1Entering Gaussian System, Link 0=g90
 Input=ch4s.inp
 Output=ch4s.out
 Initial command:
 /usr/local/gaussian/g90/l1.exe /usr/local/gaussian/g90scr/g90-14695.int-inp -scrdir /usr/local/gaussian/g90scr
1Entering Link 1 = /usr/local/gaussian/g90/l1.exe PID=     15977.

 This is part of the Gaussian 90(TM) system of programs.  It is
 copyright (c) 1990 by Gaussian, Inc., and is based on the
 Gaussian 88(TM) system copyright (c) 1988 by Gaussian, Inc., on
 the Gaussian 86(TM) system copyright (c) 1986 by Carnegie
 Mellon University, and on the Gaussian 82(TM) system copyright
 (c) 1983 by Carnegie Mellon University.  All rights reserved.
 This software is provided under license and may be used,
 copied transmitted, or stored only in accord with that written
 license.

 Cite this work as:
 Gaussian 90, Revision J, M. J. Frisch, M. Head-Gordon,
 G. W. Trucks, J. B. Foresman, H. B. Schlegel,
 K. Raghavachari, M. Robb, J. S. Binkley, C. Gonzalez,
 D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger,
 C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn,
 J. J. P. Stewart, S. Topiol, and J. A. Pople,
 Gaussian, Inc., Pittsburgh PA, 1990.

 ********************************************
 Gaussian 90:  IBM-RS6000-G90RevJ 10-Apr-1991
                  8-Mar-1993
 ********************************************
 %MEM=2000000
 --------------------------------------------
 # rhf/6-31G scf=direct pop=full test Gfinput
 --------------------------------------------
 1/29=10000/1;
 2/10=1,12=2/2;
 3/5=1,6=6,11=1,24=10,25=1,30=1/1,2,3;
 4/7=1/1;
 5/5=2,32=1,38=4/2;
 6/7=3,19=1,28=1/1;
 99/5=1,9=1/99;
 ----------------------
 CH4, very small BASIS.
 ----------------------
 Symbolic Z-matrix:
    Charge = 0 Multiplicity = 1
 C
 H     1     R
 H     1     R         2     T
 H     1     R         2     T         3     T         1
 H     1     R         2     T         3     T         -1
       Variables:
  R                     1.08335
  T                   109.47122
 ------------------------------------------------------------------------
                         Z-MATRIX (ANGSTROMS AND DEGREES)
 CD Cent Atom  N1     Length/X     N2    Alpha/Y     N3     Beta/Z      J
 ------------------------------------------------------------------------
   1   1  C
   2   2  H     1   1.083346(  1)
   3   3  H     1   1.083346(  2)   2  109.471(  5)
