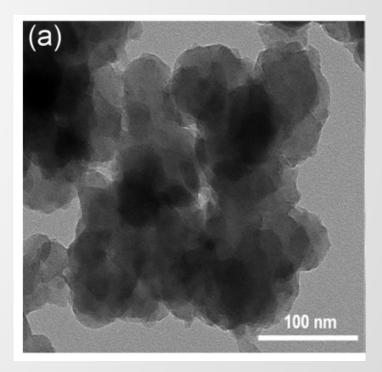
• Angew. Chem. 2012, 124, 11195 –11200

Computational Mechanism

Other Aspects of Hydroformylation


• The overall effectiveness of other metals are compared with Co and Rh.

Rh> Co> Ir > Ru > Os>Mn> Fe> Cr, Mo, W, Ni, Re Rel. Reactivity:
$$10^4-10^3$$
 1 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-6} < 10^{-6}


• 22

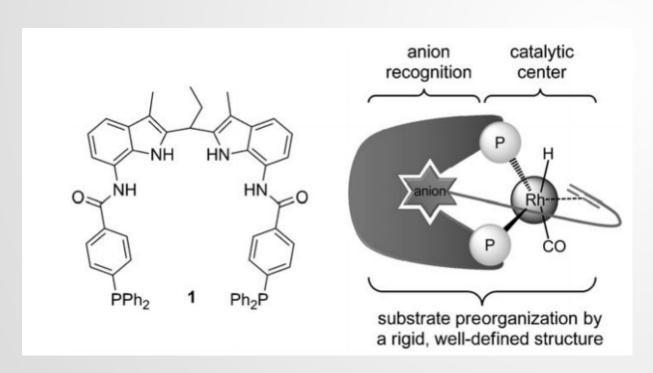
Improvements and Modifications: MOF Assisted Hydroformylation

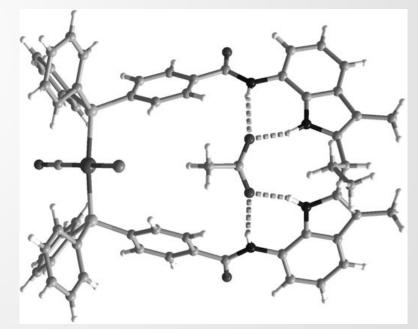
- Rhodium nanoparticles in ZIF-8
- Facilitate separations in industrial processes
 - o Homogeneous vs heterogeneous catalysis

RhCl₃ NaBH₄

Hydroformylation of Alkenes by Rh NP in ZIF-8

Entry	Alkene	Yield of aldehydes (%)		Yield of n ^b (%)	n/iso
1	1-Hexene	92	48	44	0.9
2	1-Heptene	87	58	29	0.5
3 ^c	1-Heptene	0	0	0	0
4	1-Octene	86	51	35	0.7
5	1-Dodecene	76	41	35	0.9
6	1-Tetradecene	79	53	26	0.5
7	Styrene	94	68	26	0.4

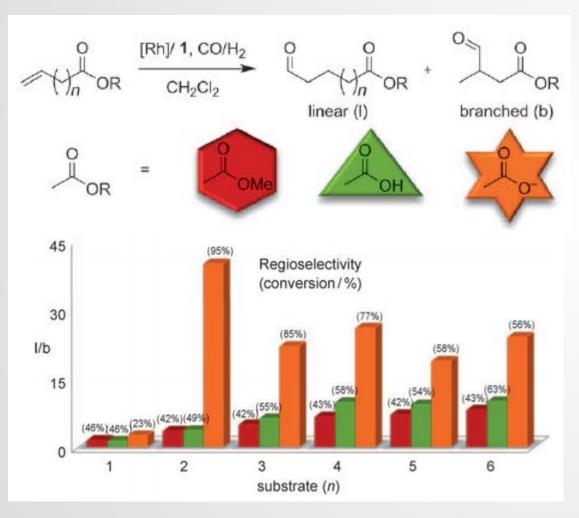

^aiso: Branched aldehydes; ^bn: Linear aldehydes; ^ccatalyzed by ZIF-8, reaction time 24 h.

