/scratch2/people/lucchese/polyangd/tests/test14.job
test14 - sf6, G90 output, polarization potential, and Rotate
Thu Jan 25 16:27:17 CST 2001
0.064u 0.052s 0:00.12 91.6% 0+0k 0+0io 0pf+0w

**********************************************************************
SetUp - set up command scripts
**********************************************************************

wrkdir = tst156130
Moving to /scratch2/lucchese/tst156130

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp  'Oh'   # point group to use
 DoSym  'yes'  # compute the blms
 LMax   15     # maximum l to be used for wave functions
 LMaxI  40     # maximum l value used to determine numerical angular grids
 LMaxA  12     # maximum l included at large r
 LMax2  30     # maximum l to be used for potentials
 PrintFlag 0   # no extra printing
 MMax   -1     # maximum m to use (-1 means use LMax)
 MMaxI  -1     # maximum m to use in angular integrations (-1 means us LMaxI)
 ECenter  0.0 0.0 0.0 # center for exapnding about
 RMax   14.0   # maximum R in inner grid
 EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0  0
  End
  PCutRd  1.0e-8  # cutoff factor used in the radial grids
  RotateForm
 5      # five rotations which interchange the nuclei
 3 45.0
 1 54.73561032
 3 120.0
 1 -54.73561032
 3 -45.0 #
  0.0 0.0 0.0 # do not translate
  End
  VCorr 'PZ'
  AsyPol
 0.25   # SwitchD, distance where switching function is down to 0.1
 7     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
16.198 # value of the spherical polarizability
 2     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 3     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 4     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 5     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 6     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 7     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
 End
 ScatEng 1 1.0      # list of scattering energies
 FegeEng 0.488398   # Energy correction used in the fege potential
 ScatContSym 'A1G' # Scattering symmetry
 LMaxK   10    # Maximum l in the K matirx
IterMax  15    # Maximum Number of iterations
GrnType  0     # type of Green function (0 -> K matrix, 1 -> T matrix)
CnvgKMat 1.0e-6 # Convergence of the K matrix
NIntReg  10    # Number of integration regions, number needed is controlled
               # by the instability in the integrator
LMaxEx   -1    # -1 implies all terms (2*LMax) alternatively one can use just
               # LMax to save computer time

**********************************************************************
Convert - Convert file /scratch2/people/lucchese/polyangd/tests/test14.g90
          using the g90 conversion program
**********************************************************************


----------------------------------------------------------------------
g90cnv - G90 conversion program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:27:19 2001
 Unit which contains output from g90 (iuin) =   50
 Output unit for geometry information (iugeom) =   51
 Output unit for orbital information (iuorb) =   82
 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
 Convert G90 output Thu Jan 25 16:27:19 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0
Thu Jan 25 16:27:19 CST 2001
0.154u 0.115s 0:00.35 74.2% 0+0k 6+3io 0pf+0w

**********************************************************************
GetBlms - Compute blms for point group Oh
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:27:19 2001
 lmax =   30
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120       1 -1 -1  1  1 -1 -1
 B2G       1         3        120      -1  1 -1  1 -1  1 -1
 B3G       1         4        120      -1 -1  1  1 -1 -1  1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120       1 -1 -1 -1 -1  1  1
 B2U       1         7        120      -1  1 -1 -1  1 -1  1
 B3U       1         8        120      -1 -1  1 -1  1  1 -1
 Generate blms Thu Jan 25 16:27:19 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:27:19 2001
 lmax =   15
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group   43
 iprnfg =    0
 calculation type (calctp) = compute
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information
 Number of symmetry operations =    48
 symmetry operations
   1   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00
   2   0.100000E+01   0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   3  -0.100000E+01  -0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   4   0.100000E+01  -0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   5  -0.100000E+01   0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   6   0.100000E+01   0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   7  -0.100000E+01  -0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   8   0.100000E+01  -0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
   9  -0.100000E+01   0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
  10   0.100000E+01   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  11   0.100000E+01  -0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  12   0.100000E+01   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
  13   0.100000E+01   0.000000E+00  -0.100000E+01   0.180000E+03   0.200000E+01
  14   0.000000E+00   0.100000E+01   0.100000E+01   0.180000E+03   0.200000E+01
  15   0.000000E+00   0.100000E+01  -0.100000E+01   0.180000E+03   0.200000E+01
  16   0.100000E+01   0.000000E+00   0.000000E+00   0.900000E+02   0.200000E+01
  17   0.000000E+00   0.100000E+01   0.000000E+00   0.900000E+02   0.200000E+01
  18   0.000000E+00   0.000000E+00   0.100000E+01   0.900000E+02   0.200000E+01
  19   0.100000E+01   0.000000E+00   0.000000E+00  -0.900000E+02   0.200000E+01
  20   0.000000E+00   0.100000E+01   0.000000E+00  -0.900000E+02   0.200000E+01
  21   0.000000E+00   0.000000E+00   0.100000E+01  -0.900000E+02   0.200000E+01
  22   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.200000E+01
  23   0.000000E+00   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  24   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
  25   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.300000E+01
  26   0.100000E+01   0.000000E+00   0.000000E+00   0.900000E+02   0.300000E+01
  27   0.000000E+00   0.100000E+01   0.000000E+00   0.900000E+02   0.300000E+01
  28   0.000000E+00   0.000000E+00   0.100000E+01   0.900000E+02   0.300000E+01
  29   0.100000E+01   0.000000E+00   0.000000E+00  -0.900000E+02   0.300000E+01
  30   0.000000E+00   0.100000E+01   0.000000E+00  -0.900000E+02   0.300000E+01
  31   0.000000E+00   0.000000E+00   0.100000E+01  -0.900000E+02   0.300000E+01
  32   0.100000E+01   0.100000E+01   0.100000E+01   0.600000E+02   0.300000E+01
  33  -0.100000E+01  -0.100000E+01   0.100000E+01   0.600000E+02   0.300000E+01
  34   0.100000E+01  -0.100000E+01  -0.100000E+01   0.600000E+02   0.300000E+01
  35  -0.100000E+01   0.100000E+01  -0.100000E+01   0.600000E+02   0.300000E+01
  36   0.100000E+01   0.100000E+01   0.100000E+01  -0.600000E+02   0.300000E+01
  37  -0.100000E+01  -0.100000E+01   0.100000E+01  -0.600000E+02   0.300000E+01
  38   0.100000E+01  -0.100000E+01  -0.100000E+01  -0.600000E+02   0.300000E+01
  39  -0.100000E+01   0.100000E+01  -0.100000E+01  -0.600000E+02   0.300000E+01
  40   0.100000E+01   0.000000E+00   0.000000E+00   0.000000E+00   0.100000E+01
  41   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  42   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.100000E+01
  43   0.100000E+01   0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  44   0.100000E+01  -0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  45   0.100000E+01   0.000000E+00   0.100000E+01   0.000000E+00   0.100000E+01
  46   0.100000E+01   0.000000E+00  -0.100000E+01   0.000000E+00   0.100000E+01
  47   0.000000E+00   0.100000E+01   0.100000E+01   0.000000E+00   0.100000E+01
  48   0.000000E+00   0.100000E+01  -0.100000E+01   0.000000E+00   0.100000E+01
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    24    23    22    25    42    41    40
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         12       1  1  1  1  1  1  1
 EG        2         4         12       1  1  1  1  1  1  1
 T1G       1         5         12      -1 -1  1  1 -1 -1  1
 T1G       2         6         12      -1  1 -1  1 -1  1 -1
 T1G       3         7         12       1 -1 -1  1  1 -1 -1
 T2G       1         8         16      -1 -1  1  1 -1 -1  1
 T2G       2         9         16      -1  1 -1  1 -1  1 -1
 T2G       3        10         16       1 -1 -1  1  1 -1 -1
 A1U       1        11          3       1  1  1 -1 -1 -1 -1
 A2U       1        12          7       1  1  1 -1 -1 -1 -1
 EU        1        13          9       1  1  1 -1 -1 -1 -1
 EU        2        14          9       1  1  1 -1 -1 -1 -1
 T1U       1        15         20      -1 -1  1 -1  1  1 -1
 T1U       2        16         20      -1  1 -1 -1  1 -1  1
 T1U       3        17         20       1 -1 -1 -1 -1  1  1
 T2U       1        18         16      -1 -1  1 -1  1  1 -1
 T2U       2        19         16      -1  1 -1 -1  1 -1  1
 T2U       3        20         16       1 -1 -1 -1 -1  1  1
 Generate blms Thu Jan 25 16:27:38 2001
 delt cpu =    18.2  tot cpu =    18.2  tot wall =    19.0
Thu Jan 25 16:27:38 CST 2001
18.283u 0.319s 0:19.24 96.6% 0+0k 15+4io 0pf+0w

