test22 - C2H6 staggered, G98 test d3d blms
Wed Aug 22 11:38:37 CDT 2001
0.068u 0.059s 0:00.15 73.3% 0+0k 2+0io 0pf+0w

**********************************************************************
SetUp - set up command scripts
**********************************************************************

wrkdir = tst137882
Moving to /scratch2/lucchese/tst137882

**********************************************************************
RmData - remove data file
**********************************************************************


**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 LMax   25     # maximum l to be used for wave functions
 LMaxI  50     # maximum l value used to determine numerical angular grids
 LMaxA  15     # maximum l included at large r
 LMax2  50     # maximum l to be used for potentials
 PrintFlag 0   # no extra printing
 MMax   -1     # maximum m to use (-1 means use LMax)
 MMaxI  -1     # maximum m to use in angular integrations (-1 means us LMaxI)
 ECenter  0.0 0.0 0.0 # center for exapnding about
 RMax   10.5    # maximum R in inner grid
 EMax  60.0    # EMax, maximum asymptotic energy in eV
  EngForm  0 0 # Energy formulas
  PCutRd  1.0e-8  # cutoff factor used in the radial grids
  VCorr 'PZ'
 ScatEng 1 30.0      # list of scattering energies
 FegeEng 0.35   # Energy correction used in the fege potential
 ScatContSym 'EU'  # Scattering symmetry
 LMaxK   10    # Maximum l in the K matirx
 IterMax  15    # Maximum Number of iterations
 GrnType  0     # type of Green function (0 -> K matrix, 1 -> T matrix)
 CnvgKMat 1.0e-6 # Convergence of the K matrix
 NIntReg  40    # Number of integration regions, number needed is controlled
                # by the instability in the integrator
 LMaxEx   -1    # -1 implies all terms (2*LMax) alternatively one can use just
                # LMax to save computer time

**********************************************************************
Convert - Convert file /scratch2/people/lucchese/polyangd/tests/test22.g98
          using the g98 conversion program
**********************************************************************


----------------------------------------------------------------------
g98cnv - G98 conversion program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:38:38 2001
 Unit which contains output from g98 (iuin) =   50
 Output unit for geometry information (iugeom) =   51
 Output unit for orbital information (iuorb) =   82
 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
Selecting orbitals
from     1  to     9  number already selected     0
Number of orbitals selected is     9
 Convert G98 output Wed Aug 22 11:38:38 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0
Wed Aug 22 11:38:38 CDT 2001
0.117u 0.136s 0:00.35 68.5% 0+0k 7+2io 2pf+0w

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp  'D3d'  # point group to use
 DoSym  'yes'   # compute the blms

**********************************************************************
GetBlms - Compute b_(lm)s for point group D3d
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:38:39 2001
 lmax =   50
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    1
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        676       1  1  1
 BG        1         2        650      -1  1 -1
 AU        1         3        625       1 -1 -1
 BU        1         4        650      -1 -1  1
 Generate blms Wed Aug 22 11:38:39 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:38:39 2001
 lmax =   25
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group   43
 iprnfg =    0
 calculation type (calctp) = compute
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    1
 The representation is expected to be real
 Symmetry Information
 Number of symmetry operations =    12
 symmetry operations
   1   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00
   2   0.000000E+00   0.000000E+00   0.100000E+01   0.120000E+03   0.200000E+01
   3   0.000000E+00   0.000000E+00   0.100000E+01  -0.120000E+03   0.200000E+01
   4   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.200000E+01
   5   0.500000E+00   0.866025E+00   0.000000E+00   0.180000E+03   0.200000E+01
   6  -0.500000E+00   0.866025E+00   0.000000E+00   0.180000E+03   0.200000E+01
   7   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.300000E+01
   8   0.000000E+00   0.000000E+00   0.100000E+01   0.600000E+02   0.300000E+01
   9   0.000000E+00   0.000000E+00   0.100000E+01  -0.600000E+02   0.300000E+01
  10  -0.100000E+01   0.000000E+00   0.000000E+00   0.000000E+00   0.100000E+01
  11  -0.500000E+00   0.866025E+00   0.000000E+00   0.000000E+00   0.100000E+01
  12   0.500000E+00   0.866025E+00   0.000000E+00   0.000000E+00   0.100000E+01
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    A1U   (  1)    A2U   (  1)
    EU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     4     7    10
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1         61       1  1  1
 A2G       1         2         48      -1  1 -1
 EG        1         3        108      -1  1 -1
 EG        2         4        108       1  1  1
 A1U       1         5         52       1 -1 -1
 A2U       1         6         65      -1 -1  1
 EU        1         7        117      -1 -1  1
 EU        2         8        117       1 -1 -1
 Generate blms Wed Aug 22 11:40:27 2001
 delt cpu =   103.9  tot cpu =   103.9  tot wall =   108.0
Wed Aug 22 11:40:27 CDT 2001
103.778u 0.573s 1:48.56 96.1% 0+0k 12+5io 0pf+0w

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp  'D3d'  # point group to use
 DoSym  'no'   # compute the blms

**********************************************************************
GetBlms - Compute b_(lm)s for point group D3d
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:40:28 2001
 lmax =   50
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    1
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        676       1  1  1
 BG        1         2        650      -1  1 -1
 AU        1         3        625       1 -1 -1
 BU        1         4        650      -1 -1  1
 Generate blms Wed Aug 22 11:40:28 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:40:28 2001
 lmax =   25
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    1
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1         61       1  1  1
 A2G       1         2         48      -1  1 -1
 EG        1         3        108      -1  1 -1
 EG        2         4        108       1  1  1
 A1U       1         5         52       1 -1 -1
 A2U       1         6         65      -1 -1  1
 EU        1         7        117      -1 -1  1
 EU        2         8        117       1 -1 -1
 Generate blms Wed Aug 22 11:40:28 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0