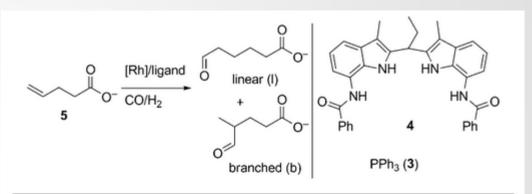

Regioselective Ligand DIMPhos

$$H_2C$$

OR

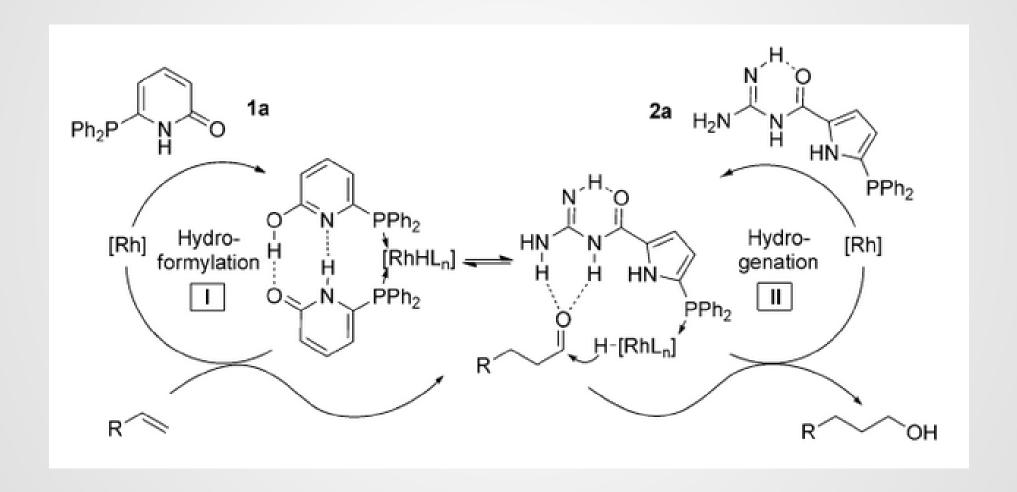
 $I[Rh]/1, CO, H_2$

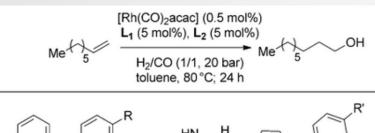



TBA[Rh(1·AcO)(CO)Cl]; TBA=tetrabutylammonium

25

Angew. Chem. 2011, 123, 416 -420


Conversion Results and Regioselectivity



Entry	Ligand	Conversion [%]	Regioselectivity [I/b ratio]
1	1	95 (80) ^[b]	40 (>50) ^[b]
2	4/3 (1:2)	100	2.9
3 ^[c]	3	100	3.1
4	-	13	1.8

Tandem Hydroformylation/Hydrogenation

Tandem Hydroformylation/Hydrogenation

Entry	L ₁	L_2	RCHO [%] ^[a]	1:b ^[a]	ROH [%] ^[a]	1:b ^[a]
1	PPh ₃	-	99	82:18	0	_
2	1a	-	99	95:5	0	- 1
3	2a	-	2	-	98	81:19
4 ^[b]	1a	2a	5	-	95	97:3
5	1a	2 b	1	-	99	93:7
6	1 b	2 b	5	33:67	95	91:9
7	1 c	2 b	5	37:63	95	96:4

[a] Determined by GC analysis. [b] Reaction time was increased to 72 hours. acac = acetylacetonate.

High demand in industry for linear alcohols as well as linear aldehydes

- 1) one-pot conversion of alkenes to linear alcohols through hydroformylation/hydrogenation by using a single metallic catalyst;
- 2) high linear/branched regioselectivity;
- 3) simultaneous chemoselective reduction of the intermediate aldehyde with molecular hydrogen gas (no alkene hydrogenation).

Shifting Focus: Branched Hydroformylation Products

- Production of enantio-enriched branched products.
- Applications in pharmaceuticals

Shifting Focus: Branched Hydroformylation Product

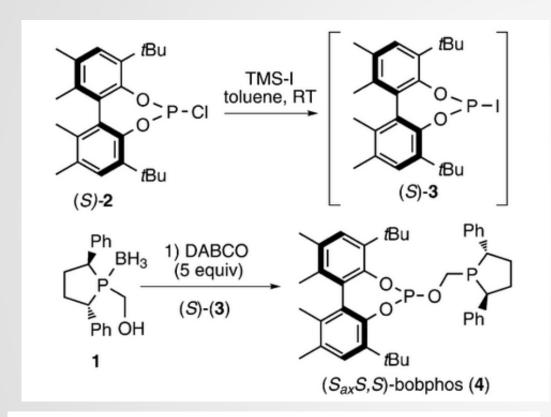
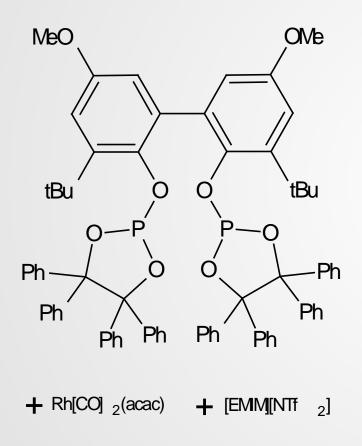
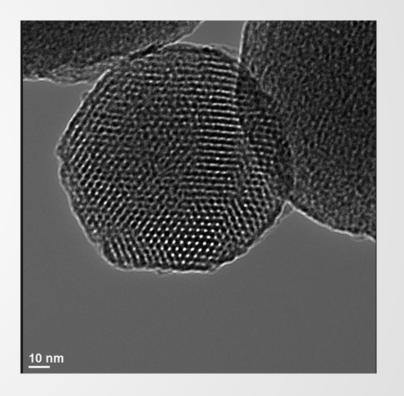