   4   4  H     1   1.083346(  3)   2  109.471(  6)   3  109.471(  8)   1
   5   5  H     1   1.083346(  4)   2  109.471(  7)   3  109.471(  9)  -1
 ------------------------------------------------------------------------
   5 TETRAHEDRAL ANGLES REPLACED.
                  Z-Matrix orientation:
 ----------------------------------------------------------
 Center     Atomic              Coordinates (Angstroms)
 Number     Number             X           Y           Z
 ----------------------------------------------------------
    1          6            .000000     .000000     .000000
    2          1            .000000     .000000    1.083346
    3          1           1.021388     .000000    -.361115
    4          1           -.510694     .884548    -.361115
    5          1           -.510694    -.884548    -.361115
 ----------------------------------------------------------
                    Distance matrix (angstroms):
              1          2          3          4          5
  1  C     .000000
  2  H    1.083346    .000000
  3  H    1.083346   1.769097    .000000
  4  H    1.083346   1.769097   1.769097    .000000
  5  H    1.083346   1.769097   1.769097   1.769097    .000000
                           Interatomic angles:
       H2-C1-H3=109.4712       H2-C1-H4=109.4712       H3-C1-H4=109.4712
       H2-C1-H5=109.4712       H3-C1-H5=109.4712       H4-C1-H5=109.4712
 STOICHIOMETRY    CH4
 FRAMEWORK GROUP  TD[O(C),4C3(H)]
 DEG. OF FREEDOM    1
 FULL POINT GROUP                 TD      NOP 24
 LARGEST ABELIAN SUBGROUP         D2      NOP  4
 LARGEST CONCISE ABELIAN SUBGROUP D2      NOP  4
                   Standard orientation:
 ----------------------------------------------------------
 Center     Atomic              Coordinates (Angstroms)
 Number     Number             X           Y           Z
 ----------------------------------------------------------
    1          6            .000000     .000000     .000000
    2          1            .625470     .625470     .625470
    3          1           -.625470    -.625470     .625470
    4          1            .625470    -.625470    -.625470
    5          1           -.625470     .625470    -.625470
 ----------------------------------------------------------
 Rotational constants (GHZ):    160.2245314    160.2245314    160.2245314
 Isotopes: C-12,H-1,H-1,H-1,H-1
 Standard basis: 6-31G     (S, S=P, 6D, 7F)
 Basis set in the form of general basis input:
  1 0
 S    6 1.00
   .3047524880D+04   .1834737130D-02
   .4573695180D+03   .1403732280D-01
   .1039486850D+03   .6884262220D-01
   .2921015530D+02   .2321844430D+00
   .9286662960D+01   .4679413480D+00
   .3163926960D+01   .3623119850D+00
 SP   3 1.00
   .7868272350D+01  -.1193324200D+00   .6899906660D-01
   .1881288540D+01  -.1608541520D+00   .3164239610D+00
   .5442492580D+00   .1143456440D+01   .7443082910D+00
 SP   1 1.00
   .1687144782D+00   .1000000000D+01   .1000000000D+01
 ****
  2 0
 S    3 1.00
   .1873113696D+02   .3349460434D-01
   .2825394365D+01   .2347269535D+00
   .6401216923D+00   .8137573262D+00
 S    1 1.00
   .1612777588D+00   .1000000000D+01
 ****
  3 0
 S    3 1.00
   .1873113696D+02   .3349460434D-01
   .2825394365D+01   .2347269535D+00
   .6401216923D+00   .8137573262D+00
 S    1 1.00
   .1612777588D+00   .1000000000D+01
 ****
  4 0
 S    3 1.00
   .1873113696D+02   .3349460434D-01
   .2825394365D+01   .2347269535D+00
   .6401216923D+00   .8137573262D+00
 S    1 1.00
   .1612777588D+00   .1000000000D+01
 ****
  5 0
 S    3 1.00
   .1873113696D+02   .3349460434D-01
   .2825394365D+01   .2347269535D+00
   .6401216923D+00   .8137573262D+00
 S    1 1.00
   .1612777588D+00   .1000000000D+01
 ****

 THERE ARE   5 SYMMETRY ADAPTED BASIS FUNCTIONS OF A   SYMMETRY.
 THERE ARE   4 SYMMETRY ADAPTED BASIS FUNCTIONS OF B1  SYMMETRY.
 THERE ARE   4 SYMMETRY ADAPTED BASIS FUNCTIONS OF B2  SYMMETRY.
 THERE ARE   4 SYMMETRY ADAPTED BASIS FUNCTIONS OF B3  SYMMETRY.
 Crude estimate of integral set expansion from redundant integrals=1.264.
 Integral buffers will be    262144 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
  17 basis functions      38 primitive gaussians
   5 alpha electrons        5 beta electrons
     nuclear repulsion energy   13.5179114902 Hartrees.
 ONE-ELECTRON INTEGRAL SYMMETRY USED IN STVINT.
 RysSet:  KIntrp=      303   KCalc=        0   KAssym=      522
 The smallest eigenvalue of the overlap matrix is  2.008D-02
 DipDrv:  will hold 34 matrices at once.
 PROJECTED INDO GUESS.
 INITIAL GUESS ORBITAL SYMMETRIES.
       OCCUPIED  (A1) (A1) (T2) (T2) (T2)
       VIRTUAL   (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2)
                 (T2) (T2)
 Alpha deviation from unit magnitude is 1.67D-15 for orbital   10.
