/scratch2/people/lucchese/polyangd/tests/test08.job
test08 - sf6, CADPAC output, polarization potential
Thu Jan 25 16:03:36 CST 2001
0.064u 0.052s 0:00.12 91.6% 0+0k 0+0io 0pf+0w

**********************************************************************
SetUp - set up command scripts
**********************************************************************

wrkdir = tst155316
Moving to /scratch2/lucchese/tst155316

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp  'Oh'   # point group to use
 DoSym  'yes'  # compute the blms
 LMax   15     # maximum l to be used for wave functions
 LMaxI  40     # maximum l value used to determine numerical angular grids
 LMaxA  12     # maximum l included at large r
 LMax2  30     # maximum l to be used for potentials
 PrintFlag 0   # no extra printing
 MMax   -1     # maximum m to use (-1 means use LMax)
 MMaxI  -1     # maximum m to use in angular integrations (-1 means us LMaxI)
 ECenter  0.0 0.0 0.0 # center for exapnding about
 RMax   14.0   # maximum R in inner grid
 EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0
  End
  PCutRd  1.0e-8  # cutoff factor used in the radial grids
  VCorr 'PZ'
  AsyPol
 0.25   # SwitchD, distance where switching function is down to 0.1
 7     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
16.198 # value of the spherical polarizability
 2     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 3     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 4     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 5     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 6     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 7     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
 End
 ScatEng 1 1.0      # list of scattering energies
 FegeEng 0.488398   # Energy correction used in the fege potential
 ScatContSym 'A1G' # Scattering symmetry
 LMaxK   10    # Maximum l in the K matirx
IterMax  15    # Maximum Number of iterations
GrnType  0     # type of Green function (0 -> K matrix, 1 -> T matrix)
CnvgKMat 1.0e-6 # Convergence of the K matrix
NIntReg  10    # Number of integration regions, number needed is controlled
               # by the instability in the integrator
LMaxEx   -1    # -1 implies all terms (2*LMax) alternatively one can use just
               # LMax to save computer time

**********************************************************************
Convert - Convert file /scratch2/people/lucchese/polyangd/tests/test08.cad
          using the cad conversion program
**********************************************************************


----------------------------------------------------------------------
cadcnv - CADPAC conversion program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:03:37 2001
 Unit which contains output from CADPAC V5.2 (iuin) =   50
 Output unit for geometry information (iugeom) =   51
 Output unit for orbital information (iuorb) =   82
 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
 Convert CADPAC output Thu Jan 25 16:03:37 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0
Thu Jan 25 16:03:37 CST 2001
0.106u 0.110s 0:00.34 61.7% 0+0k 9+3io 2pf+0w

**********************************************************************
GetBlms - Compute blms for point group Oh
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:03:38 2001
 lmax =   30
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120       1 -1 -1  1  1 -1 -1
 B2G       1         3        120      -1  1 -1  1 -1  1 -1
 B3G       1         4        120      -1 -1  1  1 -1 -1  1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120       1 -1 -1 -1 -1  1  1
 B2U       1         7        120      -1  1 -1 -1  1 -1  1
 B3U       1         8        120      -1 -1  1 -1  1  1 -1
 Generate blms Thu Jan 25 16:03:38 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:03:38 2001
 lmax =   15
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group   43
 iprnfg =    0
 calculation type (calctp) = compute
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information
 Number of symmetry operations =    48
 symmetry operations
   1   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00
   2   0.100000E+01   0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   3  -0.100000E+01  -0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   4   0.100000E+01  -0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   5  -0.100000E+01   0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   6   0.100000E+01   0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   7  -0.100000E+01  -0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   8   0.100000E+01  -0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
   9  -0.100000E+01   0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
  10   0.100000E+01   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  11   0.100000E+01  -0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  12   0.100000E+01   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
  13   0.100000E+01   0.000000E+00  -0.100000E+01   0.180000E+03   0.200000E+01
  14   0.000000E+00   0.100000E+01   0.100000E+01   0.180000E+03   0.200000E+01
  15   0.000000E+00   0.100000E+01  -0.100000E+01   0.180000E+03   0.200000E+01
  16   0.100000E+01   0.000000E+00   0.000000E+00   0.900000E+02   0.200000E+01
  17   0.000000E+00   0.100000E+01   0.000000E+00   0.900000E+02   0.200000E+01
  18   0.000000E+00   0.000000E+00   0.100000E+01   0.900000E+02   0.200000E+01
  19   0.100000E+01   0.000000E+00   0.000000E+00  -0.900000E+02   0.200000E+01
  20   0.000000E+00   0.100000E+01   0.000000E+00  -0.900000E+02   0.200000E+01
  21   0.000000E+00   0.000000E+00   0.100000E+01  -0.900000E+02   0.200000E+01
  22   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.200000E+01
  23   0.000000E+00   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  24   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
  25   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.300000E+01
  26   0.100000E+01   0.000000E+00   0.000000E+00   0.900000E+02   0.300000E+01
  27   0.000000E+00   0.100000E+01   0.000000E+00   0.900000E+02   0.300000E+01
  28   0.000000E+00   0.000000E+00   0.100000E+01   0.900000E+02   0.300000E+01
  29   0.100000E+01   0.000000E+00   0.000000E+00  -0.900000E+02   0.300000E+01
  30   0.000000E+00   0.100000E+01   0.000000E+00  -0.900000E+02   0.300000E+01
  31   0.000000E+00   0.000000E+00   0.100000E+01  -0.900000E+02   0.300000E+01
  32   0.100000E+01   0.100000E+01   0.100000E+01   0.600000E+02   0.300000E+01
  33  -0.100000E+01  -0.100000E+01   0.100000E+01   0.600000E+02   0.300000E+01
  34   0.100000E+01  -0.100000E+01  -0.100000E+01   0.600000E+02   0.300000E+01
  35  -0.100000E+01   0.100000E+01  -0.100000E+01   0.600000E+02   0.300000E+01
  36   0.100000E+01   0.100000E+01   0.100000E+01  -0.600000E+02   0.300000E+01
  37  -0.100000E+01  -0.100000E+01   0.100000E+01  -0.600000E+02   0.300000E+01
  38   0.100000E+01  -0.100000E+01  -0.100000E+01  -0.600000E+02   0.300000E+01
  39  -0.100000E+01   0.100000E+01  -0.100000E+01  -0.600000E+02   0.300000E+01
  40   0.100000E+01   0.000000E+00   0.000000E+00   0.000000E+00   0.100000E+01
  41   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  42   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.100000E+01
  43   0.100000E+01   0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  44   0.100000E+01  -0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  45   0.100000E+01   0.000000E+00   0.100000E+01   0.000000E+00   0.100000E+01
  46   0.100000E+01   0.000000E+00  -0.100000E+01   0.000000E+00   0.100000E+01
  47   0.000000E+00   0.100000E+01   0.100000E+01   0.000000E+00   0.100000E+01
  48   0.000000E+00   0.100000E+01  -0.100000E+01   0.000000E+00   0.100000E+01
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    24    23    22    25    42    41    40
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         12       1  1  1  1  1  1  1
 EG        2         4         12       1  1  1  1  1  1  1
 T1G       1         5         12      -1 -1  1  1 -1 -1  1
 T1G       2         6         12      -1  1 -1  1 -1  1 -1
 T1G       3         7         12       1 -1 -1  1  1 -1 -1
 T2G       1         8         16      -1 -1  1  1 -1 -1  1
 T2G       2         9         16      -1  1 -1  1 -1  1 -1
 T2G       3        10         16       1 -1 -1  1  1 -1 -1
 A1U       1        11          3       1  1  1 -1 -1 -1 -1
 A2U       1        12          7       1  1  1 -1 -1 -1 -1
 EU        1        13          9       1  1  1 -1 -1 -1 -1
 EU        2        14          9       1  1  1 -1 -1 -1 -1
 T1U       1        15         20      -1 -1  1 -1  1  1 -1
 T1U       2        16         20      -1  1 -1 -1  1 -1  1
 T1U       3        17         20       1 -1 -1 -1 -1  1  1
 T2U       1        18         16      -1 -1  1 -1  1  1 -1
 T2U       2        19         16      -1  1 -1 -1  1 -1  1
 T2U       3        20         16       1 -1 -1 -1 -1  1  1
 Generate blms Thu Jan 25 16:03:57 2001
 delt cpu =    18.4  tot cpu =    18.4  tot wall =    19.0
Thu Jan 25 16:03:57 CST 2001
18.460u 0.324s 0:19.44 96.6% 0+0k 15+5io 0pf+0w

