/scratch2/people/lucchese/polyangd/tests/test12.job
 N2, ND Gamess output, scattering from N2+ ground state
Thu Jan 25 16:23:01 CST 2001
0.064u 0.052s 0:00.12 91.6% 0+0k 0+0io 0pf+0w

**********************************************************************
SetUp - set up command scripts
**********************************************************************

wrkdir = tst156160
Moving to /scratch2/lucchese/tst156160

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp 'Dinfh' # point group to use
 DoSym  'yes'  # compute the blms
 LMax   22     # maximum l to be used for wave functions
 LMaxI  44     # maximum l value used to determine numerical angular grids
 LMaxA  12     # maximum l included at large r
 LMax2  44     # maximum l to be used for potentials
 PrintFlag 0   # no extra printing
 MMax    2     # maximum m to use (-1 means use LMax)
 MMaxI   4     # maximum m to use in angular integrations (-1 means us LMaxI)
 ECenter  0.0 0.0 0.0 # center for exapnding about
 RMax  12.0    # maximum R in inner grid
 EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   1 2
    6
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   1.0  1.0 1
   2.0 -1.0 1
  End
  PCutRd  1.0e-8  # cutoff factor used in the radial grids
 ScatEng  1  10.0   # list of scattering energies
 FegeEng 0.477398   # Energy correction used in the fege potential
 ScatContSym 'SU'  # Scattering symmetry
 LMaxK   10    # Maximum l in the K matirx
IterMax  15    # Maximum Number of iterations
GrnType  0     # type of Green function (0 -> K matrix, 1 -> T matrix)
CnvgKMat 1.0e-6 # Convergence of the K matrix
NIntReg  10    # Number of integration regions, number needed is controlled
               # by the instability in the integrator
LMaxEx   -1    # -1 implies all terms (2*LMax) alternatively one can use just
               # LMax to save computer time

**********************************************************************
Convert - Convert file /scratch2/people/lucchese/polyangd/tests/test12.ndg
          using the ndg conversion program
**********************************************************************


----------------------------------------------------------------------
ndgcnv - ND Gamess conversion program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:23:02 2001
 Unit which contains output from ND Gamess (iuin) =   50
 Output unit for geometry information (iugeom) =   51
 Output unit for orbital information (iuorb) =   82
 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
 Convert G90 output Thu Jan 25 16:23:02 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0
Thu Jan 25 16:23:02 CST 2001
0.095u 0.107s 0:00.25 76.0% 0+0k 2+2io 0pf+0w

**********************************************************************
GetBlms - Compute blms for point group Dinfh
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:23:03 2001
 lmax =   44
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        276       1  1  1  1  1  1  1
 B1G       1         2        253       1 -1 -1  1  1 -1 -1
 B2G       1         3        253      -1  1 -1  1 -1  1 -1
 B3G       1         4        253      -1 -1  1  1 -1 -1  1
 AU        1         5        231       1  1  1 -1 -1 -1 -1
 B1U       1         6        253       1 -1 -1 -1 -1  1  1
 B2U       1         7        253      -1  1 -1 -1  1 -1  1
 B3U       1         8        253      -1 -1  1 -1  1  1 -1
 Generate blms Thu Jan 25 16:23:03 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:23:03 2001
 lmax =   22
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1         12       1  1  1  1  1  1  1
 SU        1         2         11       1 -1 -1 -1 -1  1  1
 PU        1         3         11      -1 -1  1 -1  1  1 -1
 PU        2         4         11      -1  1 -1 -1  1 -1  1
 PG        1         5         11      -1  1 -1  1 -1  1 -1
 PG        2         6         11      -1 -1  1  1 -1 -1  1
 DG        1         7         11       1  1  1  1  1  1  1
 DG        2         8         11       1 -1 -1  1  1 -1 -1
 DU        1         9         10       1 -1 -1 -1 -1  1  1
 DU        2        10         10       1  1  1 -1 -1 -1 -1
 FU        1        11         10      -1 -1  1 -1  1  1 -1
 FU        2        12         10      -1  1 -1 -1  1 -1  1
 FG        1        13         10      -1  1 -1  1 -1  1 -1
 FG        2        14         10      -1 -1  1  1 -1 -1  1
 GG        1        15         10       1  1  1  1  1  1  1
 GG        2        16         10       1 -1 -1  1  1 -1 -1
 GU        1        17          9       1 -1 -1 -1 -1  1  1
 GU        2        18          9       1  1  1 -1 -1 -1 -1
 Generate blms Thu Jan 25 16:23:03 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0
Thu Jan 25 16:23:03 CST 2001
0.278u 0.218s 0:00.58 82.7% 0+0k 32+5io 0pf+0w