 Alpha deviation from orthogonality  is 2.66D-15 for orbitals  15  14.
 Warning!  Cutoffs for single-point calculations used.
 A Direct SCF calculation will be performed.
 Using DIIS extrapolation.
 Fock matrices will be formed incrementally for   5 cycles.
 Closed shell SCF:
 Requested convergence on density matrix=1.00D-04 within  64 cycles.
 Requested convergence on         energy=5.00D-05.
 Two-electron integral symmetry used by symmetrizing Fock matrices.
 Keep R1 integrals in memory in canonical form, NReq=      538368.
 IEnd=     26573 IEndB=     26573 NGot=   2000000 MDV=   1970147
 LenX=   1970147
 Fock matrices symmetrized in FoFDir.
 Convergence on energy, delta-E=9.67D-06
 SCF DONE:  E(RHF) =  -40.1805490290     A.U. AFTER    5 CYCLES
             CONVG  =     .1120D-03             -V/T =  1.9983
             S**2   =    .0000
 KE= 4.024726711332D+01 PE=-1.200679150611D+02 EE= 2.612218742859D+01
 Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0.

 **********************************************************************

            Population analysis using the SCF density.

 **********************************************************************

 ORBITAL SYMMETRIES.
       OCCUPIED  (A1) (A1) (T2) (T2) (T2)
       VIRTUAL   (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T2) (T2) (T2)
                 (A1) (A1)
  THE ELECTRONIC STATE IS 1-A1.
 Alpha eigenvalues --  -11.20441   -.94863   -.54477   -.54477   -.54477
 Alpha eigenvalues --     .25598    .32504    .32504    .32504    .74090
 Alpha eigenvalues --     .74090    .74090   1.23197   1.23197   1.23197
 Alpha eigenvalues --    1.25045   1.32891
     Molecular Orbital Coefficients
                           1         2         3         4         5
                         (A1)      (A1)      (T2)      (T2)      (T2)
     EIGENVALUES --   -11.20441   -.94863   -.54477   -.54477   -.54477
   1 1   C  1S           .99614   -.19714    .00000    .00000    .00000
   2        2S           .02554    .37383    .00000    .00000    .00000
   3        2PX          .00000    .00000    .39485   -.15079    .11161
   4        2PY          .00000    .00000    .02359    .29792    .31904
   5        2PZ          .00000    .00000    .18611    .28215   -.27723
   6        3S          -.01656    .38296    .00000    .00000    .00000
   7        3PX          .00000    .00000    .20004   -.07639    .05654
   8        3PY          .00000    .00000    .01195    .15093    .16163
   9        3PZ          .00000    .00000    .09429    .14294   -.14045
  10 2   H  1S          -.00011    .13490    .24072    .17093    .06109
  11        2S           .00314    .03302    .19575    .13900    .04968
  12 3   H  1S          -.00011    .13490   -.09251    .05376   -.28186
  13        2S           .00314    .03302   -.07522    .04372   -.22920
  14 4   H  1S          -.00011    .13490    .07372   -.29101    .02779
  15        2S           .00314    .03302    .05995   -.23664    .02260
  16 5   H  1S          -.00011    .13490   -.22193    .06632    .19298
  17        2S           .00314    .03302   -.18047    .05393    .15693
                           6         7         8         9        10
                         (A1)      (T2)      (T2)      (T2)      (T2)
     EIGENVALUES --      .25598    .32504    .32504    .32504    .74090
   1 1   C  1S          -.15357    .00000    .00000    .00000    .00000
