rdsym
The subroutine rdsym
reads in the character table
and the definitions of the symmetry operations of the point group
needed to comput the symmetry adapted angular functions
rdsym
pgroup, ngroup, ctype
(opclas(i), nclass(i), i = 1, ngroup)
j = 1
to ngroup
ctype = 'real '
then symtyp(j), (xtab(i), i = 1, ngroup)
ctype = 'complex'
then symtyp(j), (xtab(i), ttab(i), i = 1, ngroup)
ic = 1
to ngroup
icn = 1
to nclass(ic)
xntype
have different formats.
xntype = 'vec'
xntype, (xn(j, nxn), j = 1, 4), optype
xntype = 'ang'
xntype, thetas, phis, xn(4, nxn), optype
xntype = '2pt'
xntype, x1(1:3), x2(1:3), xn(4, nxn), optype
xntype = '3pt'
xntype, x1(1:3), x2(1:3), x3(1:3), xn(4, nxn), optype
All of the symmetry operations can be specified by the direction of
a vector, an angle of a rotation, and the type of operation as discussed
below under the defintion of optype
.
pgroup
ngroup
ctype
'real '
or
'complex'
to indicate if the character table has real
or complex values
opclass(i)
(LEN = 5)
which is
a label for i
th class of operators
nclass(i)
i
th class
symtyp(j)
(LEN = 5)
for irreducible
representation
xtab(i)
ttab(i)
xntype
(LEN = 3)
possible values are:
'vec'
xn(1:3, nxn)
'ang'
thetas
and phis
'2pt'
x1(1:3)
to the point x2(1:3)
'3pt'
x2(1:3)
- x1(1:3)
) with (x3(1:3)
- x2(1:3)
)
xn(1:3,nxn)
'ident'
operator
xn(4,nxn)
xn(1:3,nxn)
. Note this variable is read in but not used for the
'ident'
and 'reflec'
type operators.
optype
'ident'
'reflec'
xn(1:3,nxn)
'rotat'
xn(4,nxn)
degrees
about the direction defined in
xn(1:3,nxn)
'rfrot'
xn(4,nxn)
degrees
about the direction defined in
xn(1:3,nxn)
with a reflection in the plane perpendicular to the vector defined
by xn(1:3,nxn)
thetas, phis
'ang'
input format
x1(1:3), x2(1:3), x3(1:3)