**********************************************************************
ExpOrb - create grid and expand orbitals
**********************************************************************

Thu Jan 25 16:23:03 CST 2001
0.082u 0.076s 0:00.17 88.2% 0+0k 0+0io 0pf+0w

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Unit for geometry information (iUGeom) =   51
Unit fo basis function and orbital coefficients (iUOrb) =   82
Unit for the generated grid (iUGrd) =   54
Maximum R in the grid (RMax) =    12.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     1.03400  Alpha Max = 0.13520E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.10541E-01     0.33731
    2   32    64    0.10990E-01     0.68898
    3    8    72    0.90272E-02     0.76120
    4    8    80    0.71377E-02     0.81830
    5    8    88    0.56436E-02     0.86345
    6    8    96    0.44623E-02     0.89915
    7    8   104    0.35283E-02     0.92738
    8    8   112    0.27898E-02     0.94969
    9    8   120    0.22058E-02     0.96734
   10    8   128    0.17441E-02     0.98129
   11    8   136    0.13790E-02     0.99233
   12    8   144    0.10904E-02     1.00105
   13    8   152    0.86215E-03     1.00795
   14    8   160    0.68169E-03     1.01340
   15    8   168    0.53900E-03     1.01771
   16    8   176    0.42618E-03     1.02112
   17    8   184    0.33697E-03     1.02382
   18    8   192    0.26644E-03     1.02595
   19    8   200    0.21067E-03     1.02763
   20    8   208    0.16657E-03     1.02897
   21    8   216    0.13171E-03     1.03002
   22    8   224    0.10414E-03     1.03085
   23   32   256    0.90655E-04     1.03375
   24    8   264    0.30761E-04     1.03400
   25   32   296    0.90655E-04     1.03690
   26    8   304    0.96698E-04     1.03767
   27    8   312    0.12248E-03     1.03865
   28    8   320    0.15515E-03     1.03990
   29    8   328    0.19652E-03     1.04147
   30    8   336    0.24892E-03     1.04346
   31    8   344    0.31530E-03     1.04598
   32    8   352    0.39939E-03     1.04918
   33    8   360    0.50589E-03     1.05322
   34    8   368    0.64079E-03     1.05835
   35    8   376    0.81167E-03     1.06484
   36    8   384    0.10281E-02     1.07307
   37    8   392    0.13023E-02     1.08349
   38    8   400    0.16496E-02     1.09668
   39    8   408    0.20894E-02     1.11340
   40    8   416    0.26466E-02     1.13457
   41    8   424    0.33524E-02     1.16139
   42    8   432    0.42464E-02     1.19536
   43    8   440    0.53787E-02     1.23839
   44    8   448    0.68130E-02     1.29290
   45    8   456    0.86299E-02     1.36193
   46    8   464    0.10931E-01     1.44938
   47   64   528    0.13657E-01     2.32341
   48   64   592    0.13657E-01     3.19743
   49   64   656    0.13657E-01     4.07146
   50   64   720    0.13657E-01     4.94549
   51   64   784    0.13657E-01     5.81951
   52   64   848    0.13657E-01     6.69354
   53   64   912    0.13657E-01     7.56756
   54   64   976    0.13657E-01     8.44159
   55   64  1040    0.13657E-01     9.31561
   56   64  1104    0.13657E-01    10.18964
   57   64  1168    0.13657E-01    11.06366
   58   64  1232    0.13657E-01    11.93769
   59    8  1240    0.77891E-02    12.00000

