/scratch2/people/lucchese/polyangd/tests/test20.job
test20 - C6H6, CADPAC output, polarization potential
Thu Jan 25 21:39:22 CST 2001
0.065u 0.058s 0:00.48 22.9% 0+0k 32+0io 0pf+0w

**********************************************************************
SetUp - set up command scripts
**********************************************************************

wrkdir = tst127779
Moving to /scratch2/lucchese/tst127779

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp  'D6h'  # point group to use
 DoSym  'no'   # compute the blms
 LMax   25     # maximum l to be used for wave functions
 LMaxI  50     # maximum l value used to determine numerical angular grids
 LMaxA  15     # maximum l included at large r
 LMax2  50     # maximum l to be used for potentials
 PrintFlag 0   # no extra printing
 MMax   -1     # maximum m to use (-1 means use LMax)
 MMaxI  -1     # maximum m to use in angular integrations (-1 means us LMaxI)
 ECenter  0.0 0.0 0.0 # center for exapnding about
 RMax   10.5    # maximum R in inner grid
 EMax  60.0    # EMax, maximum asymptotic energy in eV
  EngForm  0 0 # Energy formulas
  PCutRd  1.0e-8  # cutoff factor used in the radial grids
  VCorr 'PZ'
  AsyPol
 0.25  # SwitchD, distance where switching function is down to 0.1
 6     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 2     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 3     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 4     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 5     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 6     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
 End
 ScatEng 1 30.0      # list of scattering energies
 FegeEng 0.34   # Energy correction used in the fege potential
 ScatContSym 'A1G'  # Scattering symmetry
 LMaxK   10    # Maximum l in the K matirx
 IterMax  15    # Maximum Number of iterations
 GrnType  0     # type of Green function (0 -> K matrix, 1 -> T matrix)
 CnvgKMat 1.0e-6 # Convergence of the K matrix
 NIntReg  40    # Number of integration regions, number needed is controlled
                # by the instability in the integrator
 LMaxEx   -1    # -1 implies all terms (2*LMax) alternatively one can use just
                # LMax to save computer time

**********************************************************************
Convert - Convert file /scratch2/people/lucchese/polyangd/tests/test20.cad
          using the cad conversion program
**********************************************************************


----------------------------------------------------------------------
cadcnv - CADPAC conversion program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:39:23 2001
 Unit which contains output from CADPAC V5.2 (iuin) =   50
 Output unit for geometry information (iugeom) =   51
 Output unit for orbital information (iuorb) =   82
 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
 Convert CADPAC output Thu Jan 25 21:39:23 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0
Thu Jan 25 21:39:23 CST 2001
0.136u 0.113s 0:00.37 64.8% 0+0k 10+2io 2pf+0w

**********************************************************************
GetBlms - Compute blms for point group D6h
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:39:24 2001
 lmax =   50
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        351       1  1  1  1  1  1  1
 B1G       1         2        325       1 -1 -1  1  1 -1 -1
 B2G       1         3        325      -1  1 -1  1 -1  1 -1
 B3G       1         4        325      -1 -1  1  1 -1 -1  1
 AU        1         5        300       1  1  1 -1 -1 -1 -1
 B1U       1         6        325       1 -1 -1 -1 -1  1  1
 B2U       1         7        325      -1  1 -1 -1  1 -1  1
 B3U       1         8        325      -1 -1  1 -1  1  1 -1
 Generate blms Thu Jan 25 21:39:24 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:39:24 2001
 lmax =   25
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1         35       1  1  1  1  1  1  1
 A2G       1         2         22       1 -1 -1  1  1 -1 -1
 B1G       1         3         26      -1 -1  1  1 -1 -1  1
 B2G       1         4         26      -1  1 -1  1 -1  1 -1
 E1G       1         5         52      -1 -1  1  1 -1 -1  1
 E1G       2         6         52      -1  1 -1  1 -1  1 -1
 E2G       1         7         56       1 -1 -1  1  1 -1 -1
 E2G       2         8         56       1  1  1  1  1  1  1
 A1U       1         9         22       1  1  1 -1 -1 -1 -1
 A2U       1        10         35       1 -1 -1 -1 -1  1  1
 B1U       1        11         30      -1 -1  1 -1  1  1 -1
 B2U       1        12         30      -1  1 -1 -1  1 -1  1
 E1U       1        13         61      -1 -1  1 -1  1  1 -1
 E1U       2        14         61      -1  1 -1 -1  1 -1  1
 E2U       1        15         56       1 -1 -1 -1 -1  1  1
 E2U       2        16         56       1  1  1 -1 -1 -1 -1
 Generate blms Thu Jan 25 21:39:24 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0

----------------------------------------------------------------------
GetIRep - compute matrix representation of the symmetry operations
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:39:24 2001
input unit for the blms (iuin) =   40
 iumatrep (unit for output of matrix representation of the group   43
 iprnfg =    0
 representation form (rtype) = real
 The representation is expected to be real
 Symmetry Information
 Number of symmetry operations =    24
 symmetry operations
   1   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00
   2   0.000000E+00   0.000000E+00   0.100000E+01   0.600000E+02   0.200000E+01
   3   0.000000E+00   0.000000E+00   0.100000E+01   0.300000E+03   0.200000E+01
   4   0.000000E+00   0.000000E+00   0.100000E+01   0.120000E+03   0.200000E+01
   5   0.000000E+00   0.000000E+00   0.100000E+01   0.240000E+03   0.200000E+01
   6   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
   7   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.200000E+01
   8  -0.100000E+01   0.173205E+01   0.000000E+00   0.180000E+03   0.200000E+01
   9  -0.100000E+01  -0.173205E+01   0.000000E+00   0.180000E+03   0.200000E+01
  10   0.000000E+00   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  11   0.173205E+01  -0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  12  -0.173205E+01  -0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  13   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.300000E+01
  14   0.000000E+00   0.000000E+00   0.100000E+01   0.120000E+03   0.300000E+01
  15   0.000000E+00   0.000000E+00   0.100000E+01   0.240000E+03   0.300000E+01
  16   0.000000E+00   0.000000E+00   0.100000E+01   0.600000E+02   0.300000E+01
  17   0.000000E+00   0.000000E+00   0.100000E+01   0.300000E+03   0.300000E+01
  18   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.100000E+01
  19   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.100000E+01
  20  -0.100000E+01   0.173205E+01   0.000000E+00   0.000000E+00   0.100000E+01
  21  -0.100000E+01  -0.173205E+01   0.000000E+00   0.000000E+00   0.100000E+01
  22   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  23   0.173205E+01  -0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  24  -0.173205E+01  -0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
     REAL PART - character table (ctab) matrix
     ROW  1
  0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01
  0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01
  0.10000000E+01 0.10000000E+01
     ROW  2
  0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01-0.10000000E+01
 -0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01
 -0.10000000E+01-0.10000000E+01
     ROW  3
  0.10000000E+01-0.10000000E+01 0.10000000E+01-0.10000000E+01 0.10000000E+01
 -0.10000000E+01 0.10000000E+01-0.10000000E+01 0.10000000E+01-0.10000000E+01
  0.10000000E+01-0.10000000E+01
     ROW  4
  0.10000000E+01-0.10000000E+01 0.10000000E+01-0.10000000E+01-0.10000000E+01
  0.10000000E+01 0.10000000E+01-0.10000000E+01 0.10000000E+01-0.10000000E+01
 -0.10000000E+01 0.10000000E+01
     ROW  5
  0.20000000E+01 0.10000000E+01-0.10000000E+01-0.20000000E+01 0.00000000E+00
  0.00000000E+00 0.20000000E+01 0.10000000E+01-0.10000000E+01-0.20000000E+01
  0.00000000E+00 0.00000000E+00
     ROW  6
  0.20000000E+01-0.10000000E+01-0.10000000E+01 0.20000000E+01 0.00000000E+00
  0.00000000E+00 0.20000000E+01-0.10000000E+01-0.10000000E+01 0.20000000E+01
  0.00000000E+00 0.00000000E+00
     ROW  7
  0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01
  0.10000000E+01-0.10000000E+01-0.10000000E+01-0.10000000E+01-0.10000000E+01
 -0.10000000E+01-0.10000000E+01
     ROW  8
  0.10000000E+01 0.10000000E+01 0.10000000E+01 0.10000000E+01-0.10000000E+01
 -0.10000000E+01-0.10000000E+01-0.10000000E+01-0.10000000E+01-0.10000000E+01
  0.10000000E+01 0.10000000E+01
     ROW  9
  0.10000000E+01-0.10000000E+01 0.10000000E+01-0.10000000E+01 0.10000000E+01
 -0.10000000E+01-0.10000000E+01 0.10000000E+01-0.10000000E+01 0.10000000E+01
 -0.10000000E+01 0.10000000E+01
     ROW 10
  0.10000000E+01-0.10000000E+01 0.10000000E+01-0.10000000E+01-0.10000000E+01
  0.10000000E+01-0.10000000E+01 0.10000000E+01-0.10000000E+01 0.10000000E+01
  0.10000000E+01-0.10000000E+01
     ROW 11
  0.20000000E+01 0.10000000E+01-0.10000000E+01-0.20000000E+01 0.00000000E+00
  0.00000000E+00-0.20000000E+01-0.10000000E+01 0.10000000E+01 0.20000000E+01
  0.00000000E+00 0.00000000E+00
     ROW 12
  0.20000000E+01-0.10000000E+01-0.10000000E+01 0.20000000E+01 0.00000000E+00
  0.00000000E+00-0.20000000E+01 0.10000000E+01 0.10000000E+01-0.20000000E+01
  0.00000000E+00 0.00000000E+00
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    E1G   (  2)
    E2G   (  2)    A1U   (  1)    A2U   (  1)    B1U   (  1)    B2U   (  1)
    E1U   (  2)    E2U   (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     6    10     7    13    18    22    19
 Generate blms Thu Jan 25 21:39:25 2001
 delt cpu =     0.4  tot cpu =     0.4  tot wall =     1.0
Thu Jan 25 21:39:25 CST 2001
0.701u 0.273s 0:01.44 67.3% 0+0k 60+7io 14pf+0w