**********************************************************************
ExpOrb - create grid and expand orbitals
**********************************************************************

Thu Jan 25 16:03:57 CST 2001
0.082u 0.076s 0:00.17 88.2% 0+0k 0+0io 0pf+0w

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Unit for geometry information (iUGeom) =   51
Unit fo basis function and orbital coefficients (iUOrb) =   82
Unit for the generated grid (iUGrd) =   54
Maximum R in the grid (RMax) =    14.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV

    1  Center at =     0.00000  Alpha Max = 0.53313E+03
    2  Center at =     2.94840  Alpha Max = 0.16668E+03

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.45652E-03     0.01461
    2    8    40    0.48696E-03     0.01850
    3    8    48    0.61682E-03     0.02344
    4    8    56    0.78130E-03     0.02969
    5    8    64    0.98965E-03     0.03761
    6    8    72    0.12536E-02     0.04763
    7    8    80    0.15878E-02     0.06034
    8    8    88    0.20113E-02     0.07643
    9    8    96    0.25476E-02     0.09681
   10    8   104    0.32269E-02     0.12262
   11    8   112    0.40875E-02     0.15532
   12    8   120    0.51775E-02     0.19674
   13    8   128    0.65581E-02     0.24921
   14    8   136    0.83069E-02     0.31566
   15    8   144    0.10522E-01     0.39984
   16   64   208    0.10990E-01     1.10319
   17   64   272    0.10990E-01     1.80653
   18   64   336    0.10990E-01     2.50987
   19    8   344    0.10990E-01     2.59779
   20    8   352    0.91734E-02     2.67118
   21    8   360    0.72533E-02     2.72921
   22    8   368    0.57351E-02     2.77509
   23    8   376    0.45346E-02     2.81136
   24    8   384    0.35855E-02     2.84005
   25    8   392    0.28350E-02     2.86273
   26    8   400    0.22416E-02     2.88066
   27    8   408    0.17724E-02     2.89484
   28    8   416    0.14014E-02     2.90605
   29    8   424    0.11081E-02     2.91491
   30    8   432    0.87612E-03     2.92192
   31   32   464    0.81647E-03     2.94805
   32    8   472    0.43646E-04     2.94840
   33   32   504    0.81647E-03     2.97453
   34    8   512    0.87090E-03     2.98149
   35    8   520    0.11031E-02     2.99032
   36    8   528    0.13973E-02     3.00150
   37    8   536    0.17699E-02     3.01566
   38    8   544    0.22419E-02     3.03359
   39    8   552    0.28397E-02     3.05631
   40    8   560    0.35970E-02     3.08509
   41    8   568    0.45562E-02     3.12154
   42    8   576    0.57712E-02     3.16771
   43    8   584    0.73102E-02     3.22619
   44    8   592    0.92596E-02     3.30026
   45    8   600    0.11729E-01     3.39409
   46   64   664    0.13657E-01     4.26812
   47   64   728    0.13657E-01     5.14214
   48   64   792    0.13657E-01     6.01617
   49   64   856    0.13657E-01     6.89019
   50   64   920    0.13657E-01     7.76422
   51   64   984    0.13657E-01     8.63825
   52   64  1048    0.13657E-01     9.51227
   53   64  1112    0.13657E-01    10.38630
   54   64  1176    0.13657E-01    11.26032
   55   64  1240    0.13657E-01    12.13435
   56   64  1304    0.13657E-01    13.00837
   57   64  1368    0.13657E-01    13.88240
   58    8  1376    0.13657E-01    13.99165
   59    8  1384    0.10437E-02    14.00000