----------------------------------------------------------------------
anggct - Program to generate angular functions
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:23:03 2001
Maximum scattering l (lmaxs) =   22
Maximum scattering m (mmaxs) =    2
Maximum numerical integration l (lmaxi) =   44
Maximum numerical integration m (mmaxi) =    4
Minimum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (pcutar) =  0.10000000E-07
Input unit for full symmetry blms (iuins) =   40
Input unit for abelian sub-group blms (iuini) =   42
Unit for geometry information (iugeom) =   51
Unit for radial grid information (iugrd) =   54
Output unit for angular grid and functions (iuang) =   41
Output unit for angular grid cutoffs (iuanrd) =   62
Print flag (iprnfg) =    0
 Actual value of lmasym found =     15
Number of regions of the same l expansion (NAngReg) =   15
 Point group from iuins is D*H
 From iuins nthd =    2  nphid =    4  nabop =    7

 Number of radial functions in full symmetry
   1 Symmetry type SG    1  Number of radial functions =     12
   2 Symmetry type SU    1  Number of radial functions =     11
   3 Symmetry type PU    1  Number of radial functions =     11
   4 Symmetry type PU    2  Number of radial functions =     11
   5 Symmetry type PG    1  Number of radial functions =     11
   6 Symmetry type PG    2  Number of radial functions =     11
   7 Symmetry type DG    1  Number of radial functions =     11
   8 Symmetry type DG    2  Number of radial functions =     11
   9 Symmetry type DU    1  Number of radial functions =     10
  10 Symmetry type DU    2  Number of radial functions =     10
  11 Symmetry type FU    1  Number of radial functions =      0
  12 Symmetry type FU    2  Number of radial functions =      0
  13 Symmetry type FG    1  Number of radial functions =      0
  14 Symmetry type FG    2  Number of radial functions =      0
  15 Symmetry type GG    1  Number of radial functions =      0
  16 Symmetry type GG    2  Number of radial functions =      0
  17 Symmetry type GU    1  Number of radial functions =      0
  18 Symmetry type GU    2  Number of radial functions =      0

 Number of radial functions in abelian subgroup
   1 Symmetry type AG    1  Number of radial functions =     66
   2 Symmetry type B1G   1  Number of radial functions =     43
   3 Symmetry type B2G   1  Number of radial functions =     43
   4 Symmetry type B3G   1  Number of radial functions =     43
   5 Symmetry type AU    1  Number of radial functions =     41
   6 Symmetry type B1U   1  Number of radial functions =     63
   7 Symmetry type B2U   1  Number of radial functions =     43
   8 Symmetry type B3U   1  Number of radial functions =     43

 For analytic integrations ntheta =     24  nphi =      3
 For numerical integrations ntheti =     48 nphii =      5

 Maximum parameters needed
 Parameter         Value  Value Needed
     maxlm           120            12
    maxlma           680            66
    maxlmh           400            33
    maxthe            58            24
    maxphi           110             3
    maxthi           112            48
    maxpii           220             5
    maxfun          2601           109
    maxfub         10201           385
 Define angular grid Thu Jan 25 16:23:06 2001
 delt cpu =     2.3  tot cpu =     2.3  tot wall =     3.0
2.224u 0.362s 0:02.75 93.8% 0+0k 4+5io 0pf+0w

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =  -82
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Output file for rotated and typed orbitals (iUOrbSym) =   52
 Begining timer Thu Jan 25 16:23:06 2001

 R of maximum density
     1  SG    1 at max irg =   40  r =   1.03990
     2  SU    1 at max irg =   40  r =   1.03990
     3  SG    1 at max irg =   32  r =   1.03375
     4  SU    1 at max irg =   61  r =   1.77714
     5  SG    1 at max irg =   61  r =   1.77714
     6  PU    1 at max irg =   56  r =   1.29290
     7  PU    2 at max irg =   56  r =   1.29290