**********************************************************************
ExpOrb - create grid and expand orbitals
**********************************************************************

Change molecular orientation using RotateForm
 Begining timer Thu Jan 25 16:27:38 2001

----------------------------------------------------------------------
Rotate - Rotate and Translate the Molecule
----------------------------------------------------------------------

Unit for input of geometry (iugeom) =   81
Unit for input of basis function and orbital information (iuorb) =   83
Unit for output of geometry information (iugeomo) =    51
Unit for output of basis function and orbital information (iuorbo) =   82
Print flag (iPrnFg) =     0
Number of rotation (NumRot) =    5
Rotation axis =  3 or z  angle =  45.00000 Degs
Rotation axis =  1 or x  angle =  54.73561 Degs
Rotation axis =  3 or z  angle = 120.00000 Degs
Rotation axis =  1 or x  angle = -54.73561 Degs
Rotation axis =  3 or z  angle = -45.00000 Degs
Translate molecule using    0.00000   0.00000   0.00000
SF6, Big BASIS.
 Rotations done Thu Jan 25 16:27:38 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0
Thu Jan 25 16:27:38 CST 2001
0.206u 0.140s 0:00.46 73.9% 0+0k 6+4io 2pf+0w

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Unit for geometry information (iUGeom) =   51
Unit fo basis function and orbital coefficients (iUOrb) =   82
Unit for the generated grid (iUGrd) =   54
Maximum R in the grid (RMax) =    14.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV

    1  Center at =     0.00000  Alpha Max = 0.93413E+05
    2  Center at =     2.94840  Alpha Max = 0.11427E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.34488E-04     0.00110
    2    8    40    0.36788E-04     0.00140
    3    8    48    0.46598E-04     0.00177
    4    8    56    0.59024E-04     0.00224
    5    8    64    0.74764E-04     0.00284
    6    8    72    0.94700E-04     0.00360
    7    8    80    0.11995E-03     0.00456
    8    8    88    0.15194E-03     0.00577
    9    8    96    0.19246E-03     0.00731
   10    8   104    0.24378E-03     0.00926
   11    8   112    0.30879E-03     0.01173
   12    8   120    0.39113E-03     0.01486
   13    8   128    0.49544E-03     0.01883
   14    8   136    0.62755E-03     0.02385
   15    8   144    0.79490E-03     0.03021
   16    8   152    0.10069E-02     0.03826
   17    8   160    0.12754E-02     0.04846
   18    8   168    0.16155E-02     0.06139
   19    8   176    0.20463E-02     0.07776
   20    8   184    0.25919E-02     0.09849
   21    8   192    0.32831E-02     0.12476
   22    8   200    0.41586E-02     0.15803
   23    8   208    0.52676E-02     0.20017
   24    8   216    0.66723E-02     0.25355
   25    8   224    0.84516E-02     0.32116
   26    8   232    0.10705E-01     0.40680
   27   64   296    0.10990E-01     1.11015
   28   64   360    0.10990E-01     1.81349
   29   64   424    0.10990E-01     2.51684
   30    8   432    0.10990E-01     2.60475
   31    8   440    0.89913E-02     2.67668
   32    8   448    0.71093E-02     2.73356
   33    8   456    0.56212E-02     2.77853
   34    8   464    0.44446E-02     2.81409
   35    8   472    0.35143E-02     2.84220
   36    8   480    0.27787E-02     2.86443
   37    8   488    0.21971E-02     2.88201
   38    8   496    0.17372E-02     2.89590
   39    8   504    0.13736E-02     2.90689
   40    8   512    0.10861E-02     2.91558
   41    8   520    0.85872E-03     2.92245
   42    8   528    0.67898E-03     2.92788
   43    8   536    0.53686E-03     2.93218
   44    8   544    0.42449E-03     2.93557
   45    8   552    0.33563E-03     2.93826
   46    8   560    0.26538E-03     2.94038
   47    8   568    0.20983E-03     2.94206
   48    8   576    0.16591E-03     2.94339
   49    8   584    0.13118E-03     2.94444
   50    8   592    0.10372E-03     2.94527
   51   24   616    0.98608E-04     2.94763
   52    8   624    0.95992E-04     2.94840
   53   32   656    0.98608E-04     2.95156
   54    8   664    0.10518E-03     2.95240
   55    8   672    0.13323E-03     2.95346
   56    8   680    0.16876E-03     2.95481
   57    8   688    0.21376E-03     2.95652
   58    8   696    0.27076E-03     2.95869
   59    8   704    0.34297E-03     2.96143
   60    8   712    0.43442E-03     2.96491
   61    8   720    0.55027E-03     2.96931
   62    8   728    0.69701E-03     2.97489
   63    8   736    0.88288E-03     2.98195
   64    8   744    0.11183E-02     2.99090
   65    8   752    0.14165E-02     3.00223
   66    8   760    0.17943E-02     3.01658
   67    8   768    0.22727E-02     3.03476
   68    8   776    0.28788E-02     3.05779
   69    8   784    0.36465E-02     3.08697
   70    8   792    0.46189E-02     3.12392
   71    8   800    0.58506E-02     3.17072
   72    8   808    0.74107E-02     3.23001
   73    8   816    0.93869E-02     3.30510
   74    8   824    0.11890E-01     3.40022
   75   64   888    0.13657E-01     4.27425
   76   64   952    0.13657E-01     5.14828
   77   64  1016    0.13657E-01     6.02230
   78   64  1080    0.13657E-01     6.89633
   79   64  1144    0.13657E-01     7.77035
   80   64  1208    0.13657E-01     8.64438
   81   64  1272    0.13657E-01     9.51840
   82   64  1336    0.13657E-01    10.39243
   83   64  1400    0.13657E-01    11.26645
   84   64  1464    0.13657E-01    12.14048
   85   64  1528    0.13657E-01    13.01450
   86   64  1592    0.13657E-01    13.88853
   87    8  1600    0.13657E-01    13.99778
   88    8  1608    0.27730E-03    14.00000