**********************************************************************
ExpOrb - create grid and expand orbitals
**********************************************************************

Thu Jan 25 21:39:25 CST 2001
0.082u 0.077s 0:00.23 65.2% 0+0k 6+0io 2pf+0w

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Unit for geometry information (iUGeom) =   51
Unit fo basis function and orbital coefficients (iUOrb) =   82
Unit for the generated grid (iUGrd) =   54
Maximum R in the grid (RMax) =    10.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  60.00000 eV

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     2.63995  Alpha Max = 0.45632E+04
    3  Center at =     4.68841  Alpha Max = 0.33865E+02

Generated Grid

  irg  nin  ntot      step          R end
    1   64    64    0.10341E-01     0.66179
    2   64   128    0.10341E-01     1.32359
    3   64   192    0.10341E-01     1.98538
    4   32   224    0.10341E-01     2.31628
    5    8   232    0.84687E-02     2.38403
    6    8   240    0.66960E-02     2.43759
    7    8   248    0.52945E-02     2.47995
    8    8   256    0.41862E-02     2.51344
    9    8   264    0.33100E-02     2.53992
   10    8   272    0.26172E-02     2.56086
   11    8   280    0.20693E-02     2.57741
   12    8   288    0.16362E-02     2.59050
   13    8   296    0.12937E-02     2.60085
   14    8   304    0.10229E-02     2.60903
   15    8   312    0.80881E-03     2.61551
   16    8   320    0.63951E-03     2.62062
   17    8   328    0.50565E-03     2.62467
   18    8   336    0.39981E-03     2.62786
   19    8   344    0.31612E-03     2.63039
   20    8   352    0.24995E-03     2.63239
   21    8   360    0.19763E-03     2.63397
   22    8   368    0.15627E-03     2.63522
   23   24   392    0.15604E-03     2.63897
   24    8   400    0.12217E-03     2.63995
   25   32   432    0.15604E-03     2.64494
   26    8   440    0.16645E-03     2.64627
   27    8   448    0.21083E-03     2.64796
   28    8   456    0.26705E-03     2.65010
   29    8   464    0.33827E-03     2.65280
   30    8   472    0.42847E-03     2.65623
   31    8   480    0.54273E-03     2.66057
   32    8   488    0.68746E-03     2.66607
   33    8   496    0.87078E-03     2.67304
   34    8   504    0.11030E-02     2.68186
   35    8   512    0.13971E-02     2.69304
   36    8   520    0.17697E-02     2.70719
   37    8   528    0.22416E-02     2.72513
   38    8   536    0.28393E-02     2.74784
   39    8   544    0.35965E-02     2.77661
   40    8   552    0.45556E-02     2.81306
   41    8   560    0.57704E-02     2.85922
   42    8   568    0.73092E-02     2.91770
   43    8   576    0.92583E-02     2.99176
   44   64   640    0.10341E-01     3.65356
   45   64   704    0.10341E-01     4.31535
   46    8   712    0.97627E-02     4.39345
   47    8   720    0.77175E-02     4.45519
   48    8   728    0.61021E-02     4.50401
   49    8   736    0.48248E-02     4.54261
   50    8   744    0.38149E-02     4.57312
   51    8   752    0.30164E-02     4.59726
   52    8   760    0.23850E-02     4.61634
   53    8   768    0.18858E-02     4.63142
   54   24   792    0.18114E-02     4.67489
   55    8   800    0.16894E-02     4.68841
   56   32   832    0.18114E-02     4.74637
   57    8   840    0.19321E-02     4.76183
   58    8   848    0.24473E-02     4.78141
   59    8   856    0.31000E-02     4.80621
   60    8   864    0.39266E-02     4.83762
   61    8   872    0.49737E-02     4.87741
   62    8   880    0.63000E-02     4.92781
   63    8   888    0.79801E-02     4.99165
   64    8   896    0.10108E-01     5.07252
   65   64   960    0.12467E-01     5.87039
   66   64  1024    0.12467E-01     6.66826
   67   64  1088    0.12467E-01     7.46613
   68   64  1152    0.12467E-01     8.26401
   69   64  1216    0.12467E-01     9.06188
   70   64  1280    0.12467E-01     9.85975
   71   48  1328    0.12467E-01    10.45815
   72    8  1336    0.52307E-02    10.50000

----------------------------------------------------------------------
anggct - Program to generate angular functions
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:39:26 2001
Maximum scattering l (lmaxs) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Minimum l to include in the asymptotic region (lmasym) =   15
Parameter used to determine the cutoff points (pcutar) =  0.10000000E-07
Input unit for full symmetry blms (iuins) =   40
Input unit for abelian sub-group blms (iuini) =   42
Unit for geometry information (iugeom) =   51
Unit for radial grid information (iugrd) =   54
Output unit for angular grid and functions (iuang) =   41
Output unit for angular grid cutoffs (iuanrd) =   62
Print flag (iprnfg) =    0
 Actual value of lmasym found =     19
Number of regions of the same l expansion (NAngReg) =   21
 Point group from iuins is D6h
 From iuins nthd =    2  nphid =    4  nabop =    7

 Number of radial functions in full symmetry
   1 Symmetry type A1G   1  Number of radial functions =     35
   2 Symmetry type A2G   1  Number of radial functions =     22
   3 Symmetry type B1G   1  Number of radial functions =     26
   4 Symmetry type B2G   1  Number of radial functions =     26
   5 Symmetry type E1G   1  Number of radial functions =     52
   6 Symmetry type E1G   2  Number of radial functions =     52
   7 Symmetry type E2G   1  Number of radial functions =     56
   8 Symmetry type E2G   2  Number of radial functions =     56
   9 Symmetry type A1U   1  Number of radial functions =     22
  10 Symmetry type A2U   1  Number of radial functions =     35
  11 Symmetry type B1U   1  Number of radial functions =     30
  12 Symmetry type B2U   1  Number of radial functions =     30
  13 Symmetry type E1U   1  Number of radial functions =     61
  14 Symmetry type E1U   2  Number of radial functions =     61
  15 Symmetry type E2U   1  Number of radial functions =     56
  16 Symmetry type E2U   2  Number of radial functions =     56

 Number of radial functions in abelian subgroup
   1 Symmetry type AG    1  Number of radial functions =    351
   2 Symmetry type B1G   1  Number of radial functions =    325
   3 Symmetry type B2G   1  Number of radial functions =    325
   4 Symmetry type B3G   1  Number of radial functions =    325
   5 Symmetry type AU    1  Number of radial functions =    300
   6 Symmetry type B1U   1  Number of radial functions =    325
   7 Symmetry type B2U   1  Number of radial functions =    325
   8 Symmetry type B3U   1  Number of radial functions =    325

 For analytic integrations ntheta =     28  nphi =     26
 For numerical integrations ntheti =     52 nphii =     51

 Maximum parameters needed
 Parameter         Value  Value Needed
     maxlm           120            61
    maxlma           680           351
    maxlmh           400            91
    maxthe            58            28
    maxphi           110            26
    maxthi           112            52
    maxpii           220            51
    maxfun          2601           676
    maxfub         10201          2601
 Define angular grid Thu Jan 25 21:39:52 2001
 delt cpu =    25.1  tot cpu =    25.1  tot wall =    26.0
24.095u 1.280s 0:26.63 95.2% 0+0k 24+6io 9pf+0w

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =  -82
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Output file for rotated and typed orbitals (iUOrbSym) =   52
 Begining timer Thu Jan 25 21:39:52 2001