----------------------------------------------------------------------
GetIRep - compute matrix representation of the symmetry operations
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:40:28 2001
input unit for the blms (iuin) =   40
 iumatrep (unit for output of matrix representation of the group   43
 iprnfg =    0
 representation form (rtype) = real
 The representation is expected to be real
 Symmetry Information
 Number of symmetry operations =    12
 symmetry operations
   1   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00
   2   0.000000E+00   0.000000E+00   0.100000E+01   0.120000E+03   0.200000E+01
   3   0.000000E+00   0.000000E+00   0.100000E+01  -0.120000E+03   0.200000E+01
   4   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.200000E+01
   5   0.500000E+00   0.866025E+00   0.000000E+00   0.180000E+03   0.200000E+01
   6  -0.500000E+00   0.866025E+00   0.000000E+00   0.180000E+03   0.200000E+01
   7   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.300000E+01
   8   0.000000E+00   0.000000E+00   0.100000E+01   0.600000E+02   0.300000E+01
   9   0.000000E+00   0.000000E+00   0.100000E+01  -0.600000E+02   0.300000E+01
  10  -0.100000E+01   0.000000E+00   0.000000E+00   0.000000E+00   0.100000E+01
  11  -0.500000E+00   0.866025E+00   0.000000E+00   0.000000E+00   0.100000E+01
  12   0.500000E+00   0.866025E+00   0.000000E+00   0.000000E+00   0.100000E+01
     REAL PART - character table (ctab) matrix
     ROW  1
  0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01
  0.10000000E+01
     ROW  2
  0.10000000E+01 0.10000000E+01-0.10000000E+01 0.10000000E+01 0.10000000E+01
 -0.10000000E+01
     ROW  3
  0.20000000E+01-0.10000000E+01 0.00000000E+00 0.20000000E+01-0.10000000E+01
  0.00000000E+00
     ROW  4
  0.10000000E+01 0.10000000E+01 0.10000000E+01-0.10000000E+01-0.10000000E+01
 -0.10000000E+01
     ROW  5
  0.10000000E+01 0.10000000E+01-0.10000000E+01-0.10000000E+01-0.10000000E+01
  0.10000000E+01
     ROW  6
  0.20000000E+01-0.10000000E+01 0.00000000E+00-0.20000000E+01 0.10000000E+01
  0.00000000E+00
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    A1U   (  1)    A2U   (  1)
    EU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     4     7    10
 Generate blms Wed Aug 22 11:40:28 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0
Wed Aug 22 11:40:28 CDT 2001
0.385u 0.248s 0:00.87 71.2% 0+0k 9+31io 5pf+0w
Difference on fort.40
Difference on fort.43
70,71c70,71
<   0.000000000000000E+00  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
---
>  -0.541826441172274E-16  0.000000000000000E+00
>  -0.541826441172274E-16  0.000000000000000E+00
73,86c73,74
<  -0.500000000000000E+00  0.000000000000000E+00
<   0.866025403784439E+00  0.000000000000000E+00
<  -0.866025403784439E+00  0.000000000000000E+00
<  -0.500000000000000E+00  0.000000000000000E+00
<  -0.500000000000000E+00  0.000000000000000E+00
<  -0.866025403784439E+00  0.000000000000000E+00
<   0.866025403784439E+00  0.000000000000000E+00
<  -0.500000000000000E+00  0.000000000000000E+00
<  -0.100000000000000E+01  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
<   0.100000000000000E+01  0.000000000000000E+00
<   0.500000000000001E+00  0.000000000000000E+00
<  -0.866025403784439E+00  0.000000000000000E+00
---
>  -0.500000000000001E+00  0.000000000000000E+00
>   0.866025403784438E+00  0.000000000000000E+00
89,90c77,78
<   0.500000000000001E+00  0.000000000000000E+00
<   0.866025403784439E+00  0.000000000000000E+00
---
>  -0.500000000000001E+00  0.000000000000000E+00
>  -0.866025403784438E+00  0.000000000000000E+00
92a81,92
>  -0.100000000000000E+01  0.000000000000000E+00
>   0.202212380733915E-15  0.000000000000000E+00
>   0.202212380733915E-15  0.000000000000000E+00
>   0.100000000000000E+01  0.000000000000000E+00
>   0.499999999999998E+00  0.000000000000000E+00
>  -0.866025403784440E+00  0.000000000000000E+00
>  -0.866025403784440E+00  0.000000000000000E+00
>  -0.499999999999998E+00  0.000000000000000E+00
>   0.499999999999998E+00  0.000000000000000E+00
>   0.866025403784440E+00  0.000000000000000E+00
>   0.866025403784440E+00  0.000000000000000E+00
>  -0.499999999999998E+00  0.000000000000000E+00
94,95c94,95
<   0.000000000000000E+00  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
---
>  -0.541826441172274E-16  0.000000000000000E+00
>  -0.541826441172274E-16  0.000000000000000E+00
106,107c106,107
<   0.000000000000000E+00  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
---
>   0.202212380733915E-15  0.000000000000000E+00
>   0.202212380733915E-15  0.000000000000000E+00
109,116c109,116
<   0.500000000000001E+00  0.000000000000000E+00
<   0.866025403784438E+00  0.000000000000000E+00
<   0.866025403784439E+00  0.000000000000000E+00
<  -0.500000000000001E+00  0.000000000000000E+00
<   0.500000000000001E+00  0.000000000000000E+00
<  -0.866025403784439E+00  0.000000000000000E+00
<  -0.866025403784438E+00  0.000000000000000E+00
<  -0.500000000000001E+00  0.000000000000000E+00
---
>   0.499999999999998E+00  0.000000000000000E+00
>   0.866025403784440E+00  0.000000000000000E+00
>   0.866025403784440E+00  0.000000000000000E+00
>  -0.499999999999998E+00  0.000000000000000E+00
>   0.499999999999998E+00  0.000000000000000E+00
>  -0.866025403784440E+00  0.000000000000000E+00
>  -0.866025403784440E+00  0.000000000000000E+00
>  -0.499999999999998E+00  0.000000000000000E+00
145,146c145,146
<   0.000000000000000E+00  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
---
>  -0.270913220586136E-16  0.000000000000000E+00
>  -0.270913220586136E-16  0.000000000000000E+00
157,158c157,158
<   0.000000000000000E+00  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
---
>   0.101106190366957E-15  0.000000000000000E+00
>   0.101106190366957E-15  0.000000000000000E+00
169,170c169,170
<   0.000000000000000E+00  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
---
>   0.270913220586136E-16  0.000000000000000E+00
>   0.270913220586136E-16  0.000000000000000E+00
181,182c181,182
<   0.000000000000000E+00  0.000000000000000E+00
<   0.000000000000000E+00  0.000000000000000E+00
---
>  -0.101106190366957E-15  0.000000000000000E+00
>  -0.101106190366957E-15  0.000000000000000E+00

**********************************************************************
ExpOrb - create grid and expand orbitals
**********************************************************************

Wed Aug 22 11:40:28 CDT 2001
0.091u 0.079s 0:00.18 88.8% 0+0k 0+0io 0pf+0w

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Unit for geometry information (iUGeom) =   51
Unit fo basis function and orbital coefficients (iUOrb) =   82
Unit for the generated grid (iUGrd) =   54
Maximum R in the grid (RMax) =    10.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  60.00000 eV

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     1.45131  Alpha Max = 0.42326E+04
    3  Center at =     2.94589  Alpha Max = 0.19241E+02

Generated Grid

  irg  nin  ntot      step          R end
    1   64    64    0.10341E-01     0.66179
    2   40   104    0.10341E-01     1.07541
    3    8   112    0.98320E-02     1.15407
    4    8   120    0.77771E-02     1.21629
    5    8   128    0.61493E-02     1.26548
    6    8   136    0.48621E-02     1.30438
    7    8   144    0.38444E-02     1.33513
    8    8   152    0.30397E-02     1.35945
    9    8   160    0.24034E-02     1.37868
   10    8   168    0.19004E-02     1.39388
   11    8   176    0.15026E-02     1.40590
   12    8   184    0.11881E-02     1.41541
   13    8   192    0.93939E-03     1.42292
   14    8   200    0.74276E-03     1.42886
   15    8   208    0.58729E-03     1.43356
   16    8   216    0.46436E-03     1.43728
   17    8   224    0.36716E-03     1.44021
   18    8   232    0.29031E-03     1.44254
   19    8   240    0.22954E-03     1.44437
   20    8   248    0.18150E-03     1.44583
   21   32   280    0.16202E-03     1.45101
   22    8   288    0.37508E-04     1.45131
   23   32   320    0.16202E-03     1.45649
   24    8   328    0.17282E-03     1.45788
   25    8   336    0.21891E-03     1.45963
   26    8   344    0.27729E-03     1.46185
   27    8   352    0.35123E-03     1.46466
   28    8   360    0.44489E-03     1.46822
   29    8   368    0.56353E-03     1.47272
   30    8   376    0.71380E-03     1.47843
   31    8   384    0.90415E-03     1.48567
   32    8   392    0.11453E-02     1.49483
   33    8   400    0.14507E-02     1.50643
   34    8   408    0.18375E-02     1.52113
   35    8   416    0.23275E-02     1.53975
   36    8   424    0.29482E-02     1.56334
   37    8   432    0.37343E-02     1.59321
   38    8   440    0.47302E-02     1.63106
   39    8   448    0.59915E-02     1.67899
   40    8   456    0.75893E-02     1.73970
   41    8   464    0.96131E-02     1.81661
   42   64   528    0.10341E-01     2.47840
   43    8   536    0.10341E-01     2.56113
   44    8   544    0.10068E-01     2.64167
   45    8   552    0.79597E-02     2.70535
   46    8   560    0.62936E-02     2.75570
   47    8   568    0.49763E-02     2.79551
   48    8   576    0.39347E-02     2.82698
   49    8   584    0.31111E-02     2.85187
   50    8   592    0.24599E-02     2.87155
   51   24   616    0.24031E-02     2.92923
   52    8   624    0.20829E-02     2.94589
   53   32   656    0.24031E-02     3.02279
   54    8   664    0.25633E-02     3.04329
   55    8   672    0.32468E-02     3.06927
   56    8   680    0.41127E-02     3.10217
   57    8   688    0.52094E-02     3.14384
   58    8   696    0.65985E-02     3.19663
   59    8   704    0.83581E-02     3.26350
   60    8   712    0.10587E-01     3.34819
   61   64   776    0.12467E-01     4.14607
   62   64   840    0.12467E-01     4.94394
   63   64   904    0.12467E-01     5.74181
   64   64   968    0.12467E-01     6.53968
   65   64  1032    0.12467E-01     7.33756
   66   64  1096    0.12467E-01     8.13543
   67   64  1160    0.12467E-01     8.93330
   68   64  1224    0.12467E-01     9.73117
   69   56  1280    0.12467E-01    10.42931
   70    8  1288    0.88362E-02    10.50000