----------------------------------------------------------------------
anggct - Program to generate angular functions
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:27:39 2001
Maximum scattering l (lmaxs) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Minimum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (pcutar) =  0.10000000E-07
Input unit for full symmetry blms (iuins) =   40
Input unit for abelian sub-group blms (iuini) =   42
Unit for geometry information (iugeom) =   51
Unit for radial grid information (iugrd) =   54
Output unit for angular grid and functions (iuang) =   41
Output unit for angular grid cutoffs (iuanrd) =   62
Print flag (iprnfg) =    0
 Actual value of lmasym found =     15
Number of regions of the same l expansion (NAngReg) =   12
 Point group from iuins is Oh
 From iuins nthd =    2  nphid =    4  nabop =    7

 Number of radial functions in full symmetry
   1 Symmetry type A1G   1  Number of radial functions =      8
   2 Symmetry type A2G   1  Number of radial functions =      4
   3 Symmetry type EG    1  Number of radial functions =     12
   4 Symmetry type EG    2  Number of radial functions =     12
   5 Symmetry type T1G   1  Number of radial functions =     12
   6 Symmetry type T1G   2  Number of radial functions =     12
   7 Symmetry type T1G   3  Number of radial functions =     12
   8 Symmetry type T2G   1  Number of radial functions =     16
   9 Symmetry type T2G   2  Number of radial functions =     16
  10 Symmetry type T2G   3  Number of radial functions =     16
  11 Symmetry type A1U   1  Number of radial functions =      3
  12 Symmetry type A2U   1  Number of radial functions =      7
  13 Symmetry type EU    1  Number of radial functions =      9
  14 Symmetry type EU    2  Number of radial functions =      9
  15 Symmetry type T1U   1  Number of radial functions =     20
  16 Symmetry type T1U   2  Number of radial functions =     20
  17 Symmetry type T1U   3  Number of radial functions =     20
  18 Symmetry type T2U   1  Number of radial functions =     16
  19 Symmetry type T2U   2  Number of radial functions =     16
  20 Symmetry type T2U   3  Number of radial functions =     16

 Number of radial functions in abelian subgroup
   1 Symmetry type AG    1  Number of radial functions =    136
   2 Symmetry type B1G   1  Number of radial functions =    120
   3 Symmetry type B2G   1  Number of radial functions =    120
   4 Symmetry type B3G   1  Number of radial functions =    120
   5 Symmetry type AU    1  Number of radial functions =    105
   6 Symmetry type B1U   1  Number of radial functions =    120
   7 Symmetry type B2U   1  Number of radial functions =    120
   8 Symmetry type B3U   1  Number of radial functions =    120

 For analytic integrations ntheta =     16  nphi =     16
 For numerical integrations ntheti =     32 nphii =     31

 Maximum parameters needed
 Parameter         Value  Value Needed
     maxlm           120            20
    maxlma           680           136
    maxlmh           400            36
    maxthe            58            16
    maxphi           110            16
    maxthi           112            32
    maxpii           220            31
    maxfun          2601           256
    maxfub         10201           961
 Define angular grid Thu Jan 25 16:27:42 2001
 delt cpu =     3.6  tot cpu =     3.6  tot wall =     3.0
3.625u 0.502s 0:04.48 91.9% 0+0k 6+14io 2pf+0w

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =  -82
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Output file for rotated and typed orbitals (iUOrbSym) =   52
 Begining timer Thu Jan 25 16:27:43 2001