   2        2S           .09213    .00000    .00000    .00000    .00000
   3        2PX          .00000   -.00303   -.09695   -.28312    .19916
   4        2PY          .00000    .29474    .04803   -.01960    .25335
   5        2PZ          .00000   -.05178    .27903   -.09499   -.69966
   6        3S          2.79181    .00000    .00000    .00000    .00000
   7        3PX          .00000   -.01522   -.48737  -1.42333   -.37832
   8        3PY          .00000   1.48176    .24145   -.09852   -.48125
   9        3PZ          .00000   -.26033   1.40278   -.47755   1.32905
  10 2   H  1S           .00343   -.03833   -.03676    .06353   -.10193
  11        2S         -1.04351   -.93817   -.89978   1.55510   -.03625
  12 3   H  1S           .00343    .05487   -.05239   -.03318   -.47517
  13        2S         -1.04351   1.34313  -1.28233   -.81223   -.16897
  14 4   H  1S           .00343    .03930    .06773    .02692    .26620
  15        2S         -1.04351    .96185   1.65792    .65898    .09466
  16 5   H  1S           .00343   -.05584    .02142   -.05727    .31090
  17        2S         -1.04351  -1.36681    .52420  -1.40184    .11055
                          11        12        13        14        15
                         (T2)      (T2)      (T2)      (T2)      (T2)
     EIGENVALUES --      .74090    .74090   1.23197   1.23197   1.23197
   1 1   C  1S           .00000    .00000    .00000    .00000    .00000
   2        2S           .00000    .00000    .00000    .00000    .00000
   3        2PX         -.68790    .28374    .44650   -.57655    .52423
   4        2PY         -.21349   -.69542   -.30340    .42789    .72901
   5        2PZ         -.27312   -.17105   -.71776   -.53953    .01796
   6        3S           .00000    .00000    .00000    .00000    .00000
   7        3PX         1.30670   -.53898   -.51543    .66555   -.60516
   8        3PY          .40554   1.32100    .35023   -.49395   -.84154
   9        3PZ          .51880    .32491    .82856    .62281   -.02073
  10 2   H  1S          -.48438   -.24033    .38111    .45639   -.84304
  11        2S          -.17224   -.08546   -.58136   -.69622   1.28603
  12 3   H  1S           .25911    .09924    .57091    .25922    .81922
  13        2S           .09214    .03529   -.87091   -.39543  -1.24969
  14 4   H  1S          -.08301    .47436   -.97333    .30833    .14771
  15        2S          -.02952    .16868   1.48478   -.47034   -.22533
  16 5   H  1S           .30829   -.33328    .02131  -1.02394   -.12389
  17        2S           .10963   -.11851   -.03251   1.56198    .18900
                          16        17
                         (A1)      (A1)
     EIGENVALUES --     1.25045   1.32891
   1 1   C  1S           .10279   -.08222
   2        2S         -1.09085  -2.13597
   3        2PX          .00000    .00000
   4        2PY          .00000    .00000
   5        2PZ          .00000    .00000
   6        3S          1.51147   5.19967
   7        3PX          .00000    .00000
   8        3PY          .00000    .00000
   9        3PZ          .00000    .00000
  10 2   H  1S           .61819   -.36837
  11        2S          -.58891   -.94829
  12 3   H  1S           .61819   -.36837
  13        2S          -.58891   -.94829
  14 4   H  1S           .61819   -.36837
  15        2S          -.58891   -.94829
  16 5   H  1S           .61819   -.36837
  17        2S          -.58891   -.94829
      DENSITY MATRIX.