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6 -1.0000000000    7  0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
 Compute final expansions Thu Jan 25 16:23:08 2001
 delt cpu =     1.8  tot cpu =     1.8  tot wall =     2.0
Thu Jan 25 16:23:08 CST 2001
3.998u 0.471s 0:04.73 94.2% 0+0k 7+7io 0pf+0w

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =   52
 Unit for output of single center expanded orbitals (iuout) =   55
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Begining timer Thu Jan 25 16:23:08 2001
 Number of r points in each I/O block (nrpibk) =  341
 Number of blocks in each function (nblks) =    7
 Number of r points in each in memory block (nrpibko) = 2387
 Direct access record sizxe (real words) (nsize) = 4092
 Total scratch file size in bytes =        1374912

 Normalization integral
 Sum(    1) =   0.1127107583
 Sum(    2) =   0.3422033019
 Sum(    3) =   0.2632151936
 Sum(    4) =   0.1424030225
 Sum(    5) =   0.0692005817
 Sum(    6) =   0.0333846283
 Sum(    7) =   0.0165185148
 Sum(    8) =   0.0085324832
 Sum(    9) =   0.0046431470
 Sum(   10) =   0.0026479356
 Sum(   11) =   0.0015658069
 Sum(   12) =   0.0009546866
 Total      =   0.9979800604
 Orbital     1 of  SG    1 symmetry
     Normalization coefficient =   1.00101150

 Normalization integral
 Sum(    1) =   0.2803987897
 Sum(    2) =   0.3222478413
 Sum(    3) =   0.1987160134
 Sum(    4) =   0.0999185948
 Sum(    5) =   0.0480479408
 Sum(    6) =   0.0234130744
 Sum(    7) =   0.0118121644
 Sum(    8) =   0.0062607980
 Sum(    9) =   0.0034921869
 Sum(   10) =   0.0020302618
 Sum(   11) =   0.0012193585
 Total      =   0.9975570238
 Orbital     2 of  SU    1 symmetry
     Normalization coefficient =   1.00122373

 Normalization integral
 Sum(    1) =   0.9161390979
 Sum(    2) =   0.0169013596
 Sum(    3) =   0.0379225760
 Sum(    4) =   0.0174324083
 Sum(    5) =   0.0066180273
 Sum(    6) =   0.0026365674
 Sum(    7) =   0.0011407497
 Sum(    8) =   0.0005351643
 Sum(    9) =   0.0002737337
 Sum(   10) =   0.0001509174
 Sum(   11) =   0.0000877268
 Sum(   12) =   0.0000529561
 Total      =   0.9998912844
 Orbital     3 of  SG    1 symmetry
     Normalization coefficient =   1.00005436

 Normalization integral
 Sum(    1) =   0.9074875671
 Sum(    2) =   0.0657656932
 Sum(    3) =   0.0151057321
 Sum(    4) =   0.0064261550
 Sum(    5) =   0.0027299039
 Sum(    6) =   0.0012121751
 Sum(    7) =   0.0005742381
 Sum(    8) =   0.0002908106
 Sum(    9) =   0.0001571840
 Sum(   10) =   0.0000897983
 Sum(   11) =   0.0000536006
 Total      =   0.9998928581
 Orbital     4 of  SU    1 symmetry
     Normalization coefficient =   1.00005358

 Normalization integral
 Sum(    1) =   0.5530620300
 Sum(    2) =   0.4123502475
 Sum(    3) =   0.0306623872
 Sum(    4) =   0.0029576157
 Sum(    5) =   0.0005864820
 Sum(    6) =   0.0001931301
 Sum(    7) =   0.0000861863
 Sum(    8) =   0.0000435933
 Sum(    9) =   0.0000232122
 Sum(   10) =   0.0000128702
 Sum(   11) =   0.0000074760
 Sum(   12) =   0.0000045672
 Total      =   0.9999897979
 Orbital     5 of  SG    1 symmetry
     Normalization coefficient =   1.00000510