 R of maximum density
     1  A1G   1 at max irg =   21  r =   0.06139
     2  EG    1 at max irg =   80  r =   2.94998
     3  EG    2 at max irg =   80  r =   2.94998
     4  T1U   1 at max irg =   80  r =   2.94998
     5  T1U   2 at max irg =   80  r =   2.94998
     6  T1U   3 at max irg =   80  r =   2.94998
     7  A1G   1 at max irg =   80  r =   2.94998
     8  A1G   1 at max irg =   29  r =   0.40680
     9  T1U   1 at max irg =   28  r =   0.32116
    10  T1U   2 at max irg =   28  r =   0.32116
    11  T1U   3 at max irg =   28  r =   0.32116
    12  A1G   1 at max irg =   54  r =   2.60475
    13  T1U   1 at max irg =   76  r =   2.94684
    14  T1U   2 at max irg =   76  r =   2.94684
    15  T1U   3 at max irg =   76  r =   2.94684
    16  EG    1 at max irg =   80  r =   2.94998
    17  EG    2 at max irg =   80  r =   2.94998
    18  A1G   1 at max irg =  103  r =   3.40022
    19  T1U   1 at max irg =  103  r =   3.40022
    20  T1U   2 at max irg =  103  r =   3.40022
    21  T1U   3 at max irg =  103  r =   3.40022
    22  T2G   1 at max irg =   93  r =   2.99090
    23  T2G   2 at max irg =   93  r =   2.99090
    24  T2G   3 at max irg =   93  r =   2.99090
    25  EG    1 at max irg =  104  r =   3.50948
    26  EG    2 at max irg =  104  r =   3.50948
    27  T2U   1 at max irg =   94  r =   3.00223
    28  T2U   2 at max irg =   94  r =   3.00223
    29  T2U   3 at max irg =   94  r =   3.00223
    30  T1U   1 at max irg =   97  r =   3.05779
    31  T1U   2 at max irg =   97  r =   3.05779
    32  T1U   3 at max irg =   97  r =   3.05779
    33  T1G   1 at max irg =   94  r =   3.00223
    34  T1G   2 at max irg =   94  r =   3.00223
    35  T1G   3 at max irg =   94  r =   3.00223

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 EG    1
     2  0.9900090493    3 -0.1410038382

Rotation coefficients for orbital     3  grp =    2 EG    2
     2  0.1410038382    3  0.9900090493

Rotation coefficients for orbital     4  grp =    3 T1U   1
     4  0.9839530106    5 -0.0033704786    6  0.1783959437

Rotation coefficients for orbital     5  grp =    3 T1U   2
     4 -0.0070087442    5 -0.9997800269    6  0.0197680381

Rotation coefficients for orbital     6  grp =    3 T1U   3
     4 -0.1782900736    5  0.0207011521    6  0.9837601903

Rotation coefficients for orbital     7  grp =    4 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    5 A1G   1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    6 T1U   1
     9 -0.2276647175   10  0.8779750845   11  0.4211039390

Rotation coefficients for orbital    10  grp =    6 T1U   2
     9  0.9504767906   10  0.1064064950   11  0.2920128909

Rotation coefficients for orbital    11  grp =    6 T1U   3
     9 -0.2115718483   10 -0.4667305527   11  0.8587199451

Rotation coefficients for orbital    12  grp =    7 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    8 T1U   1
    13 -0.2379533809   14 -0.2002820155   15  0.9504027056

Rotation coefficients for orbital    14  grp =    8 T1U   2
    13  0.3484953227   14 -0.9309591566   15 -0.1089314407

Rotation coefficients for orbital    15  grp =    8 T1U   3
    13  0.9066031097   14  0.3052902930   15  0.2913222245

Rotation coefficients for orbital    16  grp =    9 EG    1
    16  0.9412855019   17 -0.3376116171

Rotation coefficients for orbital    17  grp =    9 EG    2
    16 -0.3376116171   17 -0.9412855019

Rotation coefficients for orbital    18  grp =   10 A1G   1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   11 T1U   1
    19  0.1874214621   20  0.2844818634   21 -0.9401825700

Rotation coefficients for orbital    20  grp =   11 T1U   2
    19 -0.8236289059   20  0.5670808124   21  0.0074011928

Rotation coefficients for orbital    21  grp =   11 T1U   3
    19 -0.5352650007   20 -0.7729743991   21 -0.3405906008

Rotation coefficients for orbital    22  grp =   12 T2G   1
    22  0.9862499700   23 -0.0247475837   24 -0.1633969207

Rotation coefficients for orbital    23  grp =   12 T2G   2
    22  0.0394530593   23  0.9953938278   24  0.0873761051

Rotation coefficients for orbital    24  grp =   12 T2G   3
    22  0.1604819389   23 -0.0926211895   24  0.9826835007

Rotation coefficients for orbital    25  grp =   13 EG    1
    25  0.8929242346   26 -0.4502069649

Rotation coefficients for orbital    26  grp =   13 EG    2
    25  0.4502069649   26  0.8929242346

Rotation coefficients for orbital    27  grp =   14 T2U   1
    27  0.9967768908   28  0.0316629458   29  0.0737108392

Rotation coefficients for orbital    28  grp =   14 T2U   2
    27  0.0491923532   28  0.4845698491   29 -0.8733682922

Rotation coefficients for orbital    29  grp =   14 T2U   3
    27 -0.0633714631   28  0.8741793404   29  0.4814504527

Rotation coefficients for orbital    30  grp =   15 T1U   1
    30 -0.6098647808   31  0.0098296599   32  0.7924445261

Rotation coefficients for orbital    31  grp =   15 T1U   2
    30  0.3082960964   31  0.9241034120   32  0.2258016846

Rotation coefficients for orbital    32  grp =   15 T1U   3
    30  0.7300811367   31 -0.3820160489   32  0.5666085706

Rotation coefficients for orbital    33  grp =   16 T1G   1
    33  0.6424742118   34  0.7659899343   35  0.0220523850

Rotation coefficients for orbital    34  grp =   16 T1G   2
    33 -0.7655563570   34  0.6403050961   35  0.0627124249

Rotation coefficients for orbital    35  grp =   16 T1G   3
    33  0.0339168317   34 -0.0571734593   35  0.9977879755
Number of orbital groups and degeneracis are        16
  1  2  3  1  1  3  1  3  2  1  3  3  2  3  3  3
Number of orbital groups and number of electrons when fully occupied
        16
  2  4  6  2  2  6  2  6  4  2  6  6  4  6  6  6
 Compute final expansions Thu Jan 25 16:28:37 2001
 delt cpu =    52.8  tot cpu =    52.8  tot wall =    54.0
Thu Jan 25 16:28:37 CST 2001
56.243u 0.743s 0:58.83 96.8% 0+0k 6+18io 2pf+0w

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =   52
 Unit for output of single center expanded orbitals (iuout) =   55
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Begining timer Thu Jan 25 16:28:37 2001
 Number of r points in each I/O block (nrpibk) =  204
 Number of blocks in each function (nblks) =    8
 Number of r points in each in memory block (nrpibko) =  204
 Direct access record sizxe (real words) (nsize) = 4080
 Total scratch file size in bytes =        4177920