 R of maximum density
     1  A1G   1 at max irg =   53  r =   2.64369
     2  E1U   1 at max irg =   53  r =   2.64369
     3  E1U   2 at max irg =   53  r =   2.64369
     4  E2G   1 at max irg =   53  r =   2.64369
     5  E2G   2 at max irg =   53  r =   2.64369
     6  B2U   1 at max irg =   53  r =   2.64369
     7  A1G   1 at max irg =   48  r =   2.63772
     8  E1U   1 at max irg =   57  r =   2.65010
     9  E1U   2 at max irg =   57  r =   2.65010
    10  E2G   1 at max irg =   75  r =   3.23993
    11  E2G   2 at max irg =   75  r =   3.23993
    12  A1G   1 at max irg =   87  r =   4.23262
    13  B2U   1 at max irg =   86  r =   4.14990
    14  B1U   1 at max irg =   68  r =   2.77661
    15  E1U   1 at max irg =   25  r =   2.06810
    16  E1U   2 at max irg =   25  r =   2.06810
    17  A2U   1 at max irg =   68  r =   2.77661
    18  E2G   1 at max irg =   34  r =   2.56086
    19  E2G   2 at max irg =   34  r =   2.56086
    20  E1G   1 at max irg =   69  r =   2.81306
    21  E1G   2 at max irg =   69  r =   2.81306

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 E1U   1
     2 -0.8058910233    3 -0.5920638973

Rotation coefficients for orbital     3  grp =    2 E1U   2
     2  0.5920638973    3 -0.8058910233

Rotation coefficients for orbital     4  grp =    3 E2G   1
     4  0.2591751321    5  0.9658303427

Rotation coefficients for orbital     5  grp =    3 E2G   2
     4 -0.9658303427    5  0.2591751321

Rotation coefficients for orbital     6  grp =    4 B2U   1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    5 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    6 E1U   1
     8  0.9994695189    9  0.0325680957

Rotation coefficients for orbital     9  grp =    6 E1U   2
     8 -0.0325680957    9  0.9994695189

Rotation coefficients for orbital    10  grp =    7 E2G   1
    10 -0.0038087133   11 -0.9999927468

Rotation coefficients for orbital    11  grp =    7 E2G   2
    10 -0.9999927468   11  0.0038087133

Rotation coefficients for orbital    12  grp =    8 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    9 B2U   1
    13  1.0000000000

Rotation coefficients for orbital    14  grp =   10 B1U   1
    14  1.0000000000

Rotation coefficients for orbital    15  grp =   11 E1U   1
    15 -0.9756799663   16  0.2191999163

Rotation coefficients for orbital    16  grp =   11 E1U   2
    15 -0.2191999163   16 -0.9756799663

Rotation coefficients for orbital    17  grp =   12 A2U   1
    17  1.0000000000

Rotation coefficients for orbital    18  grp =   13 E2G   1
    18 -0.3648458185   19 -0.9310679507

Rotation coefficients for orbital    19  grp =   13 E2G   2
    18  0.9310679507   19 -0.3648458185

Rotation coefficients for orbital    20  grp =   14 E1G   1
    20 -0.9858898020   21 -0.1673956339

Rotation coefficients for orbital    21  grp =   14 E1G   2
    20  0.1673956339   21 -0.9858898020
Number of orbital groups and degeneracis are        14
  1  2  2  1  1  2  2  1  1  1  2  1  2  2
Number of orbital groups and number of electrons when fully occupied
        14
  2  4  4  2  2  4  4  2  2  2  4  2  4  4
 Compute final expansions Thu Jan 25 21:41:47 2001
 delt cpu =   111.8  tot cpu =   111.8  tot wall =   115.0
Thu Jan 25 21:41:47 CST 2001
135.197u 2.016s 2:21.84 96.7% 0+0k 33+10io 13pf+0w

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =   52
 Unit for output of single center expanded orbitals (iuout) =   55
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Begining timer Thu Jan 25 21:41:47 2001
 Number of r points in each I/O block (nrpibk) =   67
 Number of blocks in each function (nblks) =   20
 Number of r points in each in memory block (nrpibko) =   67
 Direct access record sizxe (real words) (nsize) = 4087
 Total scratch file size in bytes =        9154880

 Normalization integral
 Sum(    1) =   0.0719631265
 Sum(    2) =   0.0805279573
 Sum(    3) =   0.0645065401
 Sum(    4) =   0.0465943207
 Sum(    5) =   0.2146043078
 Sum(    6) =   0.0314607266
 Sum(    7) =   0.0879980276
 Sum(    8) =   0.0203641792
 Sum(    9) =   0.0494913513
 Sum(   10) =   0.0128876828
 Sum(   11) =   0.0293497083
 Sum(   12) =   0.0815613139
 Sum(   13) =   0.0080826258
 Sum(   14) =   0.0177482334
 Sum(   15) =   0.0285402981
 Sum(   16) =   0.0050707542
 Sum(   17) =   0.0108841363
 Sum(   18) =   0.0147364083
 Sum(   19) =   0.0032057991
 Sum(   20) =   0.0067770165
 Sum(   21) =   0.0084143477
 Sum(   22) =   0.0246134298
 Sum(   23) =   0.0020536604
 Sum(   24) =   0.0042950370
 Sum(   25) =   0.0050627940
 Sum(   26) =   0.0085058131
 Sum(   27) =   0.0013369269
 Sum(   28) =   0.0027741511
 Sum(   29) =   0.0031597659
 Sum(   30) =   0.0044439556
 Sum(   31) =   0.0008847146
 Sum(   32) =   0.0018249288
 Sum(   33) =   0.0020290617
 Sum(   34) =   0.0026048740
 Sum(   35) =   0.0078027929
 Total      =   0.9661607675
 Orbital     1 of  A1G   1 symmetry
     Normalization coefficient =   1.01736151

 Normalization integral
 Sum(    1) =   0.1039249921
 Sum(    2) =   0.0762550278
 Sum(    3) =   0.0563174121
 Sum(    4) =   0.1177153491
 Sum(    5) =   0.0388997997
 Sum(    6) =   0.0512350323
 Sum(    7) =   0.0952113575
 Sum(    8) =   0.0255602239
 Sum(    9) =   0.0298093880
 Sum(   10) =   0.0372641564
 Sum(   11) =   0.0162975721
 Sum(   12) =   0.0180088353
 Sum(   13) =   0.0204120396
 Sum(   14) =   0.0493008746
 Sum(   15) =   0.0102428972
 Sum(   16) =   0.0109909653
 Sum(   17) =   0.0119348505
 Sum(   18) =   0.0174585547
 Sum(   19) =   0.0335843274
 Sum(   20) =   0.0064141075
 Sum(   21) =   0.0067602555
 Sum(   22) =   0.0071710832
 Sum(   23) =   0.0090594356
 Sum(   24) =   0.0116514678
 Sum(   25) =   0.0040343479
 Sum(   26) =   0.0042021819
 Sum(   27) =   0.0043937801
 Sum(   28) =   0.0051720617
 Sum(   29) =   0.0060012053
 Sum(   30) =   0.0150414632
 Sum(   31) =   0.0025652346
 Sum(   32) =   0.0026501387
 Sum(   33) =   0.0027445225
 Sum(   34) =   0.0031004343
 Sum(   35) =   0.0034333614
 Sum(   36) =   0.0051822438
 Sum(   37) =   0.0100949914
 Sum(   38) =   0.0016558787
 Sum(   39) =   0.0017005655
 Sum(   40) =   0.0017493005
 Sum(   41) =   0.0019242903
 Sum(   42) =   0.0020755635
 Sum(   43) =   0.0026939979
 Sum(   44) =   0.0035030736
 Sum(   45) =   0.0010867467
 Sum(   46) =   0.0011111337
 Sum(   47) =   0.0011373537
 Sum(   48) =   0.0012283218
 Sum(   49) =   0.0013029369
 Sum(   50) =   0.0015704396
 Sum(   51) =   0.0018400160
 Sum(   52) =   0.0046897426
 Sum(   53) =   0.0007246538
 Sum(   54) =   0.0007383949
 Sum(   55) =   0.0007530092
 Sum(   56) =   0.0008024516
 Sum(   57) =   0.0008415269
 Sum(   58) =   0.0009707162
 Sum(   59) =   0.0010843451
 Sum(   60) =   0.0016615284
 Sum(   61) =   0.0032572552
 Total      =   0.9701992141
 Orbital     2 of  E1U   1 symmetry
     Normalization coefficient =   1.01524192