----------------------------------------------------------------------
anggct - Program to generate angular functions
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:03:57 2001
Maximum scattering l (lmaxs) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Minimum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (pcutar) =  0.10000000E-07
Input unit for full symmetry blms (iuins) =   40
Input unit for abelian sub-group blms (iuini) =   42
Unit for geometry information (iugeom) =   51
Unit for radial grid information (iugrd) =   54
Output unit for angular grid and functions (iuang) =   41
Output unit for angular grid cutoffs (iuanrd) =   62
Print flag (iprnfg) =    0
 Actual value of lmasym found =     15
Number of regions of the same l expansion (NAngReg) =   12
 Point group from iuins is Oh
 From iuins nthd =    2  nphid =    4  nabop =    7

 Number of radial functions in full symmetry
   1 Symmetry type A1G   1  Number of radial functions =      8
   2 Symmetry type A2G   1  Number of radial functions =      4
   3 Symmetry type EG    1  Number of radial functions =     12
   4 Symmetry type EG    2  Number of radial functions =     12
   5 Symmetry type T1G   1  Number of radial functions =     12
   6 Symmetry type T1G   2  Number of radial functions =     12
   7 Symmetry type T1G   3  Number of radial functions =     12
   8 Symmetry type T2G   1  Number of radial functions =     16
   9 Symmetry type T2G   2  Number of radial functions =     16
  10 Symmetry type T2G   3  Number of radial functions =     16
  11 Symmetry type A1U   1  Number of radial functions =      3
  12 Symmetry type A2U   1  Number of radial functions =      7
  13 Symmetry type EU    1  Number of radial functions =      9
  14 Symmetry type EU    2  Number of radial functions =      9
  15 Symmetry type T1U   1  Number of radial functions =     20
  16 Symmetry type T1U   2  Number of radial functions =     20
  17 Symmetry type T1U   3  Number of radial functions =     20
  18 Symmetry type T2U   1  Number of radial functions =     16
  19 Symmetry type T2U   2  Number of radial functions =     16
  20 Symmetry type T2U   3  Number of radial functions =     16

 Number of radial functions in abelian subgroup
   1 Symmetry type AG    1  Number of radial functions =    136
   2 Symmetry type B1G   1  Number of radial functions =    120
   3 Symmetry type B2G   1  Number of radial functions =    120
   4 Symmetry type B3G   1  Number of radial functions =    120
   5 Symmetry type AU    1  Number of radial functions =    105
   6 Symmetry type B1U   1  Number of radial functions =    120
   7 Symmetry type B2U   1  Number of radial functions =    120
   8 Symmetry type B3U   1  Number of radial functions =    120

 For analytic integrations ntheta =     16  nphi =     16
 For numerical integrations ntheti =     32 nphii =     31

 Maximum parameters needed
 Parameter         Value  Value Needed
     maxlm           120            20
    maxlma           680           136
    maxlmh           400            36
    maxthe            58            16
    maxphi           110            16
    maxthi           112            32
    maxpii           220            31
    maxfun          2601           256
    maxfub         10201           961
 Define angular grid Thu Jan 25 16:04:01 2001
 delt cpu =     3.5  tot cpu =     3.5  tot wall =     4.0
3.365u 0.416s 0:04.00 94.2% 0+0k 0+9io 0pf+0w

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =  -82
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Output file for rotated and typed orbitals (iUOrbSym) =   52
 Begining timer Thu Jan 25 16:04:01 2001

 R of maximum density
     1  A1G   1 at max irg =   10  r =   0.06034
     2  A1G   1 at max irg =   59  r =   2.94840
     3  T1U   1 at max irg =   59  r =   2.94840
     4  T1U   2 at max irg =   59  r =   2.94840
     5  T1U   3 at max irg =   59  r =   2.94840
     6  EG    1 at max irg =   59  r =   2.94840
     7  EG    2 at max irg =   59  r =   2.94840
     8  A1G   1 at max irg =   18  r =   0.39984
     9  T1U   1 at max irg =   18  r =   0.39984
    10  T1U   2 at max irg =   18  r =   0.39984
    11  T1U   3 at max irg =   18  r =   0.39984
    12  A1G   1 at max irg =   43  r =   2.59779
    13  T1U   1 at max irg =   58  r =   2.94805
    14  T1U   2 at max irg =   58  r =   2.94805
    15  T1U   3 at max irg =   58  r =   2.94805
    16  EG    1 at max irg =   59  r =   2.94840
    17  EG    2 at max irg =   59  r =   2.94840
    18  A1G   1 at max irg =   76  r =   3.50335
    19  T1U   1 at max irg =   75  r =   3.39409
    20  T1U   2 at max irg =   75  r =   3.39409
    21  T1U   3 at max irg =   75  r =   3.39409
    22  T2G   1 at max irg =   67  r =   3.01566
    23  T2G   2 at max irg =   67  r =   3.01566
    24  T2G   3 at max irg =   67  r =   3.01566
    25  T2U   1 at max irg =   68  r =   3.03359
    26  T2U   2 at max irg =   68  r =   3.03359
    27  T2U   3 at max irg =   68  r =   3.03359
    28  EG    1 at max irg =   76  r =   3.50335
    29  EG    2 at max irg =   76  r =   3.50335
    30  T1G   1 at max irg =   68  r =   3.03359
    31  T1G   2 at max irg =   68  r =   3.03359
    32  T1G   3 at max irg =   68  r =   3.03359
    33  T1U   1 at max irg =   48  r =   2.84005
    34  T1U   2 at max irg =   48  r =   2.84005
    35  T1U   3 at max irg =   48  r =   2.84005