 Normalization integral
 Sum(    1) =   0.8630206201
 Sum(    2) =   0.1230885247
 Sum(    3) =   0.0114485674
 Sum(    4) =   0.0018918920
 Sum(    5) =   0.0003981718
 Sum(    6) =   0.0001015233
 Sum(    7) =   0.0000300718
 Sum(    8) =   0.0000112353
 Sum(    9) =   0.0000051785
 Sum(   10) =   0.0000025252
 Sum(   11) =   0.0000011669
 Total      =   0.9999994771
 Orbital     6 of  PU    1 symmetry
     Normalization coefficient =   1.00000026
 Compute final expansions Thu Jan 25 16:23:13 2001
 delt cpu =     5.3  tot cpu =     5.3  tot wall =     5.0
Thu Jan 25 16:23:13 CST 2001
8.937u 0.932s 0:10.39 94.8% 0+0k 7+10io 0pf+0w

**********************************************************************
GetPot - compute local potential
**********************************************************************


----------------------------------------------------------------------
den - Electron density construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:23:14 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for angular grid cutoff information (iuanrd) =   62
 Unit for input of expanded orbitals (iuxorb) =   55
 Unit for output of density (iuden) =   56
Print flag =    0
 Compute density Thu Jan 25 16:23:15 2001
 delt cpu =     1.7  tot cpu =     1.7  tot wall =     1.0
Thu Jan 25 16:23:15 CST 2001
1.652u 0.236s 0:02.01 93.5% 0+0k 1+2io 0pf+0w

----------------------------------------------------------------------
stpot - Compute the static potential from the density
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of static potential (iustpt) =   57
 Begining timer Thu Jan 25 16:23:16 2001
 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
 Electronic part Thu Jan 25 16:23:17 2001
 delt cpu =     1.0  tot cpu =     1.0  tot wall =     1.0
 Nuclear part Thu Jan 25 16:23:17 2001
 delt cpu =     0.5  tot cpu =     1.5  tot wall =     1.0
Thu Jan 25 16:23:17 CST 2001
2.950u 0.489s 0:03.68 93.2% 0+0k 1+4io 0pf+0w
Thu Jan 25 16:23:17 CST 2001
2.971u 0.527s 0:03.74 93.3% 0+0k 1+4io 0pf+0w

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:23:18 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.47739800E+00  AU
 Do E =  0.10000000E+02 eV (  0.36749309E+00 AU)
 Compute fege potential Thu Jan 25 16:23:20 2001
 delt cpu =     2.3  tot cpu =     2.3  tot wall =     2.0
Thu Jan 25 16:23:20 CST 2001
2.207u 0.339s 0:02.70 93.7% 0+0k 1+2io 0pf+0w
Thu Jan 25 16:23:20 CST 2001
2.210u 0.349s 0:02.71 94.0% 0+0k 1+2io 0pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:23:20 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =    0
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU
Form of the Green's function to use (iGrnType) =     0
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   10
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    10
Number of points per region =   125
Number of partial waves (np) =    11
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
 Number of orthogonality constraints (NOrthUse) =    2

 Maximum l used in usual function (lmaxa) =   22
 Maximum m used in usual function (mmaxa) =    2
 Maxamum l used in expanding static potential (lpotct) =   44
 Maximum l used in exapnding the exchange potential (lmaxab) =   44
 Maximum m used potentials (mmaxab) =    4
 Higest l included in the expansion of the wave function (lnp) =   21
 Higest l included in the K matrix (lna) =    9
 Highest l used at large r (lpasym) =   15
 Higest l used in the asymptotic potential (lpzb) =   30