 Normalization integral
 Sum(    1) =   0.9999839775
 Sum(    2) =   0.0000000003
 Sum(    3) =   0.0000000002
 Sum(    4) =   0.0000000001
 Sum(    5) =   0.0000000000
 Sum(    6) =   0.0000000000
 Sum(    7) =   0.0000000000
 Sum(    8) =   0.0000000000
 Total      =   0.9999839781
 Orbital     1 of  A1G   1 symmetry
     Normalization coefficient =   1.00000801

 Normalization integral
 Sum(    1) =   0.0580872041
 Sum(    2) =   0.0399699445
 Sum(    3) =   0.1067929327
 Sum(    4) =   0.0378596203
 Sum(    5) =   0.0278043803
 Sum(    6) =   0.1045212257
 Sum(    7) =   0.0100264581
 Sum(    8) =   0.0440515917
 Sum(    9) =   0.0239882038
 Sum(   10) =   0.0768572383
 Sum(   11) =   0.0154669768
 Sum(   12) =   0.0046618848
 Total      =   0.5500876610
 Orbital     2 of  EG    1 symmetry
     Normalization coefficient =   1.34829228

 Normalization integral
 Sum(    1) =   0.0238788884
 Sum(    2) =   0.0523220526
 Sum(    3) =   0.0000000007
 Sum(    4) =   0.0738783290
 Sum(    5) =   0.0000000017
 Sum(    6) =   0.0870836174
 Sum(    7) =   0.0000000017
 Sum(    8) =   0.0000000028
 Sum(    9) =   0.0922466311
 Sum(   10) =   0.0000000023
 Sum(   11) =   0.0000000034
 Sum(   12) =   0.0907271939
 Sum(   13) =   0.0000000012
 Sum(   14) =   0.0000000026
 Sum(   15) =   0.0000000031
 Sum(   16) =   0.0846833915
 Sum(   17) =   0.0000000017
 Sum(   18) =   0.0000000029
 Sum(   19) =   0.0000000044
 Sum(   20) =   0.0758468313
 Total      =   0.5806669636
 Orbital     3 of  T1U   1 symmetry
     Normalization coefficient =   1.31231001

 Normalization integral
 Sum(    1) =   0.0241544758
 Sum(    2) =   0.1120465392
 Sum(    3) =   0.0305479337
 Sum(    4) =   0.1399689958
 Sum(    5) =   0.0467490533
 Sum(    6) =   0.0112039243
 Sum(    7) =   0.1165141640
 Sum(    8) =   0.0466819185
 Total      =   0.5278670045
 Orbital     4 of  A1G   1 symmetry
     Normalization coefficient =   1.37637806

 Normalization integral
 Sum(    1) =   1.0000045371
 Sum(    2) =   0.0000010554
 Sum(    3) =   0.0000001434
 Sum(    4) =   0.0000001949
 Sum(    5) =   0.0000000194
 Sum(    6) =   0.0000000031
 Sum(    7) =   0.0000000326
 Sum(    8) =   0.0000000140
 Total      =   1.0000060000
 Orbital     5 of  A1G   1 symmetry
     Normalization coefficient =   0.99999700

 Normalization integral
 Sum(    1) =   1.0000114307
 Sum(    2) =   0.0000017630
 Sum(    3) =   0.0000001140
 Sum(    4) =   0.0000008046
 Sum(    5) =   0.0000000239
 Sum(    6) =   0.0000001883
 Sum(    7) =   0.0000000042
 Sum(    8) =   0.0000000064
 Sum(    9) =   0.0000000881
 Sum(   10) =   0.0000000019
 Sum(   11) =   0.0000000022
 Sum(   12) =   0.0000000642
 Sum(   13) =   0.0000000006
 Sum(   14) =   0.0000000009
 Sum(   15) =   0.0000000011
 Sum(   16) =   0.0000000454
 Sum(   17) =   0.0000000003
 Sum(   18) =   0.0000000005
 Sum(   19) =   0.0000000005
 Sum(   20) =   0.0000000507
 Total      =   1.0000145915
 Orbital     6 of  T1U   1 symmetry
     Normalization coefficient =   0.99999270

 Normalization integral
 Sum(    1) =   0.7327345608
 Sum(    2) =   0.2050699594
 Sum(    3) =   0.0097890088
 Sum(    4) =   0.0072446869
 Sum(    5) =   0.0018480754
 Sum(    6) =   0.0006901894
 Sum(    7) =   0.0071775892
 Sum(    8) =   0.0035084459
 Total      =   0.9680625159
 Orbital     7 of  A1G   1 symmetry
     Normalization coefficient =   1.01636172

 Normalization integral
 Sum(    1) =   0.5654716190
 Sum(    2) =   0.2673183536
 Sum(    3) =   0.0001794923
 Sum(    4) =   0.0888079306
 Sum(    5) =   0.0001481555
 Sum(    6) =   0.0148508299
 Sum(    7) =   0.0000456028
 Sum(    8) =   0.0000749398
 Sum(    9) =   0.0047781031
 Sum(   10) =   0.0000238726
 Sum(   11) =   0.0000309473
 Sum(   12) =   0.0064195862
 Sum(   13) =   0.0000062199
 Sum(   14) =   0.0000106960
 Sum(   15) =   0.0000126181
 Sum(   16) =   0.0072887202
 Sum(   17) =   0.0000037150
 Sum(   18) =   0.0000050003
 Sum(   19) =   0.0000056028
 Sum(   20) =   0.0080469447
 Total      =   0.9635289494
 Orbital     8 of  T1U   1 symmetry
     Normalization coefficient =   1.01874999

 Normalization integral
 Sum(    1) =   0.7530165338
 Sum(    2) =   0.1136867987
 Sum(    3) =   0.0592465470
 Sum(    4) =   0.0037297872
 Sum(    5) =   0.0028612447
 Sum(    6) =   0.0063178059
 Sum(    7) =   0.0006112327
 Sum(    8) =   0.0038964013
 Sum(    9) =   0.0021498396
 Sum(   10) =   0.0082968179
 Sum(   11) =   0.0016784994
 Sum(   12) =   0.0005112846
 Total      =   0.9560027928
 Orbital     9 of  EG    1 symmetry
     Normalization coefficient =   1.02275219