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1G   1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T1U   1
     3 -0.0841338340    4 -0.0297031671    5  0.9960116565

Rotation coefficients for orbital     4  grp =    3 T1U   2
     3 -0.4713105049    4 -0.8794913848    5 -0.0660402305

Rotation coefficients for orbital     5  grp =    3 T1U   3
     3  0.8779452750    4 -0.4749869745    5  0.0599955675

Rotation coefficients for orbital     6  grp =    4 EG    1
     6  1.0000000000    7  0.0000000000

Rotation coefficients for orbital     7  grp =    4 EG    2
     6  0.0000000000    7  1.0000000000

Rotation coefficients for orbital     8  grp =    5 A1G   1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    6 T1U   1
     9  0.0000721196   10 -0.4691656077   11  0.8831102012

Rotation coefficients for orbital    10  grp =    6 T1U   2
     9 -0.0002469673   10  0.8831101682   11  0.4691656103

Rotation coefficients for orbital    11  grp =    6 T1U   3
     9  0.9999999669   10  0.0002519353   11  0.0000521790

Rotation coefficients for orbital    12  grp =    7 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    8 T1U   1
    13  0.9509877828   14 -0.2851489370   15  0.1196341118

Rotation coefficients for orbital    14  grp =    8 T1U   2
    13  0.2696247395   14  0.9540531141   15  0.1307101957

Rotation coefficients for orbital    15  grp =    8 T1U   3
    13  0.1514091703   14  0.0920474830   15 -0.9841760635

Rotation coefficients for orbital    16  grp =    9 EG    1
    16 -0.1215948967   17  0.9925798109

Rotation coefficients for orbital    17  grp =    9 EG    2
    16  0.9925798109   17  0.1215948967

Rotation coefficients for orbital    18  grp =   10 A1G   1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   11 T1U   1
    19 -0.1969192623   20 -0.9588851626   21 -0.2043576501

Rotation coefficients for orbital    20  grp =   11 T1U   2
    19 -0.1661462892   20 -0.1727863094   21  0.9708451482

Rotation coefficients for orbital    21  grp =   11 T1U   3
    19 -0.9662392120   20  0.2251313756   21 -0.1252902590

Rotation coefficients for orbital    22  grp =   12 T2G   1
    22  0.3644455757   23  0.9306859930   24  0.0316702519

Rotation coefficients for orbital    23  grp =   12 T2G   2
    22  0.0404334877   23  0.0181622150   24 -0.9990171505

Rotation coefficients for orbital    24  grp =   12 T2G   3
    22  0.9303464706   23 -0.3653679193   24  0.0310117417

Rotation coefficients for orbital    25  grp =   13 T2U   1
    25  0.0275265782   26  0.0471687330   27 -0.9985075854

Rotation coefficients for orbital    26  grp =   13 T2U   2
    25  0.7546881824   26 -0.6560045968   27 -0.0101841214

Rotation coefficients for orbital    27  grp =   13 T2U   3
    25 -0.6555059381   26 -0.7532815407   27 -0.0536552472

Rotation coefficients for orbital    28  grp =   14 EG    1
    28  0.0707111574   29  0.9974968332

Rotation coefficients for orbital    29  grp =   14 EG    2
    28 -0.9974968332   29  0.0707111574

Rotation coefficients for orbital    30  grp =   15 T1G   1
    30 -0.7061761399   31  0.7068981142   32  0.0401287375

Rotation coefficients for orbital    31  grp =   15 T1G   2
    30 -0.0306968732   31  0.0260558008   32 -0.9991890698

Rotation coefficients for orbital    32  grp =   15 T1G   3
    30 -0.7073704556   31 -0.7068353071   32  0.0032995769

Rotation coefficients for orbital    33  grp =   16 T1U   1
    33 -0.0143297546   34 -0.9998331398   35  0.0113291946

Rotation coefficients for orbital    34  grp =   16 T1U   2
    33 -0.9573091932   34  0.0104470043   35 -0.2888770823

Rotation coefficients for orbital    35  grp =   16 T1U   3
    33 -0.2887105241   34  0.0149850799   35  0.9572991594
Number of orbital groups and degeneracis are        16
  1  1  3  2  1  3  1  3  2  1  3  3  3  2  3  3
Number of orbital groups and number of electrons when fully occupied
        16
  2  2  6  4  2  6  2  6  4  2  6  6  6  4  6  6
 Compute final expansions Thu Jan 25 16:04:23 2001
 delt cpu =    21.5  tot cpu =    21.5  tot wall =    22.0
Thu Jan 25 16:04:23 CST 2001
24.735u 0.591s 0:26.31 96.2% 0+0k 0+13io 0pf+0w

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =   52
 Unit for output of single center expanded orbitals (iuout) =   55
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Begining timer Thu Jan 25 16:04:23 2001
 Number of r points in each I/O block (nrpibk) =  204
 Number of blocks in each function (nblks) =    7
 Number of r points in each in memory block (nrpibko) =  204
 Direct access record sizxe (real words) (nsize) = 4080
 Total scratch file size in bytes =        3655680

 Normalization integral
 Sum(    1) =   0.9999973869
 Sum(    2) =   0.0000018578
 Sum(    3) =   0.0000000780
 Sum(    4) =   0.0000000519
 Sum(    5) =   0.0000000073
 Sum(    6) =   0.0000000021
 Sum(    7) =   0.0000000222
 Sum(    8) =   0.0000000098
 Total      =   0.9999994159
 Orbital     1 of  A1G   1 symmetry
     Normalization coefficient =   1.00000029

 Normalization integral
 Sum(    1) =   0.0242821845
 Sum(    2) =   0.1117882131
 Sum(    3) =   0.0298351267
 Sum(    4) =   0.1368119236
 Sum(    5) =   0.0461144995
 Sum(    6) =   0.0111572059
 Sum(    7) =   0.1160292791
 Sum(    8) =   0.0467918872
 Total      =   0.5228103196
 Orbital     2 of  A1G   1 symmetry
     Normalization coefficient =   1.38301829