----------------------------------------------------------------------
anggct - Program to generate angular functions
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:40:29 2001
Maximum scattering l (lmaxs) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Minimum l to include in the asymptotic region (lmasym) =   15
Parameter used to determine the cutoff points (pcutar) =  0.10000000E-07
Input unit for full symmetry blms (iuins) =   40
Input unit for abelian sub-group blms (iuini) =   42
Unit for geometry information (iugeom) =   51
Unit for radial grid information (iugrd) =   54
Output unit for angular grid and functions (iuang) =   41
Output unit for angular grid cutoffs (iuanrd) =   62
Print flag (iprnfg) =    0
 Actual value of lmasym found =     15
Number of regions of the same l expansion (NAngReg) =   19
 Point group from iuins is D3d
 From iuins nthd =    2  nphid =    1  nabop =    3

 Number of radial functions in full symmetry
   1 Symmetry type A1G   1  Number of radial functions =     61
   2 Symmetry type A2G   1  Number of radial functions =     48
   3 Symmetry type EG    1  Number of radial functions =    108
   4 Symmetry type EG    2  Number of radial functions =    108
   5 Symmetry type A1U   1  Number of radial functions =     52
   6 Symmetry type A2U   1  Number of radial functions =     65
   7 Symmetry type EU    1  Number of radial functions =    117
   8 Symmetry type EU    2  Number of radial functions =    117

 Number of radial functions in abelian subgroup
   1 Symmetry type AG    1  Number of radial functions =    676
   2 Symmetry type BG    1  Number of radial functions =    650
   3 Symmetry type AU    1  Number of radial functions =    625
   4 Symmetry type BU    1  Number of radial functions =    650

 For analytic integrations ntheta =     28  nphi =    104
 For numerical integrations ntheti =     52 nphii =    204

 Maximum parameters needed
 Parameter         Value  Value Needed
     maxlm           120           117
    maxlma           680           676
    maxlmh           400           182
    maxthe            58            28
    maxphi           110           104
    maxthi           112            52
    maxpii           220           204
    maxfun          2601           676
    maxfub         10201          2601
 Define angular grid Wed Aug 22 11:40:54 2001
 delt cpu =    24.7  tot cpu =    24.7  tot wall =    25.0
23.569u 1.425s 0:26.27 95.0% 0+0k 1+9io 0pf+0w

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =  -82
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Output file for rotated and typed orbitals (iUOrbSym) =   52
 Begining timer Wed Aug 22 11:40:55 2001

 R of maximum density
     1  A1G   1 at max irg =   41  r =   1.45788
     2  A2U   1 at max irg =   41  r =   1.45788
     3  A1G   1 at max irg =   45  r =   1.46822
     4  A2U   1 at max irg =   67  r =   2.56113
     5  EU    1 at max irg =   67  r =   2.56113
     6  EU    2 at max irg =   67  r =   2.56113
     7  A1G   1 at max irg =   12  r =   0.99269
     8  EG    1 at max irg =   75  r =   2.89078
     9  EG    2 at max irg =   75  r =   2.89078

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A2U   1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 A1G   1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A2U   1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 EU    1
     5  0.0000000000    6  1.0000000000

Rotation coefficients for orbital     6  grp =    5 EU    2
     5  1.0000000000    6  0.0000000000

Rotation coefficients for orbital     7  grp =    6 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    7 EG    1
     8  1.0000000000    9  0.0000000000

Rotation coefficients for orbital     9  grp =    7 EG    2
     8  0.0000000000    9  1.0000000000
Number of orbital groups and degeneracis are         7
  1  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
         7
  2  2  2  2  4  2  4
 Compute final expansions Wed Aug 22 11:41:36 2001
 delt cpu =    39.4  tot cpu =    39.4  tot wall =    41.0
Wed Aug 22 11:41:36 CDT 2001
62.341u 2.111s 1:07.37 95.6% 0+0k 1+13io 0pf+0w

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =   52
 Unit for output of single center expanded orbitals (iuout) =   55
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Begining timer Wed Aug 22 11:41:36 2001
 Number of r points in each I/O block (nrpibk) =   35
 Number of blocks in each function (nblks) =   37
 Number of r points in each in memory block (nrpibko) =   35
 Direct access record sizxe (real words) (nsize) = 4095
 Total scratch file size in bytes =        8484840

 Normalization integral
 Sum(    1) =   0.0792340918
 Sum(    2) =   0.2775446432
 Sum(    3) =   0.2594085024
 Sum(    4) =   0.0000001011
 Sum(    5) =   0.1691971447
 Sum(    6) =   0.0000000534
 Sum(    7) =   0.0000000004
 Sum(    8) =   0.0956833779
 Sum(    9) =   0.0000000010
 Sum(   10) =   0.0000000031
 Sum(   11) =   0.0516062776
 Sum(   12) =   0.0000000018
 Sum(   13) =   0.0000000033
 Sum(   14) =   0.0000000000
 Sum(   15) =   0.0279637301
 Sum(   16) =   0.0000000004
 Sum(   17) =   0.0000000008
 Sum(   18) =   0.0000000002
 Sum(   19) =   0.0000000000
 Sum(   20) =   0.0155610288
 Sum(   21) =   0.0000000001
 Sum(   22) =   0.0000000000
 Sum(   23) =   0.0000000004
 Sum(   24) =   0.0000000000
 Sum(   25) =   0.0089115491
 Sum(   26) =   0.0000000001
 Sum(   27) =   0.0000000001
 Sum(   28) =   0.0000000002
 Sum(   29) =   0.0000000000
 Sum(   30) =   0.0000000000
 Sum(   31) =   0.0052478820
 Sum(   32) =   0.0000000000
 Sum(   33) =   0.0000000000
 Sum(   34) =   0.0000000000
 Sum(   35) =   0.0000000000
 Sum(   36) =   0.0000000000
 Sum(   37) =   0.0000000000
 Sum(   38) =   0.0031873720
 Sum(   39) =   0.0000000000
 Sum(   40) =   0.0000000000
 Sum(   41) =   0.0000000000
 Sum(   42) =   0.0000000000
 Sum(   43) =   0.0000000000
 Sum(   44) =   0.0000000000
 Sum(   45) =   0.0020026167
 Sum(   46) =   0.0000000000
 Sum(   47) =   0.0000000000
 Sum(   48) =   0.0000000000
 Sum(   49) =   0.0000000000
 Sum(   50) =   0.0000000000
 Sum(   51) =   0.0000000000
 Sum(   52) =   0.0000000000
 Sum(   53) =   0.0012998128
 Sum(   54) =   0.0000000000
 Sum(   55) =   0.0000000000
 Sum(   56) =   0.0000000000
 Sum(   57) =   0.0000000000
 Sum(   58) =   0.0000000000
 Sum(   59) =   0.0000000000
 Sum(   60) =   0.0000000000
 Sum(   61) =   0.0000000000
 Total      =   0.9968481958
 Orbital     1 of  A1G   1 symmetry
     Normalization coefficient =   1.00157964