 Normalization integral
 Sum(    1) =   0.5833344608
 Sum(    2) =   0.3116284718
 Sum(    3) =   0.0282767664
 Sum(    4) =   0.0440144555
 Sum(    5) =   0.0061258052
 Sum(    6) =   0.0008162075
 Sum(    7) =   0.0084882427
 Sum(    8) =   0.0024405446
 Total      =   0.9851249545
 Orbital    10 of  A1G   1 symmetry
     Normalization coefficient =   1.00752154

 Normalization integral
 Sum(    1) =   0.4262610620
 Sum(    2) =   0.3298632612
 Sum(    3) =   0.0279158224
 Sum(    4) =   0.0676101605
 Sum(    5) =   0.0149379235
 Sum(    6) =   0.0690472070
 Sum(    7) =   0.0042121527
 Sum(    8) =   0.0069369840
 Sum(    9) =   0.0157572900
 Sum(   10) =   0.0023556721
 Sum(   11) =   0.0030627747
 Sum(   12) =   0.0111911982
 Sum(   13) =   0.0006821561
 Sum(   14) =   0.0011744922
 Sum(   15) =   0.0013907183
 Sum(   16) =   0.0050323672
 Sum(   17) =   0.0004441398
 Sum(   18) =   0.0005987929
 Sum(   19) =   0.0006749817
 Sum(   20) =   0.0022295242
 Total      =   0.9913786808
 Orbital    11 of  T1U   1 symmetry
     Normalization coefficient =   1.00433873

 Normalization integral
 Sum(    1) =   0.5260533702
 Sum(    2) =   0.0617993187
 Sum(    3) =   0.2420277090
 Sum(    4) =   0.0124372154
 Sum(    5) =   0.0368836550
 Sum(    6) =   0.0029171284
 Sum(    7) =   0.0598983913
 Sum(    8) =   0.0090124802
 Sum(    9) =   0.0008738019
 Sum(   10) =   0.0104722795
 Sum(   11) =   0.0025983475
 Sum(   12) =   0.0002438134
 Sum(   13) =   0.0146392146
 Sum(   14) =   0.0030208299
 Sum(   15) =   0.0008668094
 Sum(   16) =   0.0000942705
 Total      =   0.9838386352
 Orbital    12 of  T2G   1 symmetry
     Normalization coefficient =   1.00817997

 Normalization integral
 Sum(    1) =   0.6431041257
 Sum(    2) =   0.1362091960
 Sum(    3) =   0.1387390854
 Sum(    4) =   0.0197107270
 Sum(    5) =   0.0140581662
 Sum(    6) =   0.0253307054
 Sum(    7) =   0.0023892215
 Sum(    8) =   0.0053328899
 Sum(    9) =   0.0028709633
 Sum(   10) =   0.0050094215
 Sum(   11) =   0.0010086840
 Sum(   12) =   0.0003044764
 Total      =   0.9940676623
 Orbital    13 of  EG    1 symmetry
     Normalization coefficient =   1.00297943

 Normalization integral
 Sum(    1) =   0.4498253025
 Sum(    2) =   0.2270469029
 Sum(    3) =   0.0606167965
 Sum(    4) =   0.0973922680
 Sum(    5) =   0.0325383484
 Sum(    6) =   0.0400179696
 Sum(    7) =   0.0090906470
 Sum(    8) =   0.0153791233
 Sum(    9) =   0.0180254604
 Sum(   10) =   0.0054982422
 Sum(   11) =   0.0073046189
 Sum(   12) =   0.0079700532
 Sum(   13) =   0.0017382313
 Sum(   14) =   0.0030303895
 Sum(   15) =   0.0036524167
 Sum(   16) =   0.0039587332
 Total      =   0.9830855036
 Orbital    14 of  T2U   1 symmetry
     Normalization coefficient =   1.00856607

 Normalization integral
 Sum(    1) =   0.2083460908
 Sum(    2) =   0.2451605890
 Sum(    3) =   0.1252323678
 Sum(    4) =   0.1738659849
 Sum(    5) =   0.0621436357
 Sum(    6) =   0.0360991593
 Sum(    7) =   0.0171981871
 Sum(    8) =   0.0283286225
 Sum(    9) =   0.0315506331
 Sum(   10) =   0.0096802714
 Sum(   11) =   0.0125885680
 Sum(   12) =   0.0066104110
 Sum(   13) =   0.0028345929
 Sum(   14) =   0.0048807519
 Sum(   15) =   0.0057803714
 Sum(   16) =   0.0067293996
 Sum(   17) =   0.0018631230
 Sum(   18) =   0.0025119374
 Sum(   19) =   0.0028321853
 Sum(   20) =   0.0015858982
 Total      =   0.9858227803
 Orbital    15 of  T1U   1 symmetry
     Normalization coefficient =   1.00716488

 Normalization integral
 Sum(    1) =   0.6247262061
 Sum(    2) =   0.0800418534
 Sum(    3) =   0.1630877859
 Sum(    4) =   0.0175625291
 Sum(    5) =   0.0266027041
 Sum(    6) =   0.0046947425
 Sum(    7) =   0.0381995739
 Sum(    8) =   0.0069596154
 Sum(    9) =   0.0014139521
 Sum(   10) =   0.0073994332
 Sum(   11) =   0.0022306024
 Sum(   12) =   0.0004842775
 Total      =   0.9734032757
 Orbital    16 of  T1G   1 symmetry
     Normalization coefficient =   1.01356965
 Compute final expansions Thu Jan 25 16:30:21 2001
 delt cpu =    99.8  tot cpu =    99.8  tot wall =   104.0
Thu Jan 25 16:30:21 CST 2001
154.797u 2.038s 2:42.86 96.2% 0+0k 6+24io 2pf+0w

**********************************************************************
GetPot - compute local potential
**********************************************************************


----------------------------------------------------------------------
den - Electron density construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:30:21 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for angular grid cutoff information (iuanrd) =   62
 Unit for input of expanded orbitals (iuxorb) =   55
 Unit for output of density (iuden) =   56
Print flag =    0
 Compute density Thu Jan 25 16:30:33 2001
 delt cpu =    11.4  tot cpu =    11.4  tot wall =    12.0
Thu Jan 25 16:30:33 CST 2001
10.983u 0.565s 0:12.22 94.4% 0+0k 2+5io 0pf+0w