 Normalization integral
 Sum(    1) =   0.0244689723
 Sum(    2) =   0.0525047125
 Sum(    3) =   0.0000000492
 Sum(    4) =   0.0723216704
 Sum(    5) =   0.0000000307
 Sum(    6) =   0.0847676175
 Sum(    7) =   0.0000000094
 Sum(    8) =   0.0000000159
 Sum(    9) =   0.0906351635
 Sum(   10) =   0.0000000061
 Sum(   11) =   0.0000000085
 Sum(   12) =   0.0900803101
 Sum(   13) =   0.0000000021
 Sum(   14) =   0.0000000039
 Sum(   15) =   0.0000000046
 Sum(   16) =   0.0848302255
 Sum(   17) =   0.0000000019
 Sum(   18) =   0.0000000027
 Sum(   19) =   0.0000000038
 Sum(   20) =   0.0763348828
 Total      =   0.5759436933
 Orbital     3 of  T1U   1 symmetry
     Normalization coefficient =   1.31768010

 Normalization integral
 Sum(    1) =   0.0590745888
 Sum(    2) =   0.0393807695
 Sum(    3) =   0.1037425886
 Sum(    4) =   0.0369330844
 Sum(    5) =   0.0271173250
 Sum(    6) =   0.1030590112
 Sum(    7) =   0.0098857870
 Sum(    8) =   0.0438754929
 Sum(    9) =   0.0238941002
 Sum(   10) =   0.0770619755
 Sum(   11) =   0.0155087432
 Sum(   12) =   0.0046748939
 Total      =   0.5442083602
 Orbital     4 of  EG    1 symmetry
     Normalization coefficient =   1.35555579

 Normalization integral
 Sum(    1) =   0.9997324385
 Sum(    2) =   0.0002357090
 Sum(    3) =   0.0000099108
 Sum(    4) =   0.0000070530
 Sum(    5) =   0.0000010930
 Sum(    6) =   0.0000003072
 Sum(    7) =   0.0000031947
 Sum(    8) =   0.0000013707
 Total      =   0.9999910769
 Orbital     5 of  A1G   1 symmetry
     Normalization coefficient =   1.00000446

 Normalization integral
 Sum(    1) =   0.9998602314
 Sum(    2) =   0.0000604917
 Sum(    3) =   0.0000072798
 Sum(    4) =   0.0000521403
 Sum(    5) =   0.0000040834
 Sum(    6) =   0.0000030759
 Sum(    7) =   0.0000010665
 Sum(    8) =   0.0000017566
 Sum(    9) =   0.0000018385
 Sum(   10) =   0.0000005168
 Sum(   11) =   0.0000006720
 Sum(   12) =   0.0000020442
 Sum(   13) =   0.0000001198
 Sum(   14) =   0.0000002062
 Sum(   15) =   0.0000002442
 Sum(   16) =   0.0000004175
 Sum(   17) =   0.0000000618
 Sum(   18) =   0.0000000833
 Sum(   19) =   0.0000000939
 Sum(   20) =   0.0000011987
 Total      =   0.9999976224
 Orbital     6 of  T1U   1 symmetry
     Normalization coefficient =   1.00000119

 Normalization integral
 Sum(    1) =   0.7560668084
 Sum(    2) =   0.1911231199
 Sum(    3) =   0.0073831946
 Sum(    4) =   0.0047928603
 Sum(    5) =   0.0018536556
 Sum(    6) =   0.0006865511
 Sum(    7) =   0.0071398070
 Sum(    8) =   0.0033661953
 Total      =   0.9724121923
 Orbital     7 of  A1G   1 symmetry
     Normalization coefficient =   1.01408604

 Normalization integral
 Sum(    1) =   0.5791830833
 Sum(    2) =   0.2681448306
 Sum(    3) =   0.0002262229
 Sum(    4) =   0.0840480495
 Sum(    5) =   0.0001269187
 Sum(    6) =   0.0104485163
 Sum(    7) =   0.0000330983
 Sum(    8) =   0.0000546055
 Sum(    9) =   0.0039177768
 Sum(   10) =   0.0000160361
 Sum(   11) =   0.0000208958
 Sum(   12) =   0.0065357898
 Sum(   13) =   0.0000037106
 Sum(   14) =   0.0000063951
 Sum(   15) =   0.0000075972
 Sum(   16) =   0.0074182420
 Sum(   17) =   0.0000019121
 Sum(   18) =   0.0000025808
 Sum(   19) =   0.0000029187
 Sum(   20) =   0.0077305087
 Total      =   0.9679296888
 Orbital     8 of  T1U   1 symmetry
     Normalization coefficient =   1.01643145

 Normalization integral
 Sum(    1) =   0.7557290640
 Sum(    2) =   0.1231523858
 Sum(    3) =   0.0527677592
 Sum(    4) =   0.0027858408
 Sum(    5) =   0.0020455032
 Sum(    6) =   0.0063317816
 Sum(    7) =   0.0006073656
 Sum(    8) =   0.0040283698
 Sum(    9) =   0.0021938539
 Sum(   10) =   0.0084130938
 Sum(   11) =   0.0016931588
 Sum(   12) =   0.0005103969
 Total      =   0.9602585733
 Orbital     9 of  EG    1 symmetry
     Normalization coefficient =   1.02048330

 Normalization integral
 Sum(    1) =   0.5390183507
 Sum(    2) =   0.3525867342
 Sum(    3) =   0.0317519432
 Sum(    4) =   0.0451732398
 Sum(    5) =   0.0055248835
 Sum(    6) =   0.0007041129
 Sum(    7) =   0.0073225036
 Sum(    8) =   0.0022804425
 Total      =   0.9843622104
 Orbital    10 of  A1G   1 symmetry
     Normalization coefficient =   1.00791181