 Normalization integral
 Sum(    1) =   0.1206368624
 Sum(    2) =   0.0717029275
 Sum(    3) =   0.1248544698
 Sum(    4) =   0.0489691667
 Sum(    5) =   0.0586382904
 Sum(    6) =   0.0323929042
 Sum(    7) =   0.0356021032
 Sum(    8) =   0.0826529177
 Sum(    9) =   0.0207649497
 Sum(   10) =   0.0220284616
 Sum(   11) =   0.0312058464
 Sum(   12) =   0.0592278388
 Sum(   13) =   0.0130706151
 Sum(   14) =   0.0136127828
 Sum(   15) =   0.0167518147
 Sum(   16) =   0.0213090144
 Sum(   17) =   0.0081700476
 Sum(   18) =   0.0084166673
 Sum(   19) =   0.0096933928
 Sum(   20) =   0.0111435942
 Sum(   21) =   0.0275612140
 Sum(   22) =   0.0051142712
 Sum(   23) =   0.0052318486
 Sum(   24) =   0.0058020263
 Sum(   25) =   0.0063742283
 Sum(   26) =   0.0095095583
 Sum(   27) =   0.0184169016
 Sum(   28) =   0.0032283224
 Sum(   29) =   0.0032868048
 Sum(   30) =   0.0035586513
 Sum(   31) =   0.0038120912
 Sum(   32) =   0.0048970413
 Sum(   33) =   0.0063352653
 Sum(   34) =   0.0020657798
 Sum(   35) =   0.0020960508
 Sum(   36) =   0.0022327068
 Sum(   37) =   0.0023541260
 Sum(   38) =   0.0028113424
 Sum(   39) =   0.0032790440
 Sum(   40) =   0.0083036421
 Sum(   41) =   0.0013436940
 Sum(   42) =   0.0013599601
 Sum(   43) =   0.0014318446
 Sum(   44) =   0.0014936194
 Sum(   45) =   0.0017086565
 Sum(   46) =   0.0019009755
 Sum(   47) =   0.0028955776
 Sum(   48) =   0.0056578868
 Sum(   49) =   0.0008886264
 Sum(   50) =   0.0008976649
 Sum(   51) =   0.0009369820
 Sum(   52) =   0.0009699571
 Sum(   53) =   0.0010788613
 Sum(   54) =   0.0011685720
 Sum(   55) =   0.0015291823
 Sum(   56) =   0.0019941089
 Total      =   0.9643717532
 Orbital     3 of  E2G   1 symmetry
     Normalization coefficient =   1.01830473

 Normalization integral
 Sum(    1) =   0.2533222394
 Sum(    2) =   0.1313711118
 Sum(    3) =   0.0840759042
 Sum(    4) =   0.0536034866
 Sum(    5) =   0.1409196797
 Sum(    6) =   0.0336670566
 Sum(    7) =   0.0517669246
 Sum(    8) =   0.0209763887
 Sum(    9) =   0.0273725010
 Sum(   10) =   0.0130632794
 Sum(   11) =   0.0157258902
 Sum(   12) =   0.0451014000
 Sum(   13) =   0.0081860257
 Sum(   14) =   0.0093989810
 Sum(   15) =   0.0155195827
 Sum(   16) =   0.0051913860
 Sum(   17) =   0.0057806073
 Sum(   18) =   0.0080061687
 Sum(   19) =   0.0033446195
 Sum(   20) =   0.0036461340
 Sum(   21) =   0.0046172229
 Sum(   22) =   0.0136924419
 Sum(   23) =   0.0021918703
 Sum(   24) =   0.0023530870
 Sum(   25) =   0.0028221870
 Sum(   26) =   0.0048000417
 Sum(   27) =   0.0014599226
 Sum(   28) =   0.0015493786
 Sum(   29) =   0.0017920370
 Sum(   30) =   0.0025484422
 Total      =   0.9678659984
 Orbital     4 of  B2U   1 symmetry
     Normalization coefficient =   1.01646489

 Normalization integral
 Sum(    1) =   0.7647193232
 Sum(    2) =   0.1515269225
 Sum(    3) =   0.0103960350
 Sum(    4) =   0.0034462159
 Sum(    5) =   0.0216059159
 Sum(    6) =   0.0029306977
 Sum(    7) =   0.0098094386
 Sum(    8) =   0.0019869809
 Sum(    9) =   0.0052137175
 Sum(   10) =   0.0012200742
 Sum(   11) =   0.0028558594
 Sum(   12) =   0.0086233296
 Sum(   13) =   0.0007169925
 Sum(   14) =   0.0015874869
 Sum(   15) =   0.0026176642
 Sum(   16) =   0.0004146394
 Sum(   17) =   0.0008918726
 Sum(   18) =   0.0012152161
 Sum(   19) =   0.0002409144
 Sum(   20) =   0.0005095165
 Sum(   21) =   0.0006334646
 Sum(   22) =   0.0018571710
 Sum(   23) =   0.0001427994
 Sum(   24) =   0.0002986749
 Sum(   25) =   0.0003521473
 Sum(   26) =   0.0005918633
 Sum(   27) =   0.0000871418
 Sum(   28) =   0.0001808231
 Sum(   29) =   0.0002059649
 Sum(   30) =   0.0002896898
 Sum(   31) =   0.0000548922
 Sum(   32) =   0.0001132280
 Sum(   33) =   0.0001258940
 Sum(   34) =   0.0001616217
 Sum(   35) =   0.0004841376
 Total      =   0.9981083265
 Orbital     5 of  A1G   1 symmetry
     Normalization coefficient =   1.00094718

 Normalization integral
 Sum(    1) =   0.8138865314
 Sum(    2) =   0.0854838512
 Sum(    3) =   0.0095032725
 Sum(    4) =   0.0288826480
 Sum(    5) =   0.0036091207
 Sum(    6) =   0.0095092207
 Sum(    7) =   0.0069465590
 Sum(    8) =   0.0023349530
 Sum(    9) =   0.0042959848
 Sum(   10) =   0.0025088173
 Sum(   11) =   0.0014706343
 Sum(   12) =   0.0021487664
 Sum(   13) =   0.0014689365
 Sum(   14) =   0.0081151621
 Sum(   15) =   0.0008837218
 Sum(   16) =   0.0011377551
 Sum(   17) =   0.0008693656
 Sum(   18) =   0.0021932029
 Sum(   19) =   0.0020971162
 Sum(   20) =   0.0005160163
 Sum(   21) =   0.0006202081
 Sum(   22) =   0.0005057361
 Sum(   23) =   0.0009475870
 Sum(   24) =   0.0007201035
 Sum(   25) =   0.0002992455
 Sum(   26) =   0.0003451464
 Sum(   27) =   0.0002934212
 Sum(   28) =   0.0004690806
 Sum(   29) =   0.0003596231
 Sum(   30) =   0.0015024887
 Sum(   31) =   0.0001757482
 Sum(   32) =   0.0001969590
 Sum(   33) =   0.0001728644
 Sum(   34) =   0.0002493258
 Sum(   35) =   0.0001982310
 Sum(   36) =   0.0004498453
 Sum(   37) =   0.0005326257
 Sum(   38) =   0.0001059268
 Sum(   39) =   0.0001161249
 Sum(   40) =   0.0001046303
 Sum(   41) =   0.0001400132
 Sum(   42) =   0.0001158432
 Sum(   43) =   0.0002085041
 Sum(   44) =   0.0001820552
 Sum(   45) =   0.0000658902
 Sum(   46) =   0.0000710206
 Sum(   47) =   0.0000653287
 Sum(   48) =   0.0000826648
 Sum(   49) =   0.0000708053
 Sum(   50) =   0.0001111496
 Sum(   51) =   0.0000944689
 Sum(   52) =   0.0003486787
 Sum(   53) =   0.0000422619
 Sum(   54) =   0.0000449858
 Sum(   55) =   0.0000420010
 Sum(   56) =   0.0000510269
 Sum(   57) =   0.0000448503
 Sum(   58) =   0.0000643731
 Sum(   59) =   0.0000551675
 Sum(   60) =   0.0001148168
 Sum(   61) =   0.0001580337
 Total      =   0.9984004966
 Orbital     6 of  E1U   1 symmetry
     Normalization coefficient =   1.00080071

 Normalization integral
 Sum(    1) =   0.7818904416
 Sum(    2) =   0.0803523222
 Sum(    3) =   0.0626274428
 Sum(    4) =   0.0113671165
 Sum(    5) =   0.0149371446
 Sum(    6) =   0.0028223689
 Sum(    7) =   0.0053959244
 Sum(    8) =   0.0089713597
 Sum(    9) =   0.0012637931
 Sum(   10) =   0.0023091011
 Sum(   11) =   0.0013532135
 Sum(   12) =   0.0109535241
 Sum(   13) =   0.0007083595
 Sum(   14) =   0.0011144219
 Sum(   15) =   0.0006081760
 Sum(   16) =   0.0025858487
 Sum(   17) =   0.0004102399
 Sum(   18) =   0.0005765670
 Sum(   19) =   0.0003498422
 Sum(   20) =   0.0010180673
 Sum(   21) =   0.0007101165
 Sum(   22) =   0.0002367370
 Sum(   23) =   0.0003094290
 Sum(   24) =   0.0002059876
 Sum(   25) =   0.0004725541
 Sum(   26) =   0.0002540458
 Sum(   27) =   0.0016821763
 Sum(   28) =   0.0001377424
 Sum(   29) =   0.0001710124
 Sum(   30) =   0.0001225907
 Sum(   31) =   0.0002384448
 Sum(   32) =   0.0001340012
 Sum(   33) =   0.0004703109
 Sum(   34) =   0.0000821363
 Sum(   35) =   0.0000978775
 Sum(   36) =   0.0000747763
 Sum(   37) =   0.0001278294
 Sum(   38) =   0.0000784009
 Sum(   39) =   0.0002051853
 Sum(   40) =   0.0001905395
 Sum(   41) =   0.0000506081
 Sum(   42) =   0.0000583354
 Sum(   43) =   0.0000470085
 Sum(   44) =   0.0000724787
 Sum(   45) =   0.0000485197
 Sum(   46) =   0.0001037082
 Sum(   47) =   0.0000705379
 Sum(   48) =   0.0003450524
 Sum(   49) =   0.0000322085
 Sum(   50) =   0.0000361938
 Sum(   51) =   0.0000303767
 Sum(   52) =   0.0000433024
 Sum(   53) =   0.0000311179
 Sum(   54) =   0.0000575134
 Sum(   55) =   0.0000390179
 Sum(   56) =   0.0001077595
 Total      =   0.9987909077
 Orbital     7 of  E2G   1 symmetry
     Normalization coefficient =   1.00060509