Table 1: Hydroformylation of allyl benzene (10a) using a range of hydroformylation catalysts at room temperature.

Entry ^[a]	Ligand	Product yield [%] ^[b]	b:I ^[b]	ee ^[c]
1	Ph ₃ P	46	1:1.1	n.d.
2	5	86	1:1.2	n.d.
3	6	91	1:1.1	n.d.
4	7	93	1:1.8	n.d.
5	dppe ^[d]	56	1:1.0	n.d.
6	dppe ^[d] dppf ^[d]	52	1:1.2	n.d.
7	8	66	1:1.1	0
8	9	87	1:1.0	5
9	4	64 ^[e]	4.0:1	90
10	4	39 ^[f]	3.6:1	88

[a] 0.4 mol% [Rh(acac)(CO)₂] and 0.5 mol% bidentate ligand or 1.2 mol% monodentate ligand were stirred at 5 bar syngas at 50°C for

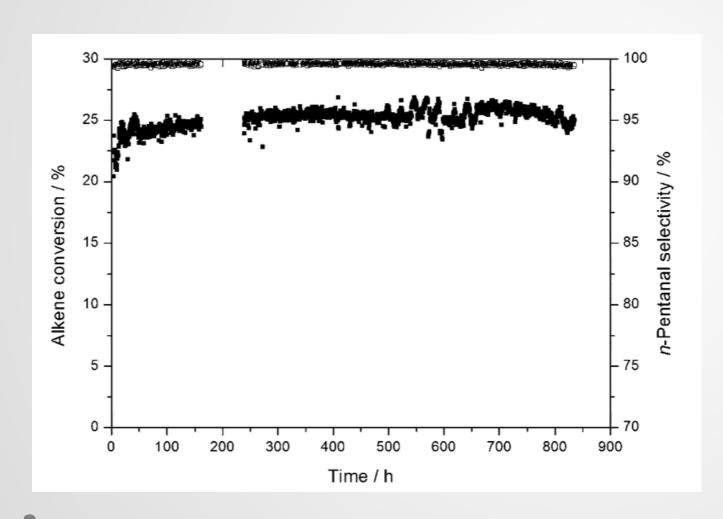

Making Expensive Catalysis More Efficient


- Advantage of the utilizing Ionic Liquids (IL)
 - o What is an ionic liquid?
 - o Salts that exist as a liquid at room temperature
 - o No vapor pressure
 - o Large liquid ranges
- Disadvantage
 - o Very very very expensive
 - o Require complicated ligands to provide for solvation

$$H_3C$$
 $+$
 N
 $+$
 N
 CH_3

Ethyl methyl Immidazolium (EMIM)

Supported Ionic Liquid Phase (SILP)



What is this Particular SLIP Good For?

- Minimizes IL usage
 - o Only a small film adsorbed in mesoporous silica as opposed to solvent usage
- Selective linear hydroformylation of 1-butane
 - o Mixed C4 gas feedstock
 - o Continuous flow hydroformylation
 - o Minimal catalyst deactivation

Experiment: Mixed C4 feedstock

Feedstock composition:

• 1-butene: 25.6 %

• Trans-2-butene: 9.1%

• cis-2-butene: 7.0%

• Butane: 14.9%

• Isobutane: 43.1%

• 1,3-butadiene: 0.3%

Conclusion

- Through the catalyzed hydroformylation reaction, olefins are converted into aldehydes;
 mechanism and corresponding energy calculation were demonstrated.
- The different type of phosphine ligands and cobalt- and rhodium-based catalysts were introduced; bidendate phosphine Rh catalyst showed the highest ratios of linear to branched aldehyde even at ambient conditions.
- Enantio- and regio-selectivity can be increased if specifically designed ligands on Rh catalysts are used.