----------------------------------------------------------------------
stpot - Compute the static potential from the density
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of static potential (iustpt) =   57
 Begining timer Thu Jan 25 16:30:33 2001
 vasymp =  0.70000000E+02 facnorm =  0.10000000E+01
 Electronic part Thu Jan 25 16:30:35 2001
 delt cpu =     2.1  tot cpu =     2.1  tot wall =     2.0
 Nuclear part Thu Jan 25 16:30:37 2001
 delt cpu =     1.6  tot cpu =     3.7  tot wall =     4.0
Thu Jan 25 16:30:37 CST 2001
14.306u 0.984s 0:16.19 94.3% 0+0k 2+7io 0pf+0w

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:30:37 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of vcppol potential (iuvcpl) =   63
 Compute vcppol potential Thu Jan 25 16:30:43 2001
 delt cpu =     5.7  tot cpu =     5.7  tot wall =     6.0
Thu Jan 25 16:30:43 CST 2001
19.523u 1.645s 0:22.39 94.5% 0+0k 2+11io 0pf+0w

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:30:43 2001
 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of local polarization potential (iupoll) =   63
 Unit for output of total polarization potential (iupolt) =   64
 Print flag (iprnfg) =    0
Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    7
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Term =    2  At center =    2
Explicit coordinates =  0.29484000E+01  0.00000000E+00  0.00000000E+00
Type =    1
Term =    3  At center =    3
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.29484000E+01
Type =    1
Term =    4  At center =    4
Explicit coordinates =  0.00000000E+00 -0.29484000E+01  0.00000000E+00
Type =    1
Term =    5  At center =    5
Explicit coordinates =  0.00000000E+00  0.29484000E+01  0.00000000E+00
Type =    1
Term =    6  At center =    6
Explicit coordinates =  0.00000000E+00  0.00000000E+00 -0.29484000E+01
Type =    1
Term =    7  At center =    7
Explicit coordinates = -0.29484000E+01  0.00000000E+00  0.00000000E+00
Type =    1
Last center is at (RCenterX) =   2.94840
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Using closest approach for matching r
 Matching point is at r =   6.1688051344
 i =   1 l =   0 vdif =      0.02315707  pola =     -0.07726325  lfix =   6
 i =   2 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   3 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   4 l =   4 vdif =     -0.00361235  pola =     -0.00972900  lfix =   6
 i =   5 l =   4 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   6 l =   4 vdif =     -0.00305299  pola =     -0.00822251  lfix =   6
 i =   7 l =   6 vdif =      0.00004075  pola =     -0.00066578  lfix =   8
 i =   8 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =   9 l =   6 vdif =     -0.00010782  pola =      0.00176148  lfix =   8
 i =  10 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =  11 l =   8 vdif =      0.00188792  pola =     -0.00080553  lfix =  10
 i =  12 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  13 l =   8 vdif =      0.00100402  pola =     -0.00042840  lfix =  10
 i =  14 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  15 l =   8 vdif =      0.00152975  pola =     -0.00065271  lfix =  10
 i =  16 l =  10 vdif =      0.00025328  pola =     -0.00007375  lfix =  12
 i =  17 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  18 l =  10 vdif =     -0.00036094  pola =      0.00010510  lfix =  12
 i =  19 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  20 l =  10 vdif =     -0.00042960  pola =      0.00012510  lfix =  12
 i =  21 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  22 l =  12 vdif =     -0.00010622  pola =     -0.00005685  lfix =  14
 i =  23 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  24 l =  12 vdif =     -0.00007200  pola =     -0.00002568  lfix =  14
 i =  25 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  26 l =  12 vdif =     -0.00001856  pola =     -0.00002848  lfix =  14
 i =  27 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  28 l =  12 vdif =     -0.00009143  pola =     -0.00004449  lfix =  14
 i =  29 l =  14 vdif =     -0.00003645  pola =     -0.00000600  lfix =  16
 i =  30 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  31 l =  14 vdif =      0.00003791  pola =      0.00000624  lfix =  16
 i =  32 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  33 l =  14 vdif =      0.00004068  pola =      0.00000669  lfix =  16
 i =  34 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  35 l =  14 vdif =      0.00004939  pola =      0.00000813  lfix =  16
 i =  36 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
First nonzero weight at R =        5.47603
Last point of the switching region R=        6.89633
Matching factors (BFac):
   0.228162E+00   0.554792E+01   0.000000E+00  -0.196340E+00   0.000000E+00
  -0.196340E+00  -0.121129E+00   0.000000E+00  -0.121129E+00   0.000000E+00
   0.692292E-02   0.000000E+00   0.692291E-02   0.000000E+00   0.692293E-02
  -0.181637E+00   0.000000E+00  -0.181637E+00   0.000000E+00  -0.181637E+00
   0.000000E+00   0.444536E-01   0.000000E+00   0.334218E-01   0.000000E+00
   0.632736E-01   0.000000E+00   0.420496E-01  -0.253305E+00   0.000000E+00
  -0.253305E+00   0.000000E+00  -0.253305E+00   0.000000E+00  -0.253305E+00
   0.000000E+00
Total asymptotic potential is   0.44134000E+02
 Compute total polarizaiton potential Thu Jan 25 16:30:50 2001
 delt cpu =     5.9  tot cpu =     5.9  tot wall =     7.0
Thu Jan 25 16:30:50 CST 2001
Thu Jan 25 16:30:50 CST 2001
25.049u 2.174s 0:28.77 94.5% 0+0k 2+16io 0pf+0w

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:30:50 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.48839800E+00  AU
 Do E =  0.10000000E+01 eV (  0.36749309E-01 AU)
 Compute fege potential Thu Jan 25 16:30:56 2001
 delt cpu =     6.1  tot cpu =     6.1  tot wall =     6.0
Thu Jan 25 16:30:57 CST 2001
5.658u 0.697s 0:06.73 94.2% 0+0k 0+5io 0pf+0w
Thu Jan 25 16:30:57 CST 2001
5.661u 0.708s 0:06.75 94.2% 0+0k 0+5io 0pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:30:57 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =   64
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G
Form of the Green's function to use (iGrnType) =     0
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   10
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    10
Number of points per region =   163
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
 Number of orthogonality constraints (NOrthUse) =    0

 Maximum l used in usual function (lmaxa) =   15
 Maximum m used in usual function (mmaxa) =   15
 Maxamum l used in expanding static potential (lpotct) =   30
 Maximum l used in exapnding the exchange potential (lmaxab) =   30
 Maximum m used potentials (mmaxab) =   30
 Higest l included in the expansion of the wave function (lnp) =   14
 Higest l included in the K matrix (lna) =   10
 Highest l used at large r (lpasym) =   15
 Higest l used in the asymptotic potential (lpzb) =   30