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       32       32    0.010541    0.337310
     2       32       64    0.010990    0.688982
     3        8       72    0.009027    0.761200
     4        8       80    0.007138    0.818301
     5        8       88    0.005644    0.863450
     6        8       96    0.004462    0.899149
     7        8      104    0.003528    0.927376
     8        8      112    0.002790    0.949694
     9        8      120    0.002206    0.967340
    10        8      128    0.001744    0.981293
    11        8      136    0.001379    0.992326
    12        8      144    0.001090    1.001049
    13        8      152    0.000862    1.007946
    14        8      160    0.000682    1.013399
    15        8      168    0.000539    1.017712
    16        8      176    0.000426    1.021121
    17        8      184    0.000337    1.023817
    18        8      192    0.000266    1.025948
    19        8      200    0.000211    1.027634
    20        8      208    0.000167    1.028966
    21        8      216    0.000132    1.030020
    22        8      224    0.000104    1.030853
    23       32      256    0.000091    1.033754
    24        8      264    0.000031    1.034000
    25       32      296    0.000091    1.036901
    26        8      304    0.000097    1.037675
    27        8      312    0.000122    1.038654
    28        8      320    0.000155    1.039896
    29        8      328    0.000197    1.041468
    30        8      336    0.000249    1.043459
    31        8      344    0.000315    1.045982
    32        8      352    0.000399    1.049177
    33        8      360    0.000506    1.053224
    34        8      368    0.000641    1.058350
    35        8      376    0.000812    1.064844
    36        8      384    0.001028    1.073068
    37        8      392    0.001302    1.083487
    38        8      400    0.001650    1.096683
    39        8      408    0.002089    1.113399
    40        8      416    0.002647    1.134572
    41        8      424    0.003352    1.161391
    42        8      432    0.004246    1.195362
    43        8      440    0.005379    1.238391
    44        8      448    0.006813    1.292896
    45        8      456    0.008630    1.361935
    46        8      464    0.010931    1.449384
    47       64      528    0.013657    2.323409
    48       64      592    0.013657    3.197434
    49       64      656    0.013657    4.071460
    50       64      720    0.013657    4.945485
    51       64      784    0.013657    5.819510
    52       64      848    0.013657    6.693536
    53       64      912    0.013657    7.567561
    54       64      976    0.013657    8.441586
    55       64     1040    0.013657    9.315612
    56       64     1104    0.013657   10.189637
    57       64     1168    0.013657   11.063662
    58       64     1232    0.013657   11.937688
    59        8     1240    0.007789   12.000000

 Energy independent setup Thu Jan 25 16:23:23 2001
 delt cpu =     2.3  tot cpu =     2.3  tot wall =     3.0

 Compute solution for E =   10.0000000000 eV
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.20232405E-06
 i =  2  lval =   3  stpote = -0.25827324E+01
 i =  3  lval =   3  stpote = -0.10938176E-13
 i =  4  lval =   5  stpote = -0.88348362E+00
Asymptotic region to R =       178.5891  in     11 regions
Iter =   1 c.s. =     10.03225367 (a.u)  rmsk=     5.38678194
Iter =   2 c.s. =      5.89369490 (a.u)  rmsk=     5.05781465
Iter =   3 c.s. =      5.50781818 (a.u)  rmsk=     0.15193321
Iter =   4 c.s. =      5.50510793 (a.u)  rmsk=     0.00026881
Iter =   5 c.s. =      5.50510367 (a.u)  rmsk=     0.00000234
Iter =   6 c.s. =      5.50510208 (a.u)  rmsk=     0.00000073
     REAL PART -  Final k matrix
     ROW  1
  0.26214035E+01-0.24141277E+00-0.26616733E-02 0.15535545E-05 0.10169142E-06
     ROW  2
 -0.24141742E+00 0.42230952E+00 0.15092791E-01 0.11539196E-04-0.37888796E-06
     ROW  3
 -0.26616772E-02 0.15092715E-01 0.17671424E-01 0.40848372E-02 0.17455470E-05
     ROW  4
  0.15532524E-05 0.11547663E-04 0.40848374E-02 0.80198511E-02 0.24040164E-02
     ROW  5
  0.10169063E-06-0.37896235E-06 0.17455373E-05 0.24040164E-02 0.47203052E-02
 eigenphases
  0.3148920E-02  0.7970514E-02  0.1871127E-01  0.3776506E+00  0.1209660E+01
 eigenphase sum 0.161714E+01  scattering length=  25.15037
 eps+pi 0.475873E+01  eps+2*pi 0.790033E+01