 Normalization integral
 Sum(    1) =   0.4274266425
 Sum(    2) =   0.3129258300
 Sum(    3) =   0.0352853872
 Sum(    4) =   0.0626362971
 Sum(    5) =   0.0197922592
 Sum(    6) =   0.0832094165
 Sum(    7) =   0.0051692402
 Sum(    8) =   0.0085140236
 Sum(    9) =   0.0129477272
 Sum(   10) =   0.0025048445
 Sum(   11) =   0.0032570722
 Sum(   12) =   0.0101461032
 Sum(   13) =   0.0005804292
 Sum(   14) =   0.0009993450
 Sum(   15) =   0.0011834236
 Sum(   16) =   0.0037340249
 Sum(   17) =   0.0002993559
 Sum(   18) =   0.0004035753
 Sum(   19) =   0.0004549726
 Sum(   20) =   0.0015191140
 Total      =   0.9929890839
 Orbital    11 of  T1U   1 symmetry
     Normalization coefficient =   1.00352400

 Normalization integral
 Sum(    1) =   0.3812396844
 Sum(    2) =   0.0714283710
 Sum(    3) =   0.3458407667
 Sum(    4) =   0.0174667167
 Sum(    5) =   0.0522245710
 Sum(    6) =   0.0042607369
 Sum(    7) =   0.0760565129
 Sum(    8) =   0.0114437932
 Sum(    9) =   0.0010650474
 Sum(   10) =   0.0109827299
 Sum(   11) =   0.0027250367
 Sum(   12) =   0.0002692963
 Sum(   13) =   0.0119708300
 Sum(   14) =   0.0024701694
 Sum(   15) =   0.0007088314
 Sum(   16) =   0.0000724198
 Total      =   0.9902255138
 Orbital    12 of  T2G   1 symmetry
     Normalization coefficient =   1.00492337

 Normalization integral
 Sum(    1) =   0.3462570620
 Sum(    2) =   0.2681545335
 Sum(    3) =   0.0814737527
 Sum(    4) =   0.1281930330
 Sum(    5) =   0.0415948455
 Sum(    6) =   0.0522601946
 Sum(    7) =   0.0099937588
 Sum(    8) =   0.0169067419
 Sum(    9) =   0.0194924950
 Sum(   10) =   0.0047638689
 Sum(   11) =   0.0063288136
 Sum(   12) =   0.0069832491
 Sum(   13) =   0.0011781036
 Sum(   14) =   0.0020537833
 Sum(   15) =   0.0024752566
 Sum(   16) =   0.0026613698
 Total      =   0.9907708618
 Orbital    13 of  T2U   1 symmetry
     Normalization coefficient =   1.00464676

 Normalization integral
 Sum(    1) =   0.6225187822
 Sum(    2) =   0.1366169247
 Sum(    3) =   0.1598576744
 Sum(    4) =   0.0226382830
 Sum(    5) =   0.0166225170
 Sum(    6) =   0.0249152375
 Sum(    7) =   0.0023900873
 Sum(    8) =   0.0043840735
 Sum(    9) =   0.0023878799
 Sum(   10) =   0.0034435577
 Sum(   11) =   0.0006930531
 Sum(   12) =   0.0002089413
 Total      =   0.9966770115
 Orbital    14 of  EG    1 symmetry
     Normalization coefficient =   1.00166565

 Normalization integral
 Sum(    1) =   0.5797719276
 Sum(    2) =   0.0972165485
 Sum(    3) =   0.2018560688
 Sum(    4) =   0.0217383386
 Sum(    5) =   0.0297064439
 Sum(    6) =   0.0052423144
 Sum(    7) =   0.0351485696
 Sum(    8) =   0.0064038775
 Sum(    9) =   0.0013010965
 Sum(   10) =   0.0052878933
 Sum(   11) =   0.0015940316
 Sum(   12) =   0.0003460729
 Total      =   0.9856131832
 Orbital    15 of  T1G   1 symmetry
     Normalization coefficient =   1.00727197

 Normalization integral
 Sum(    1) =   0.1417253143
 Sum(    2) =   0.1951389423
 Sum(    3) =   0.1513877039
 Sum(    4) =   0.2176412975
 Sum(    5) =   0.0849163103
 Sum(    6) =   0.0419959483
 Sum(    7) =   0.0221779587
 Sum(    8) =   0.0365283827
 Sum(    9) =   0.0456258529
 Sum(   10) =   0.0107467039
 Sum(   11) =   0.0139740281
 Sum(   12) =   0.0059355323
 Sum(   13) =   0.0024902431
 Sum(   14) =   0.0042875470
 Sum(   15) =   0.0050773564
 Sum(   16) =   0.0063292673
 Sum(   17) =   0.0012843376
 Sum(   18) =   0.0017314764
 Sum(   19) =   0.0019519367
 Sum(   20) =   0.0012095535
 Total      =   0.9921556932
 Orbital    16 of  T1U   1 symmetry
     Normalization coefficient =   1.00394538
 Compute final expansions Thu Jan 25 16:05:03 2001
 delt cpu =    38.5  tot cpu =    38.5  tot wall =    40.0
Thu Jan 25 16:05:03 CST 2001
62.194u 1.666s 1:06.60 95.8% 0+0k 0+19io 0pf+0w

**********************************************************************
GetPot - compute local potential
**********************************************************************


----------------------------------------------------------------------
den - Electron density construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:05:03 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for angular grid cutoff information (iuanrd) =   62
 Unit for input of expanded orbitals (iuxorb) =   55
 Unit for output of density (iuden) =   56
Print flag =    0
 Compute density Thu Jan 25 16:05:14 2001
 delt cpu =     9.9  tot cpu =     9.9  tot wall =    11.0
Thu Jan 25 16:05:14 CST 2001
9.521u 0.500s 0:10.57 94.7% 0+0k 0+6io 0pf+0w

