/scratch2/people/lucchese/polyangd/tests/test05.job
test05 - sf6, G90 output, polarization potential
Thu Jan 25 15:43:44 CST 2001
0.065u 0.057s 0:00.21 52.3% 0+0k 8+0io 0pf+0w

**********************************************************************
SetUp - set up command scripts
**********************************************************************

wrkdir = tst154812
Moving to /scratch2/lucchese/tst154812

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp  'Oh'   # point group to use
 DoSym  'yes'  # compute the blms
 LMax   15     # maximum l to be used for wave functions
 LMaxI  40     # maximum l value used to determine numerical angular grids
 LMaxA  12     # maximum l included at large r
 LMax2  30     # maximum l to be used for potentials
 PrintFlag 0   # no extra printing
 MMax   -1     # maximum m to use (-1 means use LMax)
 MMaxI  -1     # maximum m to use in angular integrations (-1 means us LMaxI)
 ECenter  0.0 0.0 0.0 # center for exapnding about
 RMax   14.0   # maximum R in inner grid
 EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0
  End
  PCutRd  1.0e-8  # cutoff factor used in the radial grids
  VCorr 'PZ'
  AsyPol
 0.25   # SwitchD, distance where switching function is down to 0.1
 7     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
16.198 # value of the spherical polarizability
 2     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 3     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 4     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 5     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 6     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 7     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
 End
 ScatEng 1 1.0      # list of scattering energies
 FegeEng 0.488398   # Energy correction used in the fege potential
 LMaxK   10    # Maximum l in the K matirx
IterMax  15    # Maximum Number of iterations
GrnType  0     # type of Green function (0 -> K matrix, 1 -> T matrix)
CnvgKMat 1.0e-6 # Convergence of the K matrix
NIntReg  10    # Number of integration regions, number needed is controlled
               # by the instability in the integrator
LMaxEx   -1    # -1 implies all terms (2*LMax) alternatively one can use just
               # LMax to save computer time

**********************************************************************
Convert - Convert file /scratch2/people/lucchese/polyangd/tests/test05.g90
          using the g90 conversion program
**********************************************************************


----------------------------------------------------------------------
g90cnv - G90 conversion program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:43:46 2001
 Unit which contains output from g90 (iuin) =   50
 Output unit for geometry information (iugeom) =   51
 Output unit for orbital information (iuorb) =   82
 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
 Convert G90 output Thu Jan 25 15:43:46 2001
 delt cpu =     0.1  tot cpu =     0.1  tot wall =     0.0
Thu Jan 25 15:43:46 CST 2001
0.152u 0.115s 0:00.35 74.2% 0+0k 7+3io 0pf+0w