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       32       32    0.000034    0.001104
     2        8       40    0.000037    0.001398
     3        8       48    0.000047    0.001771
     4        8       56    0.000059    0.002243
     5        8       64    0.000075    0.002841
     6        8       72    0.000095    0.003599
     7        8       80    0.000120    0.004558
     8        8       88    0.000152    0.005774
     9        8       96    0.000192    0.007313
    10        8      104    0.000244    0.009264
    11        8      112    0.000309    0.011734
    12        8      120    0.000391    0.014863
    13        8      128    0.000495    0.018827
    14        8      136    0.000628    0.023847
    15        8      144    0.000795    0.030206
    16        8      152    0.001007    0.038261
    17        8      160    0.001275    0.048464
    18        8      168    0.001615    0.061388
    19        8      176    0.002046    0.077758
    20        8      184    0.002592    0.098494
    21        8      192    0.003283    0.124759
    22        8      200    0.004159    0.158028
    23        8      208    0.005268    0.200168
    24        8      216    0.006672    0.253547
    25        8      224    0.008452    0.321159
    26        8      232    0.010705    0.406802
    27       64      296    0.010990    1.110146
    28       64      360    0.010990    1.813491
    29       64      424    0.010990    2.516836
    30        8      432    0.010990    2.604754
    31        8      440    0.008991    2.676685
    32        8      448    0.007109    2.733559
    33        8      456    0.005621    2.778529
    34        8      464    0.004445    2.814085
    35        8      472    0.003514    2.842200
    36        8      480    0.002779    2.864429
    37        8      488    0.002197    2.882006
    38        8      496    0.001737    2.895903
    39        8      504    0.001374    2.906891
    40        8      512    0.001086    2.915580
    41        8      520    0.000859    2.922450
    42        8      528    0.000679    2.927881
    43        8      536    0.000537    2.932176
    44        8      544    0.000424    2.935572
    45        8      552    0.000336    2.938257
    46        8      560    0.000265    2.940380
    47        8      568    0.000210    2.942059
    48        8      576    0.000166    2.943386
    49        8      584    0.000131    2.944436
    50        8      592    0.000104    2.945265
    51       24      616    0.000099    2.947632
    52        8      624    0.000096    2.948400
    53       32      656    0.000099    2.951555
    54        8      664    0.000105    2.952397
    55        8      672    0.000133    2.953463
    56        8      680    0.000169    2.954813
    57        8      688    0.000214    2.956523
    58        8      696    0.000271    2.958689
    59        8      704    0.000343    2.961433
    60        8      712    0.000434    2.964908
    61        8      720    0.000550    2.969310
    62        8      728    0.000697    2.974886
    63        8      736    0.000883    2.981949
    64        8      744    0.001118    2.990896
    65        8      752    0.001417    3.002228
    66        8      760    0.001794    3.016582
    67        8      768    0.002273    3.034764
    68        8      776    0.002879    3.057795
    69        8      784    0.003646    3.086966
    70        8      792    0.004619    3.123918
    71        8      800    0.005851    3.170722
    72        8      808    0.007411    3.230008
    73        8      816    0.009387    3.305104
    74        8      824    0.011890    3.400225
    75       64      888    0.013657    4.274250
    76       64      952    0.013657    5.148275
    77       64     1016    0.013657    6.022301
    78       64     1080    0.013657    6.896326
    79       64     1144    0.013657    7.770351
    80       64     1208    0.013657    8.644377
    81       64     1272    0.013657    9.518402
    82       64     1336    0.013657   10.392427
    83       64     1400    0.013657   11.266452
    84       64     1464    0.013657   12.140478
    85       64     1528    0.013657   13.014503
    86       64     1592    0.013657   13.888528
    87        8     1600    0.013657   13.997782
    88        8     1608    0.000277   14.000000

 Energy independent setup Thu Jan 25 16:31:07 2001
 delt cpu =     9.3  tot cpu =     9.3  tot wall =    10.0

 Compute solution for E =    1.0000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote =  0.35437833E+03
 i =  2  lval =   3  stpote =  0.30271329E-08
 i =  3  lval =   3  stpote =  0.19847013E-12
 i =  4  lval =   5  stpote = -0.98012648E+02
Asymptotic region to R =       201.1247  in      3 regions
Iter =   1 c.s. =     30.69824489 (a.u)  rmsk=     0.22740359
Iter =   2 c.s. =     29.64205649 (a.u)  rmsk=     0.00875932
Iter =   3 c.s. =     29.67981911 (a.u)  rmsk=     0.00030624
Iter =   4 c.s. =     29.64682843 (a.u)  rmsk=     0.00026741
Iter =   5 c.s. =     29.64644425 (a.u)  rmsk=     0.00000311
Iter =   6 c.s. =     29.64644243 (a.u)  rmsk=     0.00000001
Iter =   7 c.s. =     29.64644244 (a.u)  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.10932827E+01-0.21222540E-02 0.10161355E-04-0.13402432E-06 0.18734713E-09
     ROW  2
 -0.21222542E-02 0.15484804E-01-0.24388579E-03 0.16983727E-04-0.19530036E-07
     ROW  3
  0.10161356E-04-0.24388579E-03 0.45770574E-02-0.32909397E-04 0.40075263E-05
     ROW  4
 -0.13402429E-06 0.16983728E-04-0.32909397E-04 0.21432893E-02-0.18331497E-04
     ROW  5
  0.18734709E-09-0.19530041E-07 0.40075263E-05-0.18331497E-04 0.10975134E-02
 eigenphases
 -0.8299334E+00  0.1097188E-02  0.2143146E-02  0.4572017E-02  0.1549310E-01
 eigenphase sum-0.806628E+00  scattering length=   3.84863
 eps+pi 0.233496E+01  eps+2*pi 0.547656E+01

Iter =   7 c.s. =     29.64644244 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 16:39:53 2001
 delt cpu =   493.7  tot cpu =   503.0  tot wall =   536.0
Thu Jan 25 16:39:53 CST 2001
482.361u 27.346s 9:03.36 93.8% 0+0k 0+80io 0pf+0w
Thu Jan 25 16:39:53 CST 2001
680.965u 32.702s 12:36.03 94.3% 0+0k 30+175io 2pf+0w