Iter =   6 c.s. =      5.50510208 (a.u)  rmsk=     0.00000073
 End of this energy Thu Jan 25 16:24:01 2001
 delt cpu =    36.2  tot cpu =    38.5  tot wall =    41.0
Thu Jan 25 16:24:01 CST 2001
37.576u 3.817s 0:43.49 95.1% 0+0k 5+33io 1pf+0w

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 GrnType  1     # type of Green function (0 -> K matrix, 1 -> T matrix)

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:24:01 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.47739800E+00  AU
 Do E =  0.10000000E+02 eV (  0.36749309E+00 AU)
 Compute fege potential Thu Jan 25 16:24:04 2001
 delt cpu =     2.3  tot cpu =     2.3  tot wall =     3.0
Thu Jan 25 16:24:04 CST 2001
2.208u 0.334s 0:02.69 94.0% 0+0k 0+5io 0pf+0w
Thu Jan 25 16:24:04 CST 2001
2.211u 0.345s 0:02.71 94.0% 0+0k 0+5io 0pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:24:04 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =    0
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU
Form of the Green's function to use (iGrnType) =     1
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   10
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    10
Number of points per region =   125
Number of partial waves (np) =    11
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
 Number of orthogonality constraints (NOrthUse) =    2

 Maximum l used in usual function (lmaxa) =   22
 Maximum m used in usual function (mmaxa) =    2
 Maxamum l used in expanding static potential (lpotct) =   44
 Maximum l used in exapnding the exchange potential (lmaxab) =   44
 Maximum m used potentials (mmaxab) =    4
 Higest l included in the expansion of the wave function (lnp) =   21
 Higest l included in the K matrix (lna) =    9
 Highest l used at large r (lpasym) =   15
 Higest l used in the asymptotic potential (lpzb) =   30

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       32       32    0.010541    0.337310
     2       32       64    0.010990    0.688982
     3        8       72    0.009027    0.761200
     4        8       80    0.007138    0.818301
     5        8       88    0.005644    0.863450
     6        8       96    0.004462    0.899149
     7        8      104    0.003528    0.927376
     8        8      112    0.002790    0.949694
     9        8      120    0.002206    0.967340
    10        8      128    0.001744    0.981293
    11        8      136    0.001379    0.992326
    12        8      144    0.001090    1.001049
    13        8      152    0.000862    1.007946
    14        8      160    0.000682    1.013399
    15        8      168    0.000539    1.017712
    16        8      176    0.000426    1.021121
    17        8      184    0.000337    1.023817
    18        8      192    0.000266    1.025948
    19        8      200    0.000211    1.027634
    20        8      208    0.000167    1.028966
    21        8      216    0.000132    1.030020
    22        8      224    0.000104    1.030853
    23       32      256    0.000091    1.033754
    24        8      264    0.000031    1.034000
    25       32      296    0.000091    1.036901
    26        8      304    0.000097    1.037675
    27        8      312    0.000122    1.038654
    28        8      320    0.000155    1.039896
    29        8      328    0.000197    1.041468
    30        8      336    0.000249    1.043459
    31        8      344    0.000315    1.045982
    32        8      352    0.000399    1.049177
    33        8      360    0.000506    1.053224
    34        8      368    0.000641    1.058350
    35        8      376    0.000812    1.064844
    36        8      384    0.001028    1.073068
    37        8      392    0.001302    1.083487
    38        8      400    0.001650    1.096683
    39        8      408    0.002089    1.113399
    40        8      416    0.002647    1.134572
    41        8      424    0.003352    1.161391
    42        8      432    0.004246    1.195362
    43        8      440    0.005379    1.238391
    44        8      448    0.006813    1.292896
    45        8      456    0.008630    1.361935
    46        8      464    0.010931    1.449384
    47       64      528    0.013657    2.323409
    48       64      592    0.013657    3.197434
    49       64      656    0.013657    4.071460
    50       64      720    0.013657    4.945485
    51       64      784    0.013657    5.819510
    52       64      848    0.013657    6.693536
    53       64      912    0.013657    7.567561
    54       64      976    0.013657    8.441586
    55       64     1040    0.013657    9.315612
    56       64     1104    0.013657   10.189637
    57       64     1168    0.013657   11.063662
    58       64     1232    0.013657   11.937688
    59        8     1240    0.007789   12.000000