 Normalization integral
 Sum(    1) =   0.2088120460
 Sum(    2) =   0.2875762020
 Sum(    3) =   0.0000000537
 Sum(    4) =   0.2153466922
 Sum(    5) =   0.0000001375
 Sum(    6) =   0.1286556777
 Sum(    7) =   0.0000000218
 Sum(    8) =   0.0000000024
 Sum(    9) =   0.0704441872
 Sum(   10) =   0.0000000008
 Sum(   11) =   0.0000000055
 Sum(   12) =   0.0000000000
 Sum(   13) =   0.0379073465
 Sum(   14) =   0.0000000021
 Sum(   15) =   0.0000000030
 Sum(   16) =   0.0000000001
 Sum(   17) =   0.0207919274
 Sum(   18) =   0.0000000000
 Sum(   19) =   0.0000000002
 Sum(   20) =   0.0000000005
 Sum(   21) =   0.0000000000
 Sum(   22) =   0.0117401253
 Sum(   23) =   0.0000000003
 Sum(   24) =   0.0000000002
 Sum(   25) =   0.0000000005
 Sum(   26) =   0.0000000000
 Sum(   27) =   0.0000000000
 Sum(   28) =   0.0068167376
 Sum(   29) =   0.0000000000
 Sum(   30) =   0.0000000001
 Sum(   31) =   0.0000000001
 Sum(   32) =   0.0000000001
 Sum(   33) =   0.0000000000
 Sum(   34) =   0.0040746512
 Sum(   35) =   0.0000000000
 Sum(   36) =   0.0000000000
 Sum(   37) =   0.0000000000
 Sum(   38) =   0.0000000001
 Sum(   39) =   0.0000000000
 Sum(   40) =   0.0000000000
 Sum(   41) =   0.0025166902
 Sum(   42) =   0.0000000000
 Sum(   43) =   0.0000000000
 Sum(   44) =   0.0000000000
 Sum(   45) =   0.0000000000
 Sum(   46) =   0.0000000000
 Sum(   47) =   0.0000000000
 Sum(   48) =   0.0000000000
 Sum(   49) =   0.0016079211
 Sum(   50) =   0.0000000000
 Sum(   51) =   0.0000000000
 Sum(   52) =   0.0000000000
 Sum(   53) =   0.0000000000
 Sum(   54) =   0.0000000000
 Sum(   55) =   0.0000000000
 Sum(   56) =   0.0000000000
 Sum(   57) =   0.0010586996
 Sum(   58) =   0.0000000000
 Sum(   59) =   0.0000000000
 Sum(   60) =   0.0000000000
 Sum(   61) =   0.0000000000
 Sum(   62) =   0.0000000000
 Sum(   63) =   0.0000000000
 Sum(   64) =   0.0000000000
 Sum(   65) =   0.0000000000
 Total      =   0.9973491330
 Orbital     2 of  A2U   1 symmetry
     Normalization coefficient =   1.00132807

 Normalization integral
 Sum(    1) =   0.8534852486
 Sum(    2) =   0.0786247108
 Sum(    3) =   0.0249409686
 Sum(    4) =   0.0073262377
 Sum(    5) =   0.0159154079
 Sum(    6) =   0.0046506724
 Sum(    7) =   0.0000379613
 Sum(    8) =   0.0072653008
 Sum(    9) =   0.0000885693
 Sum(   10) =   0.0002773497
 Sum(   11) =   0.0033275909
 Sum(   12) =   0.0001631396
 Sum(   13) =   0.0002970299
 Sum(   14) =   0.0000026695
 Sum(   15) =   0.0015192208
 Sum(   16) =   0.0000367050
 Sum(   17) =   0.0000702728
 Sum(   18) =   0.0000189538
 Sum(   19) =   0.0000000075
 Sum(   20) =   0.0007705787
 Sum(   21) =   0.0000099022
 Sum(   22) =   0.0000012470
 Sum(   23) =   0.0000342863
 Sum(   24) =   0.0000003236
 Sum(   25) =   0.0004108809
 Sum(   26) =   0.0000089784
 Sum(   27) =   0.0000126110
 Sum(   28) =   0.0000179052
 Sum(   29) =   0.0000020650
 Sum(   30) =   0.0000000020
 Sum(   31) =   0.0002388066
 Sum(   32) =   0.0000004072
 Sum(   33) =   0.0000007816
 Sum(   34) =   0.0000009789
 Sum(   35) =   0.0000044387
 Sum(   36) =   0.0000000433
 Sum(   37) =   0.0000000000
 Sum(   38) =   0.0001425872
 Sum(   39) =   0.0000020271
 Sum(   40) =   0.0000014402
 Sum(   41) =   0.0000012155
 Sum(   42) =   0.0000038812
 Sum(   43) =   0.0000002803
 Sum(   44) =   0.0000000004
 Sum(   45) =   0.0000898009
 Sum(   46) =   0.0000000001
 Sum(   47) =   0.0000006756
 Sum(   48) =   0.0000011639
 Sum(   49) =   0.0000010140
 Sum(   50) =   0.0000008290
 Sum(   51) =   0.0000000083
 Sum(   52) =   0.0000000000
 Sum(   53) =   0.0000578692
 Sum(   54) =   0.0000006466
 Sum(   55) =   0.0000001633
 Sum(   56) =   0.0000000021
 Sum(   57) =   0.0000000300
 Sum(   58) =   0.0000012079
 Sum(   59) =   0.0000000645
 Sum(   60) =   0.0000000001
 Sum(   61) =   0.0000000000
 Total      =   0.9998671609
 Orbital     3 of  A1G   1 symmetry
     Normalization coefficient =   1.00006643