 Normalization integral
 Sum(    1) =   0.5240353933
 Sum(    2) =   0.2638830158
 Sum(    3) =   0.0789297675
 Sum(    4) =   0.0193593609
 Sum(    5) =   0.0862415156
 Sum(    6) =   0.0045894552
 Sum(    7) =   0.0127965913
 Sum(    8) =   0.0012284413
 Sum(    9) =   0.0030048546
 Sum(   10) =   0.0003960246
 Sum(   11) =   0.0009067105
 Sum(   12) =   0.0025613442
 Sum(   13) =   0.0001465987
 Sum(   14) =   0.0003227244
 Sum(   15) =   0.0005229587
 Sum(   16) =   0.0000594645
 Sum(   17) =   0.0001277555
 Sum(   18) =   0.0001734539
 Sum(   19) =   0.0000262844
 Sum(   20) =   0.0000555805
 Sum(   21) =   0.0000690676
 Sum(   22) =   0.0002023237
 Sum(   23) =   0.0000128331
 Sum(   24) =   0.0000268412
 Sum(   25) =   0.0000316465
 Sum(   26) =   0.0000531889
 Sum(   27) =   0.0000069365
 Sum(   28) =   0.0000143937
 Sum(   29) =   0.0000163955
 Sum(   30) =   0.0000230613
 Sum(   31) =   0.0000040712
 Sum(   32) =   0.0000083979
 Sum(   33) =   0.0000093374
 Sum(   34) =   0.0000119875
 Sum(   35) =   0.0000359101
 Total      =   0.9998936875
 Orbital     8 of  A1G   1 symmetry
     Normalization coefficient =   1.00005316

 Normalization integral
 Sum(    1) =   0.8128022457
 Sum(    2) =   0.1182038004
 Sum(    3) =   0.0257388992
 Sum(    4) =   0.0071394589
 Sum(    5) =   0.0193481386
 Sum(    6) =   0.0026344647
 Sum(    7) =   0.0040535982
 Sum(    8) =   0.0011926167
 Sum(    9) =   0.0015527735
 Sum(   10) =   0.0005947314
 Sum(   11) =   0.0007152434
 Sum(   12) =   0.0020473874
 Sum(   13) =   0.0003125959
 Sum(   14) =   0.0003588240
 Sum(   15) =   0.0005921960
 Sum(   16) =   0.0001728263
 Sum(   17) =   0.0001924348
 Sum(   18) =   0.0002665035
 Sum(   19) =   0.0001009175
 Sum(   20) =   0.0001100151
 Sum(   21) =   0.0001393161
 Sum(   22) =   0.0004131462
 Sum(   23) =   0.0000619711
 Sum(   24) =   0.0000665293
 Sum(   25) =   0.0000797927
 Sum(   26) =   0.0001357149
 Sum(   27) =   0.0000395725
 Sum(   28) =   0.0000419973
 Sum(   29) =   0.0000485749
 Sum(   30) =   0.0000690786
 Total      =   0.9992253649
 Orbital     9 of  B2U   1 symmetry
     Normalization coefficient =   1.00038754

 Normalization integral
 Sum(    1) =   0.8853907056
 Sum(    2) =   0.0704302813
 Sum(    3) =   0.0079914211
 Sum(    4) =   0.0011998128
 Sum(    5) =   0.0284098535
 Sum(    6) =   0.0002352322
 Sum(    7) =   0.0032562862
 Sum(    8) =   0.0000565371
 Sum(    9) =   0.0006640535
 Sum(   10) =   0.0000164628
 Sum(   11) =   0.0001783700
 Sum(   12) =   0.0014210799
 Sum(   13) =   0.0000055692
 Sum(   14) =   0.0000575497
 Sum(   15) =   0.0002639653
 Sum(   16) =   0.0000020406
 Sum(   17) =   0.0000204495
 Sum(   18) =   0.0000786747
 Sum(   19) =   0.0000007788
 Sum(   20) =   0.0000076407
 Sum(   21) =   0.0000268771
 Sum(   22) =   0.0001562231
 Sum(   23) =   0.0000003110
 Sum(   24) =   0.0000030052
 Sum(   25) =   0.0000100118
 Sum(   26) =   0.0000333762
 Sum(   27) =   0.0000001337
 Sum(   28) =   0.0000012774
 Sum(   29) =   0.0000041040
 Sum(   30) =   0.0000114394
 Total      =   0.9999335236
 Orbital    10 of  B1U   1 symmetry
     Normalization coefficient =   1.00003324

 Normalization integral
 Sum(    1) =   0.6044736279
 Sum(    2) =   0.1547885090
 Sum(    3) =   0.0410565773
 Sum(    4) =   0.1269637595
 Sum(    5) =   0.0103738005
 Sum(    6) =   0.0179877043
 Sum(    7) =   0.0221912985
 Sum(    8) =   0.0027445624
 Sum(    9) =   0.0039604506
 Sum(   10) =   0.0036568281
 Sum(   11) =   0.0008581931
 Sum(   12) =   0.0011260953
 Sum(   13) =   0.0009847922
 Sum(   14) =   0.0039550389
 Sum(   15) =   0.0003129152
 Sum(   16) =   0.0003862118
 Sum(   17) =   0.0003319149
 Sum(   18) =   0.0007341558
 Sum(   19) =   0.0008922851
 Sum(   20) =   0.0001261831
 Sum(   21) =   0.0001501134
 Sum(   22) =   0.0001278512
 Sum(   23) =   0.0002311455
 Sum(   24) =   0.0001933914
 Sum(   25) =   0.0000554380
 Sum(   26) =   0.0000645026
 Sum(   27) =   0.0000546601
 Sum(   28) =   0.0000893746
 Sum(   29) =   0.0000686083
 Sum(   30) =   0.0002940488
 Sum(   31) =   0.0000266174
 Sum(   32) =   0.0000304114
 Sum(   33) =   0.0000259022
 Sum(   34) =   0.0000394924
 Sum(   35) =   0.0000297258
 Sum(   36) =   0.0000734101
 Sum(   37) =   0.0000811090
 Sum(   38) =   0.0000139417
 Sum(   39) =   0.0000156308
 Sum(   40) =   0.0000135383
 Sum(   41) =   0.0000193499
 Sum(   42) =   0.0000148413
 Sum(   43) =   0.0000296666
 Sum(   44) =   0.0000233054
 Sum(   45) =   0.0000078762
 Sum(   46) =   0.0000086683
 Sum(   47) =   0.0000076759
 Sum(   48) =   0.0000103306
 Sum(   49) =   0.0000082157
 Sum(   50) =   0.0000142516
 Sum(   51) =   0.0000108881
 Sum(   52) =   0.0000459358
 Sum(   53) =   0.0000047145
 Sum(   54) =   0.0000051089
 Sum(   55) =   0.0000046148
 Sum(   56) =   0.0000059120
 Sum(   57) =   0.0000048695
 Sum(   58) =   0.0000076217
 Sum(   59) =   0.0000059424
 Sum(   60) =   0.0000139095
 Sum(   61) =   0.0000169682
 Total      =   0.9998544834
 Orbital    11 of  E1U   1 symmetry
     Normalization coefficient =   1.00007277