----------------------------------------------------------------------
stpot - Compute the static potential from the density
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of static potential (iustpt) =   57
 Begining timer Thu Jan 25 16:05:14 2001
 vasymp =  0.70000000E+02 facnorm =  0.10000000E+01
 Electronic part Thu Jan 25 16:05:16 2001
 delt cpu =     1.9  tot cpu =     1.9  tot wall =     2.0
 Nuclear part Thu Jan 25 16:05:17 2001
 delt cpu =     1.3  tot cpu =     3.2  tot wall =     3.0
Thu Jan 25 16:05:17 CST 2001
12.404u 0.876s 0:14.05 94.4% 0+0k 0+8io 0pf+0w

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:05:17 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of vcppol potential (iuvcpl) =   63
 Compute vcppol potential Thu Jan 25 16:05:23 2001
 delt cpu =     5.1  tot cpu =     5.1  tot wall =     6.0
Thu Jan 25 16:05:23 CST 2001
17.027u 1.463s 0:19.59 94.3% 0+0k 1+11io 0pf+0w

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:05:23 2001
 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of local polarization potential (iupoll) =   63
 Unit for output of total polarization potential (iupolt) =   64
 Print flag (iprnfg) =    0
Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    7
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Term =    2  At center =    2
Explicit coordinates =  0.00000000E+00  0.00000000E+00 -0.29484000E+01
Type =    1
Term =    3  At center =    3
Explicit coordinates =  0.29484000E+01  0.00000000E+00  0.00000000E+00
Type =    1
Term =    4  At center =    4
Explicit coordinates = -0.29484000E+01  0.00000000E+00  0.00000000E+00
Type =    1
Term =    5  At center =    5
Explicit coordinates =  0.00000000E+00  0.29484000E+01  0.00000000E+00
Type =    1
Term =    6  At center =    6
Explicit coordinates =  0.00000000E+00 -0.29484000E+01  0.00000000E+00
Type =    1
Term =    7  At center =    7
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.29484000E+01
Type =    1
Last center is at (RCenterX) =   2.94840
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Using closest approach for matching r
 Matching point is at r =   5.2901366265
 i =   1 l =   0 vdif =      0.10910822  pola =     -0.16969208  lfix =   6
 i =   2 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   3 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   4 l =   4 vdif =      0.01603244  pola =     -0.04013124  lfix =   6
 i =   5 l =   4 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   6 l =   4 vdif =      0.01354989  pola =     -0.03391709  lfix =   6
 i =   7 l =   6 vdif =      0.00252950  pola =     -0.00371704  lfix =   8
 i =   8 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =   9 l =   6 vdif =     -0.00669243  pola =      0.00983438  lfix =   8
 i =  10 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =  11 l =   8 vdif =      0.00828412  pola =     -0.00609825  lfix =  10
 i =  12 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  13 l =   8 vdif =      0.00440563  pola =     -0.00324315  lfix =  10
 i =  14 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  15 l =   8 vdif =      0.00671252  pola =     -0.00494133  lfix =  10
 i =  16 l =  10 vdif =      0.00111929  pola =     -0.00075782  lfix =  12
 i =  17 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  18 l =  10 vdif =     -0.00159504  pola =      0.00107993  lfix =  12
 i =  19 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  20 l =  10 vdif =     -0.00189848  pola =      0.00128538  lfix =  12
 i =  21 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  22 l =  12 vdif =      0.00024717  pola =     -0.00079328  lfix =  14
 i =  23 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  24 l =  12 vdif =      0.00007371  pola =     -0.00035829  lfix =  14
 i =  25 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  26 l =  12 vdif =      0.00017853  pola =     -0.00039743  lfix =  14
 i =  27 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  28 l =  12 vdif =      0.00018027  pola =     -0.00062074  lfix =  14
 i =  29 l =  14 vdif =      0.00000545  pola =     -0.00011365  lfix =  16
 i =  30 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  31 l =  14 vdif =     -0.00000567  pola =      0.00011819  lfix =  16
 i =  32 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  33 l =  14 vdif =     -0.00000608  pola =      0.00012683  lfix =  16
 i =  34 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  35 l =  14 vdif =     -0.00000738  pola =      0.00015401  lfix =  16
 i =  36 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
First nonzero weight at R =        4.59588
Last point of the switching region R=        6.01617
Matching factors (BFac):
   0.249816E+00  -0.820958E-01   0.000000E+00  -0.164159E+00   0.000000E+00
  -0.164160E+00  -0.152349E+00   0.000000E+00  -0.152349E+00   0.000000E+00
  -0.141175E+00   0.000000E+00  -0.141175E+00   0.000000E+00  -0.141175E+00
  -0.154074E-01   0.000000E+00  -0.154072E-01   0.000000E+00  -0.154075E-01
   0.000000E+00  -0.386275E+00   0.000000E+00  -0.399329E+00   0.000000E+00
  -0.368983E+00   0.000000E+00  -0.388902E+00  -0.210781E+00   0.000000E+00
  -0.210781E+00   0.000000E+00  -0.210781E+00   0.000000E+00  -0.210782E+00
   0.000000E+00
Total asymptotic potential is   0.44134000E+02
 Compute total polarizaiton potential Thu Jan 25 16:05:28 2001
 delt cpu =     5.2  tot cpu =     5.2  tot wall =     5.0
Thu Jan 25 16:05:28 CST 2001
Thu Jan 25 16:05:28 CST 2001
21.817u 1.950s 0:25.12 94.5% 0+0k 1+16io 0pf+0w