 Normalization integral
 Sum(    1) =   0.9110596260
 Sum(    2) =   0.0341770283
 Sum(    3) =   0.0062038496
 Sum(    4) =   0.0149736279
 Sum(    5) =   0.0155686655
 Sum(    6) =   0.0067630895
 Sum(    7) =   0.0024537262
 Sum(    8) =   0.0002721906
 Sum(    9) =   0.0036202420
 Sum(   10) =   0.0000869563
 Sum(   11) =   0.0006210291
 Sum(   12) =   0.0000007690
 Sum(   13) =   0.0015387954
 Sum(   14) =   0.0002327415
 Sum(   15) =   0.0003369935
 Sum(   16) =   0.0000159803
 Sum(   17) =   0.0007867790
 Sum(   18) =   0.0000004340
 Sum(   19) =   0.0000169446
 Sum(   20) =   0.0000542277
 Sum(   21) =   0.0000001291
 Sum(   22) =   0.0004047806
 Sum(   23) =   0.0000308494
 Sum(   24) =   0.0000200828
 Sum(   25) =   0.0000537264
 Sum(   26) =   0.0000017599
 Sum(   27) =   0.0000000003
 Sum(   28) =   0.0002291820
 Sum(   29) =   0.0000020065
 Sum(   30) =   0.0000110678
 Sum(   31) =   0.0000125690
 Sum(   32) =   0.0000062249
 Sum(   33) =   0.0000000208
 Sum(   34) =   0.0001347857
 Sum(   35) =   0.0000039859
 Sum(   36) =   0.0000003952
 Sum(   37) =   0.0000001851
 Sum(   38) =   0.0000085181
 Sum(   39) =   0.0000002259
 Sum(   40) =   0.0000000001
 Sum(   41) =   0.0000826941
 Sum(   42) =   0.0000011378
 Sum(   43) =   0.0000029131
 Sum(   44) =   0.0000032127
 Sum(   45) =   0.0000044885
 Sum(   46) =   0.0000009628
 Sum(   47) =   0.0000000040
 Sum(   48) =   0.0000000000
 Sum(   49) =   0.0000532581
 Sum(   50) =   0.0000006688
 Sum(   51) =   0.0000000526
 Sum(   52) =   0.0000005495
 Sum(   53) =   0.0000002770
 Sum(   54) =   0.0000020111
 Sum(   55) =   0.0000000465
 Sum(   56) =   0.0000000000
 Sum(   57) =   0.0000348968
 Sum(   58) =   0.0000006762
 Sum(   59) =   0.0000008817
 Sum(   60) =   0.0000004573
 Sum(   61) =   0.0000005975
 Sum(   62) =   0.0000019508
 Sum(   63) =   0.0000002519
 Sum(   64) =   0.0000000012
 Sum(   65) =   0.0000000000
 Total      =   0.9998961812
 Orbital     4 of  A2U   1 symmetry
     Normalization coefficient =   1.00005191

 Normalization integral
 Sum(    1) =   0.6774835550
 Sum(    2) =   0.2500196079
 Sum(    3) =   0.0395279157
 Sum(    4) =   0.0116156980
 Sum(    5) =   0.0089383182
 Sum(    6) =   0.0027446044
 Sum(    7) =   0.0002141845
 Sum(    8) =   0.0028497165
 Sum(    9) =   0.0000882679
 Sum(   10) =   0.0024736970
 Sum(   11) =   0.0010356735
 Sum(   12) =   0.0000093051
 Sum(   13) =   0.0004320435
 Sum(   14) =   0.0004475877
 Sum(   15) =   0.0002678380
 Sum(   16) =   0.0006444501
 Sum(   17) =   0.0000940587
 Sum(   18) =   0.0000107741
 Sum(   19) =   0.0002514374
 Sum(   20) =   0.0000024249
 Sum(   21) =   0.0000333323
 Sum(   22) =   0.0000541987
 Sum(   23) =   0.0001597836
 Sum(   24) =   0.0000549994
 Sum(   25) =   0.0000008606
 Sum(   26) =   0.0000000305
 Sum(   27) =   0.0000436900
 Sum(   28) =   0.0000462379
 Sum(   29) =   0.0000516405
 Sum(   30) =   0.0000210430
 Sum(   31) =   0.0000715964
 Sum(   32) =   0.0000733774
 Sum(   33) =   0.0000079547
 Sum(   34) =   0.0000010825
 Sum(   35) =   0.0000000024
 Sum(   36) =   0.0000278759
 Sum(   37) =   0.0000033506
 Sum(   38) =   0.0000000084
 Sum(   39) =   0.0000189123
 Sum(   40) =   0.0000012285
 Sum(   41) =   0.0000241722
 Sum(   42) =   0.0000184639
 Sum(   43) =   0.0000057530
 Sum(   44) =   0.0000001182
 Sum(   45) =   0.0000000072
 Sum(   46) =   0.0000097894
 Sum(   47) =   0.0000054769
 Sum(   48) =   0.0000078465
 Sum(   49) =   0.0000001453
 Sum(   50) =   0.0000065357
 Sum(   51) =   0.0000000102
 Sum(   52) =   0.0000138693
 Sum(   53) =   0.0000097537
 Sum(   54) =   0.0000008986
 Sum(   55) =   0.0000001352
 Sum(   56) =   0.0000000007
 Sum(   57) =   0.0000000000
 Sum(   58) =   0.0000051013
 Sum(   59) =   0.0000013870
 Sum(   60) =   0.0000004052
 Sum(   61) =   0.0000035207
 Sum(   62) =   0.0000023948
 Sum(   63) =   0.0000034697
 Sum(   64) =   0.0000023062
 Sum(   65) =   0.0000059525
 Sum(   66) =   0.0000024341
 Sum(   67) =   0.0000007139
 Sum(   68) =   0.0000000173
 Sum(   69) =   0.0000000014
 Sum(   70) =   0.0000000000
 Sum(   71) =   0.0000026355
 Sum(   72) =   0.0000007259
 Sum(   73) =   0.0000012627
 Sum(   74) =   0.0000001256
 Sum(   75) =   0.0000002724
 Sum(   76) =   0.0000008872
 Sum(   77) =   0.0000002608
 Sum(   78) =   0.0000006710
 Sum(   79) =   0.0000029333
 Sum(   80) =   0.0000016564
 Sum(   81) =   0.0000001377
 Sum(   82) =   0.0000000222
 Sum(   83) =   0.0000000002
 Sum(   84) =   0.0000000000
 Sum(   85) =   0.0000009129
 Sum(   86) =   0.0000006260
 Sum(   87) =   0.0000003713
 Sum(   88) =   0.0000007764
 Sum(   89) =   0.0000009977
 Sum(   90) =   0.0000002806
 Sum(   91) =   0.0000011823
 Sum(   92) =   0.0000003370
 Sum(   93) =   0.0000013401
 Sum(   94) =   0.0000018148
 Sum(   95) =   0.0000005093
 Sum(   96) =   0.0000001434
 Sum(   97) =   0.0000000039
 Sum(   98) =   0.0000000004
 Sum(   99) =   0.0000000000
 Sum(  100) =   0.0000000000
 Sum(  101) =   0.0000007469
 Sum(  102) =   0.0000001194
 Sum(  103) =   0.0000002699
 Sum(  104) =   0.0000002091
 Sum(  105) =   0.0000000034
 Sum(  106) =   0.0000006057
 Sum(  107) =   0.0000001136
 Sum(  108) =   0.0000007480
 Sum(  109) =   0.0000000224
 Sum(  110) =   0.0000006759
 Sum(  111) =   0.0000009471
 Sum(  112) =   0.0000004624
 Sum(  113) =   0.0000000358
 Sum(  114) =   0.0000000060
 Sum(  115) =   0.0000000001
 Sum(  116) =   0.0000000000
 Sum(  117) =   0.0000000000
 Total      =   0.9999788971
 Orbital     5 of  EU    1 symmetry
     Normalization coefficient =   1.00001055