 Normalization integral
 Sum(    1) =   0.6124331442
 Sum(    2) =   0.2835902345
 Sum(    3) =   0.0614700591
 Sum(    4) =   0.0131632581
 Sum(    5) =   0.0161343935
 Sum(    6) =   0.0032955560
 Sum(    7) =   0.0051294096
 Sum(    8) =   0.0009628908
 Sum(    9) =   0.0016450129
 Sum(   10) =   0.0003180318
 Sum(   11) =   0.0005701203
 Sum(   12) =   0.0002980174
 Sum(   13) =   0.0001210872
 Sum(   14) =   0.0002233621
 Sum(   15) =   0.0001539659
 Sum(   16) =   0.0000519582
 Sum(   17) =   0.0000976349
 Sum(   18) =   0.0000757656
 Sum(   19) =   0.0000236104
 Sum(   20) =   0.0000449348
 Sum(   21) =   0.0000372518
 Sum(   22) =   0.0000185802
 Sum(   23) =   0.0000109601
 Sum(   24) =   0.0000210509
 Sum(   25) =   0.0000181969
 Sum(   26) =   0.0000120436
 Sum(   27) =   0.0000052349
 Sum(   28) =   0.0000101232
 Sum(   29) =   0.0000090045
 Sum(   30) =   0.0000067433
 Sum(   31) =   0.0000026529
 Sum(   32) =   0.0000051570
 Sum(   33) =   0.0000046825
 Sum(   34) =   0.0000037618
 Sum(   35) =   0.0000018344
 Total      =   0.9999697255
 Orbital    12 of  A2U   1 symmetry
     Normalization coefficient =   1.00001514

 Normalization integral
 Sum(    1) =   0.3731779935
 Sum(    2) =   0.0617518919
 Sum(    3) =   0.4546695240
 Sum(    4) =   0.0145597144
 Sum(    5) =   0.0495568742
 Sum(    6) =   0.0037611903
 Sum(    7) =   0.0086338082
 Sum(    8) =   0.0111663269
 Sum(    9) =   0.0010826605
 Sum(   10) =   0.0019842387
 Sum(   11) =   0.0017535792
 Sum(   12) =   0.0113863560
 Sum(   13) =   0.0003664779
 Sum(   14) =   0.0005777279
 Sum(   15) =   0.0004814320
 Sum(   16) =   0.0016308100
 Sum(   17) =   0.0001394552
 Sum(   18) =   0.0001983244
 Sum(   19) =   0.0001653204
 Sum(   20) =   0.0004170895
 Sum(   21) =   0.0006258337
 Sum(   22) =   0.0000572028
 Sum(   23) =   0.0000765961
 Sum(   24) =   0.0000638240
 Sum(   25) =   0.0001372083
 Sum(   26) =   0.0001325159
 Sum(   27) =   0.0005894684
 Sum(   28) =   0.0000253993
 Sum(   29) =   0.0000327360
 Sum(   30) =   0.0000270720
 Sum(   31) =   0.0000530246
 Sum(   32) =   0.0000448276
 Sum(   33) =   0.0001250797
 Sum(   34) =   0.0000124373
 Sum(   35) =   0.0000154451
 Sum(   36) =   0.0000128236
 Sum(   37) =   0.0000230499
 Sum(   38) =   0.0000183679
 Sum(   39) =   0.0000435862
 Sum(   40) =   0.0000696456
 Sum(   41) =   0.0000067285
 Sum(   42) =   0.0000080165
 Sum(   43) =   0.0000068172
 Sum(   44) =   0.0000110875
 Sum(   45) =   0.0000088085
 Sum(   46) =   0.0000182378
 Sum(   47) =   0.0000179212
 Sum(   48) =   0.0000701981
 Sum(   49) =   0.0000039397
 Sum(   50) =   0.0000045155
 Sum(   51) =   0.0000039699
 Sum(   52) =   0.0000058463
 Sum(   53) =   0.0000047905
 Sum(   54) =   0.0000086764
 Sum(   55) =   0.0000077131
 Sum(   56) =   0.0000183919
 Total      =   0.9998525981
 Orbital    13 of  E2G   1 symmetry
     Normalization coefficient =   1.00007371

 Normalization integral
 Sum(    1) =   0.7448572564
 Sum(    2) =   0.1771203830
 Sum(    3) =   0.0352835855
 Sum(    4) =   0.0143498499
 Sum(    5) =   0.0080102792
 Sum(    6) =   0.0047937793
 Sum(    7) =   0.0061431741
 Sum(    8) =   0.0021601714
 Sum(    9) =   0.0015785200
 Sum(   10) =   0.0019368436
 Sum(   11) =   0.0006583804
 Sum(   12) =   0.0005442569
 Sum(   13) =   0.0006074082
 Sum(   14) =   0.0002580486
 Sum(   15) =   0.0002281651
 Sum(   16) =   0.0002045566
 Sum(   17) =   0.0002103187
 Sum(   18) =   0.0001357721
 Sum(   19) =   0.0001140552
 Sum(   20) =   0.0000914277
 Sum(   21) =   0.0000858212
 Sum(   22) =   0.0000844116
 Sum(   23) =   0.0000660910
 Sum(   24) =   0.0000586482
 Sum(   25) =   0.0000403618
 Sum(   26) =   0.0000387309
 Sum(   27) =   0.0000376069
 Sum(   28) =   0.0000322112
 Sum(   29) =   0.0000290928
 Sum(   30) =   0.0000160757
 Sum(   31) =   0.0000185159
 Sum(   32) =   0.0000179579
 Sum(   33) =   0.0000174466
 Sum(   34) =   0.0000156134
 Sum(   35) =   0.0000143801
 Sum(   36) =   0.0000103713
 Sum(   37) =   0.0000071468
 Sum(   38) =   0.0000086849
 Sum(   39) =   0.0000084743
 Sum(   40) =   0.0000082648
 Sum(   41) =   0.0000075821
 Sum(   42) =   0.0000071025
 Sum(   43) =   0.0000057011
 Sum(   44) =   0.0000046818
 Sum(   45) =   0.0000042535
 Sum(   46) =   0.0000041674
 Sum(   47) =   0.0000040800
 Sum(   48) =   0.0000038042
 Sum(   49) =   0.0000036098
 Sum(   50) =   0.0000030679
 Sum(   51) =   0.0000026930
 Sum(   52) =   0.0000015004
 Total      =   0.9999543830
 Orbital    14 of  E1G   1 symmetry
     Normalization coefficient =   1.00002281
 Compute final expansions Thu Jan 25 21:46:50 2001
 delt cpu =   293.9  tot cpu =   293.9  tot wall =   303.0
Thu Jan 25 21:46:50 CST 2001
426.622u 4.522s 7:24.86 96.9% 0+0k 41+16io 17pf+0w

**********************************************************************
GetPot - compute local potential
**********************************************************************


----------------------------------------------------------------------
den - Electron density construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:46:50 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for angular grid cutoff information (iuanrd) =   62
 Unit for input of expanded orbitals (iuxorb) =   55
 Unit for output of density (iuden) =   56
Print flag =    0
 Compute density Thu Jan 25 21:47:14 2001
 delt cpu =    22.5  tot cpu =    22.5  tot wall =    24.0
Thu Jan 25 21:47:14 CST 2001
21.235u 1.426s 0:23.87 94.8% 0+0k 8+6io 2pf+0w

----------------------------------------------------------------------
stpot - Compute the static potential from the density
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of static potential (iustpt) =   57
 Begining timer Thu Jan 25 21:47:14 2001
 vasymp =  0.42000000E+02 facnorm =  0.10000000E+01
 Electronic part Thu Jan 25 21:47:21 2001
 delt cpu =     6.9  tot cpu =     6.9  tot wall =     7.0
 Nuclear part Thu Jan 25 21:47:26 2001
 delt cpu =     5.0  tot cpu =    11.9  tot wall =    12.0
Thu Jan 25 21:47:26 CST 2001
32.309u 2.338s 0:36.45 95.0% 0+0k 14+8io 4pf+0w

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:47:27 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of vcppol potential (iuvcpl) =   63
 Compute vcppol potential Thu Jan 25 21:47:49 2001
 delt cpu =    21.2  tot cpu =    21.2  tot wall =    22.0
Thu Jan 25 21:47:49 CST 2001
51.512u 4.498s 0:58.78 95.2% 0+0k 21+12io 7pf+0w