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:05:29 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.48839800E+00  AU
 Do E =  0.10000000E+01 eV (  0.36749309E-01 AU)
 Compute fege potential Thu Jan 25 16:05:35 2001
 delt cpu =     5.4  tot cpu =     5.4  tot wall =     6.0
Thu Jan 25 16:05:35 CST 2001
4.990u 0.610s 0:06.12 91.5% 0+0k 0+5io 0pf+0w
Thu Jan 25 16:05:35 CST 2001
4.993u 0.621s 0:06.14 91.3% 0+0k 0+5io 0pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 16:05:35 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =   64
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G
Form of the Green's function to use (iGrnType) =     0
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   10
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    10
Number of points per region =   141
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
 Number of orthogonality constraints (NOrthUse) =    0

 Maximum l used in usual function (lmaxa) =   15
 Maximum m used in usual function (mmaxa) =   15
 Maxamum l used in expanding static potential (lpotct) =   30
 Maximum l used in exapnding the exchange potential (lmaxab) =   30
 Maximum m used potentials (mmaxab) =   30
 Higest l included in the expansion of the wave function (lnp) =   14
 Higest l included in the K matrix (lna) =   10
 Highest l used at large r (lpasym) =   15
 Higest l used in the asymptotic potential (lpzb) =   30

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       32       32    0.000457    0.014609
     2        8       40    0.000487    0.018504
     3        8       48    0.000617    0.023439
     4        8       56    0.000781    0.029689
     5        8       64    0.000990    0.037607
     6        8       72    0.001254    0.047635
     7        8       80    0.001588    0.060338
     8        8       88    0.002011    0.076428
     9        8       96    0.002548    0.096808
    10        8      104    0.003227    0.122624
    11        8      112    0.004087    0.155324
    12        8      120    0.005177    0.196743
    13        8      128    0.006558    0.249208
    14        8      136    0.008307    0.315663
    15        8      144    0.010522    0.399840
    16       64      208    0.010990    1.103185
    17       64      272    0.010990    1.806530
    18       64      336    0.010990    2.509875
    19        8      344    0.010990    2.597793
    20        8      352    0.009173    2.671181
    21        8      360    0.007253    2.729207
    22        8      368    0.005735    2.775088
    23        8      376    0.004535    2.811365
    24        8      384    0.003585    2.840048
    25        8      392    0.002835    2.862728
    26        8      400    0.002242    2.880661
    27        8      408    0.001772    2.894839
    28        8      416    0.001401    2.906051
    29        8      424    0.001108    2.914915
    30        8      432    0.000876    2.921924
    31       32      464    0.000816    2.948051
    32        8      472    0.000044    2.948400
    33       32      504    0.000816    2.974527
    34        8      512    0.000871    2.981494
    35        8      520    0.001103    2.990319
    36        8      528    0.001397    3.001498
    37        8      536    0.001770    3.015657
    38        8      544    0.002242    3.033592
    39        8      552    0.002840    3.056310
    40        8      560    0.003597    3.085086
    41        8      568    0.004556    3.121536
    42        8      576    0.005771    3.167705
    43        8      584    0.007310    3.226187
    44        8      592    0.009260    3.300263
    45        8      600    0.011729    3.394093
    46       64      664    0.013657    4.268119
    47       64      728    0.013657    5.142144
    48       64      792    0.013657    6.016169
    49       64      856    0.013657    6.890195
    50       64      920    0.013657    7.764220
    51       64      984    0.013657    8.638245
    52       64     1048    0.013657    9.512271
    53       64     1112    0.013657   10.386296
    54       64     1176    0.013657   11.260321
    55       64     1240    0.013657   12.134347
    56       64     1304    0.013657   13.008372
    57       64     1368    0.013657   13.882397
    58        8     1376    0.013657   13.991650
    59        8     1384    0.001044   14.000000

 Energy independent setup Thu Jan 25 16:05:43 2001
 delt cpu =     8.1  tot cpu =     8.1  tot wall =     8.0

 Compute solution for E =    1.0000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote =  0.14696993E+04
 i =  2  lval =   3  stpote =  0.20292122E-09
 i =  3  lval =   3  stpote =  0.19354628E-12
 i =  4  lval =   5  stpote = -0.12116871E+02
Asymptotic region to R =       175.8392  in      3 regions
Iter =   1 c.s. =     45.76229749 (a.u)  rmsk=     0.45936792
Iter =   2 c.s. =     36.32426754 (a.u)  rmsk=     0.17616133
Iter =   3 c.s. =     36.41209022 (a.u)  rmsk=     0.00103226
Iter =   4 c.s. =     36.40333476 (a.u)  rmsk=     0.00010319
Iter =   5 c.s. =     36.40346555 (a.u)  rmsk=     0.00000154
Iter =   6 c.s. =     36.40346431 (a.u)  rmsk=     0.00000001
Iter =   7 c.s. =     36.40346431 (a.u)  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.14206275E+01-0.40864655E-02 0.13221498E-04-0.12375759E-06 0.13401770E-09
     ROW  2
 -0.40864653E-02 0.13988059E-01-0.29211553E-04 0.21620289E-05-0.61911499E-08
     ROW  3
  0.13221498E-04-0.29211553E-04 0.46069198E-02-0.42246228E-05 0.47726438E-06
     ROW  4
 -0.12375759E-06 0.21620289E-05-0.42246228E-05 0.20736791E-02-0.22598186E-05
     ROW  5
  0.13401771E-09-0.61911506E-08 0.47726438E-06-0.22598186E-05 0.10939960E-02
 eigenphases
 -0.9574520E+00  0.1093990E-02  0.2073674E-02  0.4606803E-02  0.1399888E-01
 eigenphase sum-0.935679E+00  scattering length=   5.00499
 eps+pi 0.220591E+01  eps+2*pi 0.534751E+01

Iter =   7 c.s. =     36.40346431 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 16:12:58 2001
 delt cpu =   410.9  tot cpu =   419.0  tot wall =   443.0
Thu Jan 25 16:12:58 CST 2001
402.342u 22.627s 7:29.87 94.4% 0+0k 0+70io 0pf+0w
Thu Jan 25 16:12:58 CST 2001
505.237u 27.386s 9:22.81 94.6% 0+0k 26+161io 2pf+0w