 Normalization integral
 Sum(    1) =   0.5844133548
 Sum(    2) =   0.3677431489
 Sum(    3) =   0.0257882112
 Sum(    4) =   0.0098007461
 Sum(    5) =   0.0048517645
 Sum(    6) =   0.0044011998
 Sum(    7) =   0.0000359249
 Sum(    8) =   0.0014494802
 Sum(    9) =   0.0000782140
 Sum(   10) =   0.0002449228
 Sum(   11) =   0.0004038939
 Sum(   12) =   0.0001429455
 Sum(   13) =   0.0002602623
 Sum(   14) =   0.0000023390
 Sum(   15) =   0.0000975446
 Sum(   16) =   0.0000321466
 Sum(   17) =   0.0000615456
 Sum(   18) =   0.0000165999
 Sum(   19) =   0.0000000066
 Sum(   20) =   0.0000447195
 Sum(   21) =   0.0000086723
 Sum(   22) =   0.0000010922
 Sum(   23) =   0.0000300278
 Sum(   24) =   0.0000002834
 Sum(   25) =   0.0000152359
 Sum(   26) =   0.0000078632
 Sum(   27) =   0.0000110446
 Sum(   28) =   0.0000156813
 Sum(   29) =   0.0000018085
 Sum(   30) =   0.0000000017
 Sum(   31) =   0.0000096204
 Sum(   32) =   0.0000003567
 Sum(   33) =   0.0000006845
 Sum(   34) =   0.0000008573
 Sum(   35) =   0.0000038874
 Sum(   36) =   0.0000000379
 Sum(   37) =   0.0000000000
 Sum(   38) =   0.0000041472
 Sum(   39) =   0.0000017754
 Sum(   40) =   0.0000012613
 Sum(   41) =   0.0000010645
 Sum(   42) =   0.0000033992
 Sum(   43) =   0.0000002455
 Sum(   44) =   0.0000000004
 Sum(   45) =   0.0000027385
 Sum(   46) =   0.0000000001
 Sum(   47) =   0.0000005917
 Sum(   48) =   0.0000010193
 Sum(   49) =   0.0000008880
 Sum(   50) =   0.0000007260
 Sum(   51) =   0.0000000073
 Sum(   52) =   0.0000000000
 Sum(   53) =   0.0000013285
 Sum(   54) =   0.0000005663
 Sum(   55) =   0.0000001430
 Sum(   56) =   0.0000000019
 Sum(   57) =   0.0000000263
 Sum(   58) =   0.0000010579
 Sum(   59) =   0.0000000565
 Sum(   60) =   0.0000000001
 Sum(   61) =   0.0000000000
 Total      =   0.9999971706
 Orbital     6 of  A1G   1 symmetry
     Normalization coefficient =   1.00000141

 Normalization integral
 Sum(    1) =   0.8253501250
 Sum(    2) =   0.0427978629
 Sum(    3) =   0.0695532077
 Sum(    4) =   0.0409314369
 Sum(    5) =   0.0016011509
 Sum(    6) =   0.0053214649
 Sum(    7) =   0.0013163104
 Sum(    8) =   0.0048103368
 Sum(    9) =   0.0009715768
 Sum(   10) =   0.0013209882
 Sum(   11) =   0.0007874457
 Sum(   12) =   0.0015816282
 Sum(   13) =   0.0013897382
 Sum(   14) =   0.0000583193
 Sum(   15) =   0.0000028444
 Sum(   16) =   0.0003424672
 Sum(   17) =   0.0001858283
 Sum(   18) =   0.0000096125
 Sum(   19) =   0.0003842547
 Sum(   20) =   0.0002013350
 Sum(   21) =   0.0000416188
 Sum(   22) =   0.0000001624
 Sum(   23) =   0.0001597350
 Sum(   24) =   0.0000339686
 Sum(   25) =   0.0001046424
 Sum(   26) =   0.0000000258
 Sum(   27) =   0.0001818159
 Sum(   28) =   0.0001039396
 Sum(   29) =   0.0000045394
 Sum(   30) =   0.0000003619
 Sum(   31) =   0.0000252518
 Sum(   32) =   0.0000361393
 Sum(   33) =   0.0000176883
 Sum(   34) =   0.0000458809
 Sum(   35) =   0.0000308046
 Sum(   36) =   0.0000730015
 Sum(   37) =   0.0000196681
 Sum(   38) =   0.0000041316
 Sum(   39) =   0.0000000334
 Sum(   40) =   0.0000000009
 Sum(   41) =   0.0000259226
 Sum(   42) =   0.0000013623
 Sum(   43) =   0.0000075972
 Sum(   44) =   0.0000049610
 Sum(   45) =   0.0000028438
 Sum(   46) =   0.0000075979
 Sum(   47) =   0.0000259013
 Sum(   48) =   0.0000119259
 Sum(   49) =   0.0000005351
 Sum(   50) =   0.0000000542
 Sum(   51) =   0.0000000001
 Sum(   52) =   0.0000049838
 Sum(   53) =   0.0000068357
 Sum(   54) =   0.0000054771
 Sum(   55) =   0.0000039506
 Sum(   56) =   0.0000083671
 Sum(   57) =   0.0000024973
 Sum(   58) =   0.0000103761
 Sum(   59) =   0.0000122543
 Sum(   60) =   0.0000023103
 Sum(   61) =   0.0000004910
 Sum(   62) =   0.0000000058
 Sum(   63) =   0.0000000003
 Sum(   64) =   0.0000055686
 Sum(   65) =   0.0000000006
 Sum(   66) =   0.0000003881
 Sum(   67) =   0.0000022894
 Sum(   68) =   0.0000002402
 Sum(   69) =   0.0000037400
 Sum(   70) =   0.0000001955
 Sum(   71) =   0.0000039545
 Sum(   72) =   0.0000041433
 Sum(   73) =   0.0000016717
 Sum(   74) =   0.0000000765
 Sum(   75) =   0.0000000090
 Sum(   76) =   0.0000000000
 Sum(   77) =   0.0000000000
 Sum(   78) =   0.0000011331
 Sum(   79) =   0.0000016615
 Sum(   80) =   0.0000016736
 Sum(   81) =   0.0000002934
 Sum(   82) =   0.0000014298
 Sum(   83) =   0.0000000221
 Sum(   84) =   0.0000014248
 Sum(   85) =   0.0000000005
 Sum(   86) =   0.0000032487
 Sum(   87) =   0.0000026914
 Sum(   88) =   0.0000004047
 Sum(   89) =   0.0000000868
 Sum(   90) =   0.0000000013
 Sum(   91) =   0.0000000001
 Sum(   92) =   0.0000000000
 Sum(   93) =   0.0000013368
 Sum(   94) =   0.0000000623
 Sum(   95) =   0.0000000009
 Sum(   96) =   0.0000009988
 Sum(   97) =   0.0000005184
 Sum(   98) =   0.0000010002
 Sum(   99) =   0.0000009326
 Sum(  100) =   0.0000010949
 Sum(  101) =   0.0000006325
 Sum(  102) =   0.0000018710
 Sum(  103) =   0.0000010653
 Sum(  104) =   0.0000003930
 Sum(  105) =   0.0000000183
 Sum(  106) =   0.0000000024
 Sum(  107) =   0.0000000000
 Sum(  108) =   0.0000000000
 Total      =   0.9999938716
 Orbital     7 of  EG    1 symmetry
     Normalization coefficient =   1.00000306
 Compute final expansions Wed Aug 22 11:45:18 2001
 delt cpu =   213.2  tot cpu =   213.2  tot wall =   222.0
Wed Aug 22 11:45:18 CDT 2001
273.292u 4.477s 4:49.98 95.7% 0+0k 1+19io 0pf+0w

**********************************************************************
GetPot - compute local potential
**********************************************************************


----------------------------------------------------------------------
den - Electron density construction program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:45:18 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for angular grid cutoff information (iuanrd) =   62
 Unit for input of expanded orbitals (iuxorb) =   55
 Unit for output of density (iuden) =   56
Print flag =    0
 Compute density Wed Aug 22 11:45:50 2001
 delt cpu =    29.8  tot cpu =    29.8  tot wall =    32.0
Wed Aug 22 11:45:50 CDT 2001
27.684u 2.323s 0:31.76 94.4% 0+0k 2+6io 0pf+0w