                           1         2         3         4         5
   1 1   C  1S          2.06234
   2        2S          -.09652    .28080
   3        2PX          .00000    .00000    .38220
   4        2PY          .00000    .00000    .00000    .38220
   5        2PZ          .00000    .00000    .00000    .00000    .38220
   6        3S          -.18399    .28548    .00000    .00000    .00000
   7        3PX          .00000    .00000    .19363    .00000    .00000
   8        3PY          .00000    .00000    .00000    .19363    .00000
   9        3PZ          .00000    .00000    .00000    .00000    .19363
  10 2   H  1S          -.05340    .10085    .15218    .15218    .15218
  11        2S          -.00676    .02485    .12375    .12375    .12375
  12 3   H  1S          -.05340    .10085   -.15218   -.15218    .15218
  13        2S          -.00676    .02485   -.12375   -.12375    .12375
  14 4   H  1S          -.05340    .10085    .15218   -.15218   -.15218
  15        2S          -.00676    .02485    .12375   -.12375   -.12375
  16 5   H  1S          -.05340    .10085   -.15218    .15218   -.15218
  17        2S          -.00676    .02485   -.12375    .12375   -.12375
                           6         7         8         9        10
   6        3S           .29387
   7        3PX          .00000    .09809
   8        3PY          .00000    .00000    .09809
   9        3PZ          .00000    .00000    .00000    .09809
  10 2   H  1S           .10332    .07710    .07710    .07710    .21818
  11        2S           .02518    .06269    .06269    .06269    .15673
  12 3   H  1S           .10332   -.07710   -.07710    .07710   -.02420
  13        2S           .02518   -.06269   -.06269    .06269   -.04037
  14 4   H  1S           .10332    .07710   -.07710   -.07710   -.02420
  15        2S           .02518    .06269   -.06269   -.06269   -.04037
  16 5   H  1S           .10332   -.07710    .07710   -.07710   -.02420
  17        2S           .02518   -.06269    .06269   -.06269   -.04037
                          11        12        13        14        15
  11        2S           .12241
  12 3   H  1S          -.04037    .21818
  13        2S          -.03787    .15673    .12241
  14 4   H  1S          -.04037   -.02420   -.04037    .21818
  15        2S          -.03787   -.04037   -.03787    .15673    .12241
  16 5   H  1S          -.04037   -.02420   -.04037   -.02420   -.04037
  17        2S          -.03787   -.04037   -.03787   -.04037   -.03787
                          16        17
  16 5   H  1S           .21818
  17        2S           .15673    .12241
    Full Mulliken population analysis:
                           1         2         3         4         5
   1 1   C  1S          2.06234
   2        2S          -.02114    .28080
   3        2PX          .00000    .00000    .38220
   4        2PY          .00000    .00000    .00000    .38220
   5        2PZ          .00000    .00000    .00000    .00000    .38220
   6        3S          -.03390    .23189    .00000    .00000    .00000
   7        3PX          .00000    .00000    .11032    .00000    .00000
   8        3PY          .00000    .00000    .00000    .11032    .00000
   9        3PZ          .00000    .00000    .00000    .00000    .11032
  10 2   H  1S          -.00180    .02803    .03282    .03282    .03282
  11        2S          -.00063    .01190    .01900    .01900    .01900
  12 3   H  1S          -.00180    .02803    .03282    .03282    .03282
  13        2S          -.00063    .01190    .01900    .01900    .01900
  14 4   H  1S          -.00180    .02803    .03282    .03282    .03282
  15        2S          -.00063    .01190    .01900    .01900    .01900
  16 5   H  1S          -.00180    .02803    .03282    .03282    .03282
  17        2S          -.00063    .01190    .01900    .01900    .01900
                           6         7         8         9        10
   6        3S           .29387
   7        3PX          .00000    .09809
   8        3PY          .00000    .00000    .09809
   9        3PZ          .00000    .00000    .00000    .09809
  10 2   H  1S           .03923    .02295    .02295    .02295    .21818