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:47:49 2001
 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of local polarization potential (iupoll) =   63
 Unit for output of total polarization potential (iupolt) =   64
 Print flag (iprnfg) =    0
Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    6
Term =    1  At center =    1
Explicit coordinates = -0.22862610E+01  0.13199740E+01  0.00000000E+00
Type =    1
Term =    2  At center =    2
Explicit coordinates = -0.22862610E+01 -0.13199740E+01  0.00000000E+00
Type =    1
Term =    3  At center =    3
Explicit coordinates =  0.00000000E+00 -0.26399470E+01  0.00000000E+00
Type =    1
Term =    4  At center =    4
Explicit coordinates =  0.22862610E+01 -0.13199740E+01  0.00000000E+00
Type =    1
Term =    5  At center =    5
Explicit coordinates =  0.22862610E+01  0.13199740E+01  0.00000000E+00
Type =    1
Term =    6  At center =    6
Explicit coordinates =  0.00000000E+00  0.26399470E+01  0.00000000E+00
Type =    1
Last center is at (RCenterX) =   2.63995
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Using closest approach for matching r
 Matching point is at r =   7.7208714580
 i =   1 l =   0 vdif =      0.00442443  pola =     -0.04547481  lfix =   6
 i =   2 l =   2 vdif =      0.01031632  pola =      0.00918636  lfix =   6
 i =   3 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   4 l =   4 vdif =     -0.00203687  pola =     -0.00135889  lfix =   6
 i =   5 l =   4 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   6 l =   4 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   7 l =   6 vdif =      0.00084542  pola =      0.00018607  lfix =   8
 i =   8 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =   9 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =  10 l =   6 vdif =      0.00592303  pola =      0.00039994  lfix =   8
 i =  11 l =   8 vdif =     -0.00026760  pola =     -0.00002452  lfix =  10
 i =  12 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  13 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  14 l =   8 vdif =     -0.00028066  pola =     -0.00004104  lfix =  10
 i =  15 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  16 l =  10 vdif =      0.00014100  pola =      0.00000316  lfix =  12
 i =  17 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  18 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  19 l =  10 vdif =      0.00019221  pola =      0.00000492  lfix =  12
 i =  20 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  21 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  22 l =  12 vdif =      0.00000057  pola =     -0.00000040  lfix =  14
 i =  23 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  24 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  25 l =  12 vdif =     -0.00001684  pola =     -0.00000060  lfix =  14
 i =  26 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  27 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  28 l =  12 vdif =      0.00057986  pola =     -0.00000101  lfix =  14
 i =  29 l =  14 vdif =      0.00000901  pola =      0.00000005  lfix =  16
 i =  30 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  31 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  32 l =  14 vdif =     -0.00000106  pola =      0.00000007  lfix =  16
 i =  33 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  34 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  35 l =  14 vdif =      0.00005591  pola =      0.00000009  lfix =  16
 i =  36 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  37 l =  16 vdif =      0.00001157  pola =     -0.00000001  lfix =  18
 i =  38 l =  16 vdif =      0.00000000  pola =      0.00000000  lfix =  18
 i =  39 l =  16 vdif =      0.00000000  pola =      0.00000000  lfix =  18
 i =  40 l =  16 vdif =      0.00000713  pola =     -0.00000001  lfix =  18
 i =  41 l =  16 vdif =      0.00000000  pola =      0.00000000  lfix =  18
 i =  42 l =  16 vdif =      0.00000000  pola =      0.00000000  lfix =  18
 i =  43 l =  16 vdif =      0.00001971  pola =     -0.00000001  lfix =  18
 i =  44 l =  16 vdif =      0.00000000  pola =      0.00000000  lfix =  18
 i =  45 l =  16 vdif =      0.00000000  pola =      0.00000000  lfix =  18
 i =  46 l =  18 vdif =      0.00000320  pola =      0.00000000  lfix =  20
 i =  47 l =  18 vdif =      0.00000000  pola =      0.00000000  lfix =  20
 i =  48 l =  18 vdif =      0.00000000  pola =      0.00000000  lfix =  20
 i =  49 l =  18 vdif =     -0.00000148  pola =      0.00000000  lfix =  20
 i =  50 l =  18 vdif =      0.00000000  pola =      0.00000000  lfix =  20
 i =  51 l =  18 vdif =      0.00000000  pola =      0.00000000  lfix =  20
 i =  52 l =  18 vdif =      0.00000113  pola =      0.00000000  lfix =  20
 i =  53 l =  18 vdif =      0.00000000  pola =      0.00000000  lfix =  20
 i =  54 l =  18 vdif =      0.00000000  pola =      0.00000000  lfix =  20
 i =  55 l =  18 vdif =      0.00013633  pola =      0.00000000  lfix =  20
 i =  56 l =  20 vdif =      0.00000350  pola =      0.00000000  lfix =  22
 i =  57 l =  20 vdif =      0.00000000  pola =      0.00000000  lfix =  22
 i =  58 l =  20 vdif =      0.00000000  pola =      0.00000000  lfix =  22
 i =  59 l =  20 vdif =      0.00000080  pola =      0.00000000  lfix =  22
 i =  60 l =  20 vdif =      0.00000000  pola =      0.00000000  lfix =  22
 i =  61 l =  20 vdif =      0.00000000  pola =      0.00000000  lfix =  22
 i =  62 l =  20 vdif =      0.00000114  pola =      0.00000000  lfix =  22
 i =  63 l =  20 vdif =      0.00000000  pola =      0.00000000  lfix =  22
 i =  64 l =  20 vdif =      0.00000000  pola =      0.00000000  lfix =  22
 i =  65 l =  20 vdif =      0.00001648  pola =      0.00000000  lfix =  22
 i =  66 l =  20 vdif =      0.00000000  pola =      0.00000000  lfix =  22
 i =  67 l =  22 vdif =      0.00000205  pola =      0.00000000  lfix =  24
 i =  68 l =  22 vdif =      0.00000000  pola =      0.00000000  lfix =  24
 i =  69 l =  22 vdif =      0.00000000  pola =      0.00000000  lfix =  24
 i =  70 l =  22 vdif =      0.00000021  pola =      0.00000000  lfix =  24
 i =  71 l =  22 vdif =      0.00000000  pola =      0.00000000  lfix =  24
 i =  72 l =  22 vdif =      0.00000000  pola =      0.00000000  lfix =  24
 i =  73 l =  22 vdif =      0.00000036  pola =      0.00000000  lfix =  24
 i =  74 l =  22 vdif =      0.00000000  pola =      0.00000000  lfix =  24
 i =  75 l =  22 vdif =      0.00000000  pola =      0.00000000  lfix =  24
 i =  76 l =  22 vdif =      0.00000405  pola =      0.00000000  lfix =  24
 i =  77 l =  22 vdif =      0.00000000  pola =      0.00000000  lfix =  24
 i =  78 l =  22 vdif =      0.00000000  pola =      0.00000000  lfix =  24
 i =  79 l =  24 vdif =      0.00000127  pola =      0.00000000  lfix =  26
 i =  80 l =  24 vdif =      0.00000000  pola =      0.00000000  lfix =  26
 i =  81 l =  24 vdif =      0.00000000  pola =      0.00000000  lfix =  26
 i =  82 l =  24 vdif =      0.00000001  pola =      0.00000000  lfix =  26
 i =  83 l =  24 vdif =      0.00000000  pola =      0.00000000  lfix =  26
 i =  84 l =  24 vdif =      0.00000000  pola =      0.00000000  lfix =  26
 i =  85 l =  24 vdif =      0.00000005  pola =      0.00000000  lfix =  26
 i =  86 l =  24 vdif =      0.00000000  pola =      0.00000000  lfix =  26
 i =  87 l =  24 vdif =      0.00000000  pola =      0.00000000  lfix =  26
 i =  88 l =  24 vdif =      0.00000098  pola =      0.00000000  lfix =  26
 i =  89 l =  24 vdif =      0.00000000  pola =      0.00000000  lfix =  26
 i =  90 l =  24 vdif =      0.00000000  pola =      0.00000000  lfix =  26
 i =  91 l =  24 vdif =      0.00003670  pola =      0.00000000  lfix =  26
First nonzero weight at R =        7.06720
Last point of the switching region R=        8.36374
Matching factors (BFac):
   0.441340E+00  -0.863381E-01  -0.977210E-01  -0.682893E-01  -0.979118E-01
  -0.101060E+00  -0.287648E+00  -0.108402E+00  -0.124265E+00  -0.945520E-01
  -0.386767E+00   0.701051E-01  -0.141380E+00   0.611592E-01  -0.190076E+00
  -0.178409E+00  -0.427880E+00  -0.116938E+00  -0.153625E+00  -0.280684E+00
  -0.177516E+00  -0.127018E+00  -0.378428E+00   0.000000E+00  -0.140743E+00
  -0.337449E+00  -0.219310E+00  -0.107743E+00  -0.126011E+00  -0.383393E+00
  -0.394522E+00  -0.945848E-01  -0.360893E+00  -0.278138E+00  -0.893354E-01
  -0.306532E+00  -0.239535E+00  -0.394166E+00   0.000000E+00  -0.392454E+00
  -0.377207E+00   0.000000E+00  -0.115840E+00  -0.327807E+00   0.000000E+00
  -0.130549E+00  -0.406038E+00   0.000000E+00  -0.458792E+00  -0.392645E+00
   0.000000E+00   0.387827E-01  -0.350153E+00   0.000000E+00  -0.143797E+00
  -0.189952E+00   0.000000E+00   0.000000E+00  -0.203008E+00  -0.407573E+00
   0.000000E+00  -0.154717E+00  -0.372309E+00   0.000000E+00  -0.120783E+00
  -0.296063E+00  -0.172354E+00   0.000000E+00   0.000000E+00  -0.105312E+01
  -0.421411E+00   0.000000E+00  -0.717241E-01  -0.393174E+00   0.000000E+00
  -0.108650E+00  -0.329260E+00   0.188252E+01  -0.152639E+00   0.000000E+00
   0.000000E+00   0.778757E-01  -0.433611E+00   0.000000E+00  -0.779420E-01
  -0.411787E+00   0.000000E+00  -0.102210E+00  -0.360563E+00   0.000000E+00
  -0.180760E+00
Total asymptotic potential is   0.71100000E+02
 Compute total polarizaiton potential Thu Jan 25 21:48:08 2001
 delt cpu =    18.2  tot cpu =    18.2  tot wall =    19.0
Thu Jan 25 21:48:08 CST 2001
Thu Jan 25 21:48:08 CST 2001
68.434u 5.871s 1:17.81 95.4% 0+0k 27+17io 9pf+0w