----------------------------------------------------------------------
stpot - Compute the static potential from the density
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of static potential (iustpt) =   57
 Begining timer Wed Aug 22 11:45:50 2001
 vasymp =  0.18000000E+02 facnorm =  0.10000000E+01
 Electronic part Wed Aug 22 11:46:00 2001
 delt cpu =     9.9  tot cpu =     9.9  tot wall =    10.0
 Nuclear part Wed Aug 22 11:46:08 2001
 delt cpu =     7.3  tot cpu =    17.2  tot wall =    18.0
Wed Aug 22 11:46:08 CDT 2001
43.593u 3.681s 0:49.90 94.7% 0+0k 2+9io 0pf+0w

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:46:08 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of vcppol potential (iuvcpl) =   63
 Compute vcppol potential Wed Aug 22 11:47:27 2001
 delt cpu =    48.1  tot cpu =    48.1  tot wall =    79.0
Wed Aug 22 11:47:27 CDT 2001
86.784u 8.758s 2:09.00 74.0% 0+0k 44+13io 1249pf+0w
Wed Aug 22 11:47:28 CDT 2001
86.806u 8.816s 2:09.86 73.6% 0+0k 85+13io 1276pf+0w

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:47:29 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.35000000E+00  AU
 Do E =  0.30000000E+02 eV (  0.11024793E+01 AU)
 Compute fege potential Wed Aug 22 11:48:49 2001
 delt cpu =    51.2  tot cpu =    51.2  tot wall =    80.0
Wed Aug 22 11:48:50 CDT 2001
46.523u 5.007s 1:21.68 63.0% 0+0k 759+5io 730pf+0w
Wed Aug 22 11:48:50 CDT 2001
46.526u 5.020s 1:21.72 63.0% 0+0k 760+5io 732pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Wed Aug 22 11:48:51 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =   64
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =EU
Form of the Green's function to use (iGrnType) =     0
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    38
Number of points per region =    35
Number of partial waves (np) =   117
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
 Number of orthogonality constraints (NOrthUse) =    0

 Maximum l used in usual function (lmaxa) =   25
 Maximum m used in usual function (mmaxa) =   25
 Maxamum l used in expanding static potential (lpotct) =   50
 Maximum l used in exapnding the exchange potential (lmaxab) =   50
 Maximum m used potentials (mmaxab) =   50
 Higest l included in the expansion of the wave function (lnp) =   25
 Higest l included in the K matrix (lna) =    9
 Highest l used at large r (lpasym) =   15
 Higest l used in the asymptotic potential (lpzb) =   30

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       64       64    0.010341    0.661793
     2       40      104    0.010341    1.075414
     3        8      112    0.009832    1.154070
     4        8      120    0.007777    1.216287
     5        8      128    0.006149    1.265481
     6        8      136    0.004862    1.304378
     7        8      144    0.003844    1.335133
     8        8      152    0.003040    1.359451
     9        8      160    0.002403    1.378678
    10        8      168    0.001900    1.393881
    11        8      176    0.001503    1.405902
    12        8      184    0.001188    1.415407
    13        8      192    0.000939    1.422922
    14        8      200    0.000743    1.428864
    15        8      208    0.000587    1.433562
    16        8      216    0.000464    1.437277
    17        8      224    0.000367    1.440214
    18        8      232    0.000290    1.442537
    19        8      240    0.000230    1.444373
    20        8      248    0.000181    1.445825
    21       32      280    0.000162    1.451010
    22        8      288    0.000038    1.451310
    23       32      320    0.000162    1.456495
    24        8      328    0.000173    1.457877
    25        8      336    0.000219    1.459629
    26        8      344    0.000277    1.461847
    27        8      352    0.000351    1.464657
    28        8      360    0.000445    1.468216
    29        8      368    0.000564    1.472724
    30        8      376    0.000714    1.478434
    31        8      384    0.000904    1.485668
    32        8      392    0.001145    1.494830
    33        8      400    0.001451    1.506435
    34        8      408    0.001837    1.521135
    35        8      416    0.002327    1.539755
    36        8      424    0.002948    1.563340
    37        8      432    0.003734    1.593215
    38        8      440    0.004730    1.631056
    39        8      448    0.005992    1.678989
    40        8      456    0.007589    1.739703
    41        8      464    0.009613    1.816608
    42       64      528    0.010341    2.478401
    43        8      536    0.010341    2.561125
    44        8      544    0.010068    2.641669
    45        8      552    0.007960    2.705347
    46        8      560    0.006294    2.755696
    47        8      568    0.004976    2.795506
    48        8      576    0.003935    2.826984
    49        8      584    0.003111    2.851872
    50        8      592    0.002460    2.871551
    51       24      616    0.002403    2.929225
    52        8      624    0.002083    2.945888
    53       32      656    0.002403    3.022787
    54        8      664    0.002563    3.043293
    55        8      672    0.003247    3.069268
    56        8      680    0.004113    3.102169
    57        8      688    0.005209    3.143844
    58        8      696    0.006599    3.196633
    59        8      704    0.008358    3.263498
    60        8      712    0.010587    3.348194
    61       64      776    0.012467    4.146066
    62       64      840    0.012467    4.943938
    63       64      904    0.012467    5.741811
    64       64      968    0.012467    6.539683
    65       64     1032    0.012467    7.337555
    66       64     1096    0.012467    8.135428
    67       64     1160    0.012467    8.933300
    68       64     1224    0.012467    9.731172
    69       56     1280    0.012467   10.429310
    70        8     1288    0.008836   10.500000

 Energy independent setup Wed Aug 22 11:51:43 2001
 delt cpu =    56.0  tot cpu =    56.0  tot wall =   172.0