  11        2S           .01782    .02105    .02105    .02105    .10318
  12 3   H  1S           .03923    .02295    .02295    .02295   -.00047
  13        2S           .01782    .02105    .02105    .02105   -.00613
  14 4   H  1S           .03923    .02295    .02295    .02295   -.00047
  15        2S           .01782    .02105    .02105    .02105   -.00613
  16 5   H  1S           .03923    .02295    .02295    .02295   -.00047
  17        2S           .01782    .02105    .02105    .02105   -.00613
                          11        12        13        14        15
  11        2S           .12241
  12 3   H  1S          -.00613    .21818
  13        2S          -.01538    .10318    .12241
  14 4   H  1S          -.00613   -.00047   -.00613    .21818
  15        2S          -.01538   -.00613   -.01538    .10318    .12241
  16 5   H  1S          -.00613   -.00047   -.00613   -.00047   -.00613
  17        2S          -.01538   -.00613   -.01538   -.00613   -.01538
                          16        17
  16 5   H  1S           .21818
  17        2S           .10318    .12241
     Gross orbital populations:
                           1
   1 1   C  1S          1.99757
   2        2S           .65126
   3        2PX          .69980
   4        2PY          .69980
   5        2PZ          .69980
   6        3S           .72006
   7        3PX          .38440
   8        3PY          .38440
   9        3PZ          .38440
  10 2   H  1S           .53433
  11        2S           .31030
  12 3   H  1S           .53433
  13        2S           .31030
  14 4   H  1S           .53433
  15        2S           .31030
  16 5   H  1S           .53433
  17        2S           .31030
          Condensed to atoms (all electrons):
              1          2          3          4          5
  1  C    5.093500    .382001    .382001    .382001    .382001
  2  H     .382001    .546943   -.028107   -.028107   -.028107
  3  H     .382001   -.028107    .546943   -.028107   -.028107
  4  H     .382001   -.028107   -.028107    .546943   -.028107
  5  H     .382001   -.028107   -.028107   -.028107    .546943
 Total atomic charges:
              1
  1  C    -.621505
  2  H     .155376
  3  H     .155376
  4  H     .155376
  5  H     .155376
 Sum of Mulliken charges=    .00000
 Atomic charges with hydrogens summed into heavy atoms:
              1
  1  C     .000000
  2  H     .000000
  3  H     .000000
  4  H     .000000
  5  H     .000000
 Sum of Mulliken charges=    .00000
 Charge=  .0000 esu
 Dipole moment (Debye):
    X=      .0000    Y=      .0000    Z=      .0000  Tot=      .0000
 Quadrupole moment (Debye-Ang):
   XX=    -8.4186   YY=    -8.4186   ZZ=    -8.4186
   XY=      .0000   XZ=      .0000   YZ=      .0000
 Octapole moment (Debye-Ang**2):
  XXX=      .0000  YYY=      .0000  ZZZ=      .0000  XYY=      .0000
  XXY=      .0000  XXZ=      .0000  XZZ=      .0000  YZZ=      .0000
  YYZ=      .0000  XYZ=      .6174
 Hexadecapole moment (Debye-Ang**3):
 XXXX=   -15.8489 YYYY=   -15.8489 ZZZZ=   -15.8489 XXXY=      .0000
 XXXZ=      .0000 YYYX=      .0000 YYYZ=      .0000 ZZZX=      .0000
 ZZZY=      .0000 XXYY=    -4.8833 XXZZ=    -4.8833 YYZZ=    -4.8833
 XXYZ=      .0000 YYXZ=      .0000 ZZXY=      .0000
 N-N= 1.351791149024D+01 E-N=-1.200701880432D+02  KE= 4.024726711332D+01
 Symmetry A    KE= 3.453692513374D+01
 Symmetry B1   KE= 1.903447326526D+00
 Symmetry B2   KE= 1.903447326526D+00
 Symmetry B3   KE= 1.903447326526D+00

 Test job not archived.
 1\1\GINC-SERVER\SP\RHF\6-31G\C1H4\LUCCHESE\8-Mar-1993\0\\# RHF/6-31G S
 CF=DIRECT POP=FULL TEST GFINPUT\\CH4, very small BASIS.\\0,1\C\H,1,1.0
 83346\H,1,1.083346,2,109.47122\H,1,1.083346,2,109.47122,3,109.47122,1\
 H,1,1.083346,2,109.47122,3,109.47122,-1\\Version=IBM-RS6000-G90RevJ\St
 ate=1-A1\HF=-40.180549\RMSD=1.120e-04\Dipole=0.,0.,-0.\PG=TD [O(C1),4C
 3(H1)]\\@


 THE PROGRESS OF RIVERS TO THE SEA IS NOT AS RAPID
 AS THAT OF MAN TO ERROR.
                                              -- VOLTAIRE
 Job cpu time:  0 days  0 hours  0 minutes  4.6 seconds.
 File lengths (MBytes):  RWF=    5 Int=    0 D2E=    0 Chk=    1 Scr=    0
0Normal termination of Gaussian 90.