 Energy independent setup Thu Jan 25 16:24:07 2001
 delt cpu =     2.6  tot cpu =     2.6  tot wall =     3.0

 Compute solution for E =   10.0000000000 eV
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.20232405E-06
 i =  2  lval =   3  stpote = -0.25827324E+01
 i =  3  lval =   3  stpote = -0.10938176E-13
 i =  4  lval =   5  stpote = -0.88348362E+00
Asymptotic region to R =       178.5891  in     11 regions
Iter =   1 c.s. =     10.03225367 (a.u)  rmsk=     0.27154314
Iter =   2 c.s. =      5.69779296 (a.u)  rmsk=     0.16739412
Iter =   3 c.s. =      5.50543669 (a.u)  rmsk=     0.01648934
Iter =   4 c.s. =      5.50507978 (a.u)  rmsk=     0.00005234
Iter =   5 c.s. =      5.50507909 (a.u)  rmsk=     0.00000009
Iter =   6 c.s. =      5.50507909 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.33068534E+00, 0.86654880E+00) ( 0.12763104E-02,-0.79284992E-01)
  ( 0.85625655E-03,-0.84591520E-03) ( 0.45438527E-05, 0.40599270E-05)
  (-0.24973247E-07, 0.45441617E-07)
     ROW  2
  ( 0.12762774E-02,-0.79284961E-01) ( 0.34211811E+00, 0.14436031E+00)
  ( 0.12607111E-01, 0.53826655E-02) (-0.12435702E-04, 0.55346564E-04)
  (-0.45796952E-06,-0.13956942E-06)
     ROW  3
  ( 0.85625554E-03,-0.84591474E-03) ( 0.12607111E-01, 0.53826652E-02)
  ( 0.17578347E-01, 0.51529707E-03) ( 0.40818076E-02, 0.10469043E-03)
  ( 0.14485990E-05, 0.98455313E-05)
     ROW  4
  ( 0.45438443E-05, 0.40599278E-05) (-0.12435705E-04, 0.55346564E-04)
  ( 0.40818076E-02, 0.10469043E-03) ( 0.80186534E-02, 0.86760218E-04)
  ( 0.24036570E-02, 0.30631453E-04)
     ROW  5
  (-0.24973259E-07, 0.45441595E-07) (-0.45796961E-06,-0.13956927E-06)
  ( 0.14486027E-05, 0.98455314E-05) ( 0.24036570E-02, 0.30631453E-04)
  ( 0.47200676E-02, 0.30569544E-04)
 eigenphases
  0.3148914E-02  0.7970509E-02  0.1871126E-01  0.3776439E+00  0.1209660E+01
 eigenphase sum 0.161713E+01  scattering length=  25.15394
 eps+pi 0.475873E+01  eps+2*pi 0.790032E+01

Iter =   6 c.s. =      5.50507909 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 16:25:14 2001
 delt cpu =    64.1  tot cpu =    66.7  tot wall =    70.0
Thu Jan 25 16:25:14 CST 2001
63.146u 6.491s 1:13.27 95.0% 0+0k 0+50io 0pf+0w
Thu Jan 25 16:25:14 CST 2001
113.344u 12.846s 2:13.25 94.6% 0+0k 48+153io 1pf+0w