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:48:08 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.34000000E+00  AU
 Do E =  0.30000000E+02 eV (  0.11024793E+01 AU)
 Compute fege potential Thu Jan 25 21:48:31 2001
 delt cpu =    22.1  tot cpu =    22.1  tot wall =    23.0
Thu Jan 25 21:48:31 CST 2001
20.173u 2.213s 0:23.39 95.6% 0+0k 6+5io 2pf+0w
Thu Jan 25 21:48:31 CST 2001
20.177u 2.226s 0:23.41 95.6% 0+0k 6+5io 2pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 21:48:31 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =   64
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G
Form of the Green's function to use (iGrnType) =     0
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.71100000E+02  au
Number of integration regions used =    40
Number of points per region =    35
Number of partial waves (np) =    35
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     9
 Number of orthogonality constraints (NOrthUse) =    0

 Maximum l used in usual function (lmaxa) =   25
 Maximum m used in usual function (mmaxa) =   25
 Maxamum l used in expanding static potential (lpotct) =   50
 Maximum l used in exapnding the exchange potential (lmaxab) =   50
 Maximum m used potentials (mmaxab) =   50
 Higest l included in the expansion of the wave function (lnp) =   24
 Higest l included in the K matrix (lna) =   10
 Highest l used at large r (lpasym) =   19
 Higest l used in the asymptotic potential (lpzb) =   38

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       64       64    0.010341    0.661793
     2       64      128    0.010341    1.323587
     3       64      192    0.010341    1.985380
     4       32      224    0.010341    2.316277
     5        8      232    0.008469    2.384026
     6        8      240    0.006696    2.437594
     7        8      248    0.005294    2.479950
     8        8      256    0.004186    2.513440
     9        8      264    0.003310    2.539920
    10        8      272    0.002617    2.560857
    11        8      280    0.002069    2.577412
    12        8      288    0.001636    2.590502
    13        8      296    0.001294    2.600851
    14        8      304    0.001023    2.609035
    15        8      312    0.000809    2.615505
    16        8      320    0.000640    2.620621
    17        8      328    0.000506    2.624666
    18        8      336    0.000400    2.627865
    19        8      344    0.000316    2.630394
    20        8      352    0.000250    2.632394
    21        8      360    0.000198    2.633975
    22        8      368    0.000156    2.635225
    23       24      392    0.000156    2.638970
    24        8      400    0.000122    2.639947
    25       32      432    0.000156    2.644940
    26        8      440    0.000166    2.646272
    27        8      448    0.000211    2.647959
    28        8      456    0.000267    2.650095
    29        8      464    0.000338    2.652801
    30        8      472    0.000428    2.656229
    31        8      480    0.000543    2.660571
    32        8      488    0.000687    2.666070
    33        8      496    0.000871    2.673037
    34        8      504    0.001103    2.681861
    35        8      512    0.001397    2.693037
    36        8      520    0.001770    2.707195
    37        8      528    0.002242    2.725128
    38        8      536    0.002839    2.747842
    39        8      544    0.003597    2.776614
    40        8      552    0.004556    2.813059
    41        8      560    0.005770    2.859222
    42        8      568    0.007309    2.917696
    43        8      576    0.009258    2.991762
    44       64      640    0.010341    3.653555
    45       64      704    0.010341    4.315349
    46        8      712    0.009763    4.393450
    47        8      720    0.007717    4.455190
    48        8      728    0.006102    4.504007
    49        8      736    0.004825    4.542605
    50        8      744    0.003815    4.573124
    51        8      752    0.003016    4.597255
    52        8      760    0.002385    4.616335
    53        8      768    0.001886    4.631422
    54       24      792    0.001811    4.674894
    55        8      800    0.001689    4.688410
    56       32      832    0.001811    4.746373
    57        8      840    0.001932    4.761830
    58        8      848    0.002447    4.781409
    59        8      856    0.003100    4.806208
    60        8      864    0.003927    4.837621
    61        8      872    0.004974    4.877411
    62        8      880    0.006300    4.927812
    63        8      888    0.007980    4.991652
    64        8      896    0.010108    5.072517
    65       64      960    0.012467    5.870389
    66       64     1024    0.012467    6.668261
    67       64     1088    0.012467    7.466133
    68       64     1152    0.012467    8.264006
    69       64     1216    0.012467    9.061878
    70       64     1280    0.012467    9.859750
    71       48     1328    0.012467   10.458155
    72        8     1336    0.005231   10.500000

 Energy independent setup Thu Jan 25 21:49:14 2001
 delt cpu =    23.2  tot cpu =    23.2  tot wall =    43.0

 Compute solution for E =   30.0000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.71100000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.10016716E+04
 i =  2  lval =   3  stpote =  0.14152653E+02
 i =  3  lval =   3  stpote =  0.75840095E-04
 i =  4  lval =   5  stpote = -0.26325702E+03
Asymptotic region to R =       163.9366  in     64 regions
Iter =   1 c.s. =      4.07661049 (a.u)  rmsk=     0.44519500
Iter =   2 c.s. =      4.32273929 (a.u)  rmsk=     0.07126104
Iter =   3 c.s. =      4.31854178 (a.u)  rmsk=     0.00335695
Iter =   4 c.s. =      4.31809756 (a.u)  rmsk=     0.00048862
Iter =   5 c.s. =      4.31811488 (a.u)  rmsk=     0.00000700
Iter =   6 c.s. =      4.31811557 (a.u)  rmsk=     0.00000010
Iter =   7 c.s. =      4.31811557 (a.u)  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.23607093E+01-0.97508185E-01-0.40142532E+00-0.33542235E+00-0.98554275E+00
  0.13095910E+00 0.24209257E+00-0.20503337E-01-0.32677962E-01
     ROW  2
 -0.97508201E-01 0.97741755E-01-0.51493866E+00 0.14358702E+00 0.55860561E+00
 -0.18100099E-01-0.46334593E-01 0.12428228E-02 0.22857675E-02
     ROW  3
 -0.40142528E+00-0.51493868E+00 0.54809156E+00 0.27326777E-01 0.75397572E+00
 -0.42318001E-01-0.10020391E+00 0.80132657E-02 0.12241686E-01
     ROW  4
 -0.33542233E+00 0.14358697E+00 0.27326756E-01 0.40002308E+00 0.63349882E+00
 -0.13439527E+00-0.17959899E+00 0.16963078E-01 0.25818520E-01
     ROW  5
 -0.98554270E+00 0.55860542E+00 0.75397563E+00 0.63349884E+00 0.26911320E+01
 -0.26512913E+00-0.54336890E+00 0.43222542E-01 0.71203990E-01
     ROW  6
  0.13095909E+00-0.18100082E-01-0.42317995E-01-0.13439527E+00-0.26512913E+00
  0.10385793E+00 0.79868916E-01-0.32053549E-01-0.17935043E-01
     ROW  7
  0.24209256E+00-0.46334561E-01-0.10020390E+00-0.17959899E+00-0.54336890E+00
  0.79868916E-01 0.25643175E+00-0.15181677E-01-0.41510267E-01
     ROW  8
 -0.20503336E-01 0.12428204E-02 0.80132647E-02 0.16963079E-01 0.43222542E-01
 -0.32053549E-01-0.15181677E-01 0.30372761E-01 0.75283785E-02
     ROW  9
 -0.32677960E-01 0.22857635E-02 0.12241685E-01 0.25818520E-01 0.71203990E-01
 -0.17935043E-01-0.41510267E-01 0.75283785E-02 0.59069600E-01
 eigenphases
 -0.4619582E+00  0.1350019E-01  0.4707839E-01  0.6597396E-01  0.1288893E+00
  0.2625737E+00  0.7123633E+00  0.1014676E+01  0.1328595E+01
 eigenphase sum 0.311169E+01  scattering length=   0.02014
 eps+pi 0.625328E+01  eps+2*pi 0.939488E+01

Iter =   7 c.s. =      4.31811557 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 22:18:48 2001
 delt cpu =  1642.7  tot cpu =  1665.9  tot wall =  1817.0
Thu Jan 25 22:18:48 CST 2001
1609.048u 79.521s 30:40.59 91.7% 0+0k 7681+216io 58pf+0w
Thu Jan 25 22:18:48 CST 2001
2105.258u 91.013s 39:27.00 92.7% 0+0k 7866+305io 102pf+0w