 Compute solution for E =   30.0000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.89552153E+01
 i =  2  lval =   3  stpote =  0.27387920E+00
 i =  3  lval =   3  stpote = -0.14950567E-12
 i =  4  lval =   3  stpote = -0.30084935E-04
Asymptotic region to R =        51.2611  in     17 regions
Iter =   1 c.s. =      4.81117717 (a.u)  rmsk=     1.00924877
Iter =   2 c.s. =      3.35714359 (a.u)  rmsk=     2.75729632
Iter =   3 c.s. =      5.07751062 (a.u)  rmsk=     0.16909385
Iter =   4 c.s. =      5.11566369 (a.u)  rmsk=     0.00573576
Iter =   5 c.s. =      5.11543995 (a.u)  rmsk=     0.00008659
Iter =   6 c.s. =      5.11546678 (a.u)  rmsk=     0.00000824
Iter =   7 c.s. =      5.11546678 (a.u)  rmsk=     0.00000000
Iter =   8 c.s. =      5.11546678 (a.u)  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.33954318E+01 0.39943109E+01-0.53667700E+01-0.11340945E+00-0.13288784E+01
  0.58329941E+00 0.10590282E+00-0.93626956E-01-0.22024576E-01 0.10542418E+00
  0.48385836E-01-0.76217973E-02-0.18627587E-02 0.15644555E-02 0.48220476E-02
  0.36941259E-02-0.16663625E-02-0.60184294E-04
     ROW  2
  0.39943112E+01-0.16182907E+02 0.13659958E+02-0.76672182E+00 0.34115966E+01
 -0.12463576E+01-0.24149336E+00 0.14583494E+00 0.93937767E-01-0.19639220E+00
 -0.10610026E+00 0.15938202E-01 0.12383322E-02 0.18449557E-05-0.79169092E-02
 -0.71873650E-02 0.27863765E-02 0.30154518E-03
     ROW  3
 -0.53667702E+01 0.13659958E+02-0.10488715E+02 0.63298547E+00-0.27512148E+01
  0.11771846E+01 0.18029873E+00-0.13650207E+00-0.70710015E-01 0.19341610E+00
  0.86860240E-01-0.15363141E-01-0.14891568E-02 0.73147152E-03 0.81426037E-02
  0.59416819E-02-0.29192957E-02-0.33465610E-03
     ROW  4
 -0.11340942E+00-0.76672186E+00 0.63298551E+00 0.23527081E+00 0.11885616E+00
 -0.97722288E-01-0.14703410E-01 0.20389977E-01-0.14195181E-01-0.13792040E-01
 -0.75502405E-02 0.14486609E-02-0.67355062E-03-0.37850328E-03 0.50632113E-03
 -0.36770763E-03 0.51843989E-03-0.35732008E-04
     ROW  5
 -0.13288784E+01 0.34115966E+01-0.27512148E+01 0.11885615E+00-0.42365220E+00
  0.30071996E+00 0.60354620E-01-0.20752740E-01 0.16130999E-02 0.45143276E-01
  0.14688115E-01-0.40259961E-02 0.51332055E-03-0.43225083E-03 0.14855919E-02
 -0.18072024E-03-0.73525697E-03-0.59361405E-04
     ROW  6
  0.58329942E+00-0.12463576E+01 0.11771846E+01-0.97722284E-01 0.30071996E+00
  0.11019823E+00-0.20497359E-01 0.11432876E-01 0.10374769E-01 0.86921297E-02
 -0.89290412E-02-0.65886126E-02 0.66362309E-03-0.11094179E-04-0.18653816E-03
 -0.65070153E-03-0.84448464E-03 0.32498623E-04
     ROW  7
  0.10590282E+00-0.24149336E+00 0.18029873E+00-0.14703409E-01 0.60354619E-01
 -0.20497359E-01 0.12158749E+00 0.25696517E-02 0.36183352E-02-0.34668116E-02
  0.14310239E-01 0.26346349E-03 0.10826963E-03-0.20489296E-04-0.16817559E-03
  0.57840076E-03 0.48044546E-04 0.15265613E-03
     ROW  8
 -0.93626959E-01 0.14583495E+00-0.13650207E+00 0.20389977E-01-0.20752740E-01
  0.11432876E-01 0.25696517E-02 0.86484465E-01-0.36981715E-02-0.80803542E-02
  0.69845486E-03-0.11987332E-03 0.33810560E-02-0.37901769E-02-0.23947303E-02
 -0.14190034E-03-0.44900138E-04 0.10257383E-04
     ROW  9
 -0.22024578E-01 0.93937769E-01-0.70710017E-01-0.14195181E-01 0.16130994E-02
  0.10374769E-01 0.36183352E-02-0.36981715E-02 0.89748464E-01 0.19538791E-02
  0.96213585E-02-0.15651709E-03 0.34139160E-02 0.40973672E-02-0.74219757E-04
  0.86506814E-03-0.62705842E-04 0.23373983E-04
     ROW 10
  0.10542419E+00-0.19639221E+00 0.19341611E+00-0.13792039E-01 0.45143277E-01
  0.86921291E-02-0.34668116E-02-0.80803542E-02 0.19538791E-02 0.90944207E-01
 -0.13007603E-02 0.26380523E-02 0.16282127E-02 0.81490432E-04 0.62246850E-02
 -0.39539442E-04-0.26115993E-02 0.49817557E-05
     ROW 11
  0.48385839E-01-0.10610027E+00 0.86860245E-01-0.75502403E-02 0.14688116E-01
 -0.89290416E-02 0.14310239E-01 0.69845489E-03 0.96213585E-02-0.13007603E-02
  0.87949799E-01 0.11932126E-03 0.55366747E-04-0.73364282E-03-0.78687119E-04
  0.70860108E-02 0.23298876E-04 0.32400585E-02
     ROW 12
 -0.76217974E-02 0.15938202E-01-0.15363141E-01 0.14486609E-02-0.40259961E-02
 -0.65886125E-02 0.26346348E-03-0.11987332E-03-0.15651709E-03 0.26380523E-02
  0.11932126E-03 0.58092801E-01-0.56587109E-04 0.12120951E-04-0.17973328E-03
  0.82231595E-05 0.53865186E-02-0.98208644E-06
     ROW 13
 -0.18627588E-02 0.12383324E-02-0.14891570E-02-0.67355061E-03 0.51332050E-03
  0.66362311E-03 0.10826963E-03 0.33810560E-02 0.34139160E-02 0.16282127E-02
  0.55366748E-04-0.56587110E-04 0.37466555E-01-0.67291841E-03-0.27518105E-02
  0.65620903E-04 0.34721761E-04 0.41772283E-05
     ROW 14
  0.15644556E-02 0.18444613E-05 0.73147197E-03-0.37850328E-03-0.43225072E-03
 -0.11094225E-04-0.20489304E-04-0.37901769E-02 0.40973672E-02 0.81490425E-04
 -0.73364283E-03 0.12120952E-04-0.67291841E-03 0.37941362E-01 0.61001466E-04
  0.31550821E-02 0.26302586E-05 0.24694418E-04
     ROW 15
  0.48220479E-02-0.79169097E-02 0.81426041E-02 0.50632114E-03 0.14855919E-02
 -0.18653821E-03-0.16817560E-03-0.23947302E-02-0.74219757E-04 0.62246850E-02
 -0.78687119E-04-0.17973328E-03-0.27518105E-02 0.61001466E-04 0.39095600E-01
  0.94263228E-05 0.25169604E-02 0.10209277E-05
     ROW 16
  0.36941262E-02-0.71873656E-02 0.59416826E-02-0.36770763E-03-0.18072008E-03
 -0.65070160E-03 0.57840075E-03-0.14190033E-03 0.86506814E-03-0.39539450E-04
  0.70860108E-02 0.82231603E-05 0.65620903E-04 0.31550821E-02 0.94263225E-05
  0.39175908E-01 0.13515993E-05-0.17187154E-02
     ROW 17
 -0.16663625E-02 0.27863767E-02-0.29192958E-02 0.51843988E-03-0.73525699E-03
 -0.84448462E-03 0.48044548E-04-0.44900139E-04-0.62705841E-04-0.26115993E-02
  0.23298876E-04 0.53865186E-02 0.34721761E-04 0.26302585E-05 0.25169604E-02
  0.13515992E-05 0.36099875E-01-0.72452760E-06
     ROW 18
 -0.60184277E-04 0.30154509E-03-0.33465601E-03-0.35732011E-04-0.59361385E-04
  0.32498616E-04 0.15265612E-03 0.10257384E-04 0.23373983E-04 0.49817544E-05
  0.32400585E-02-0.98208634E-06 0.41772283E-05 0.24694418E-04 0.10209277E-05
 -0.17187154E-02-0.72452758E-06 0.32152080E-01
 eigenphases
 -0.1537261E+01 -0.1204180E+01  0.3106588E-01  0.3250332E-01  0.3493003E-01
  0.3627137E-01  0.4108394E-01  0.4136745E-01  0.5854971E-01  0.7552337E-01
  0.7877484E-01  0.9278385E-01  0.9803863E-01  0.1298011E+00  0.1888426E+00
  0.2636062E+00  0.3305145E+00  0.9725702E+00
 eigenphase sum-0.235214E+00  scattering length=   0.16139
 eps+pi 0.290638E+01  eps+2*pi 0.604797E+01

Iter =   8 c.s. =      5.11546678 (a.u)  rmsk=     0.00000000
 End of this energy Wed Aug 22 14:26:51 2001
 delt cpu =  7186.8  tot cpu =  7242.8  tot wall =  9480.0
Wed Aug 22 14:26:51 CDT 2001
6899.382u 395.366s 2:39:23.26 76.2% 0+0k 263656+5692io 838pf+0w
Wed Aug 22 14:26:52 CDT 2001
7364.180u 410.521s 2:48:15.18 77.0% 0+0k 263789+5819io 2144pf+0w