**********************************************************************
GetBlms - Compute blms for point group Oh
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:43:46 2001
 lmax =   30
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120       1 -1 -1  1  1 -1 -1
 B2G       1         3        120      -1  1 -1  1 -1  1 -1
 B3G       1         4        120      -1 -1  1  1 -1 -1  1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120       1 -1 -1 -1 -1  1  1
 B2U       1         7        120      -1  1 -1 -1  1 -1  1
 B3U       1         8        120      -1 -1  1 -1  1  1 -1
 Generate blms Thu Jan 25 15:43:46 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:43:46 2001
 lmax =   15
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group   43
 iprnfg =    0
 calculation type (calctp) = compute
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    2
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information
 Number of symmetry operations =    48
 symmetry operations
   1   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00
   2   0.100000E+01   0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   3  -0.100000E+01  -0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   4   0.100000E+01  -0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   5  -0.100000E+01   0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   6   0.100000E+01   0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   7  -0.100000E+01  -0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   8   0.100000E+01  -0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
   9  -0.100000E+01   0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
  10   0.100000E+01   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  11   0.100000E+01  -0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  12   0.100000E+01   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
  13   0.100000E+01   0.000000E+00  -0.100000E+01   0.180000E+03   0.200000E+01
  14   0.000000E+00   0.100000E+01   0.100000E+01   0.180000E+03   0.200000E+01
  15   0.000000E+00   0.100000E+01  -0.100000E+01   0.180000E+03   0.200000E+01
  16   0.100000E+01   0.000000E+00   0.000000E+00   0.900000E+02   0.200000E+01
  17   0.000000E+00   0.100000E+01   0.000000E+00   0.900000E+02   0.200000E+01
  18   0.000000E+00   0.000000E+00   0.100000E+01   0.900000E+02   0.200000E+01
  19   0.100000E+01   0.000000E+00   0.000000E+00  -0.900000E+02   0.200000E+01
  20   0.000000E+00   0.100000E+01   0.000000E+00  -0.900000E+02   0.200000E+01
  21   0.000000E+00   0.000000E+00   0.100000E+01  -0.900000E+02   0.200000E+01
  22   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.200000E+01
  23   0.000000E+00   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  24   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
  25   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.300000E+01
  26   0.100000E+01   0.000000E+00   0.000000E+00   0.900000E+02   0.300000E+01
  27   0.000000E+00   0.100000E+01   0.000000E+00   0.900000E+02   0.300000E+01
  28   0.000000E+00   0.000000E+00   0.100000E+01   0.900000E+02   0.300000E+01
  29   0.100000E+01   0.000000E+00   0.000000E+00  -0.900000E+02   0.300000E+01
  30   0.000000E+00   0.100000E+01   0.000000E+00  -0.900000E+02   0.300000E+01
  31   0.000000E+00   0.000000E+00   0.100000E+01  -0.900000E+02   0.300000E+01
  32   0.100000E+01   0.100000E+01   0.100000E+01   0.600000E+02   0.300000E+01
  33  -0.100000E+01  -0.100000E+01   0.100000E+01   0.600000E+02   0.300000E+01
  34   0.100000E+01  -0.100000E+01  -0.100000E+01   0.600000E+02   0.300000E+01
  35  -0.100000E+01   0.100000E+01  -0.100000E+01   0.600000E+02   0.300000E+01
  36   0.100000E+01   0.100000E+01   0.100000E+01  -0.600000E+02   0.300000E+01
  37  -0.100000E+01  -0.100000E+01   0.100000E+01  -0.600000E+02   0.300000E+01
  38   0.100000E+01  -0.100000E+01  -0.100000E+01  -0.600000E+02   0.300000E+01
  39  -0.100000E+01   0.100000E+01  -0.100000E+01  -0.600000E+02   0.300000E+01
  40   0.100000E+01   0.000000E+00   0.000000E+00   0.000000E+00   0.100000E+01
  41   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  42   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.100000E+01
  43   0.100000E+01   0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  44   0.100000E+01  -0.100000E+01   0.000000E+00   0.000000E+00   0.100000E+01
  45   0.100000E+01   0.000000E+00   0.100000E+01   0.000000E+00   0.100000E+01
  46   0.100000E+01   0.000000E+00  -0.100000E+01   0.000000E+00   0.100000E+01
  47   0.000000E+00   0.100000E+01   0.100000E+01   0.000000E+00   0.100000E+01
  48   0.000000E+00   0.100000E+01  -0.100000E+01   0.000000E+00   0.100000E+01
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    24    23    22    25    42    41    40
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         12       1  1  1  1  1  1  1
 EG        2         4         12       1  1  1  1  1  1  1
 T1G       1         5         12      -1 -1  1  1 -1 -1  1
 T1G       2         6         12      -1  1 -1  1 -1  1 -1
 T1G       3         7         12       1 -1 -1  1  1 -1 -1
 T2G       1         8         16      -1 -1  1  1 -1 -1  1
 T2G       2         9         16      -1  1 -1  1 -1  1 -1
 T2G       3        10         16       1 -1 -1  1  1 -1 -1
 A1U       1        11          3       1  1  1 -1 -1 -1 -1
 A2U       1        12          7       1  1  1 -1 -1 -1 -1
 EU        1        13          9       1  1  1 -1 -1 -1 -1
 EU        2        14          9       1  1  1 -1 -1 -1 -1
 T1U       1        15         20      -1 -1  1 -1  1  1 -1
 T1U       2        16         20      -1  1 -1 -1  1 -1  1
 T1U       3        17         20       1 -1 -1 -1 -1  1  1
 T2U       1        18         16      -1 -1  1 -1  1  1 -1
 T2U       2        19         16      -1  1 -1 -1  1 -1  1
 T2U       3        20         16       1 -1 -1 -1 -1  1  1
 Generate blms Thu Jan 25 15:44:05 2001
 delt cpu =    18.3  tot cpu =    18.3  tot wall =    19.0
Thu Jan 25 15:44:05 CST 2001
18.416u 0.320s 0:19.41 96.4% 0+0k 15+5io 0pf+0w

**********************************************************************
ExpOrb - create grid and expand orbitals
**********************************************************************

Thu Jan 25 15:44:05 CST 2001
0.082u 0.076s 0:00.17 88.2% 0+0k 0+0io 0pf+0w

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Unit for geometry information (iUGeom) =   51
Unit fo basis function and orbital coefficients (iUOrb) =   82
Unit for the generated grid (iUGrd) =   54
Maximum R in the grid (RMax) =    14.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV

    1  Center at =     0.00000  Alpha Max = 0.93413E+05
    2  Center at =     2.94840  Alpha Max = 0.11427E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.34488E-04     0.00110
    2    8    40    0.36788E-04     0.00140
    3    8    48    0.46598E-04     0.00177
    4    8    56    0.59024E-04     0.00224
    5    8    64    0.74764E-04     0.00284
    6    8    72    0.94700E-04     0.00360
    7    8    80    0.11995E-03     0.00456
    8    8    88    0.15194E-03     0.00577
    9    8    96    0.19246E-03     0.00731
   10    8   104    0.24378E-03     0.00926
   11    8   112    0.30879E-03     0.01173
   12    8   120    0.39113E-03     0.01486
   13    8   128    0.49544E-03     0.01883
   14    8   136    0.62755E-03     0.02385
   15    8   144    0.79490E-03     0.03021
   16    8   152    0.10069E-02     0.03826
   17    8   160    0.12754E-02     0.04846
   18    8   168    0.16155E-02     0.06139
   19    8   176    0.20463E-02     0.07776
   20    8   184    0.25919E-02     0.09849
   21    8   192    0.32831E-02     0.12476
   22    8   200    0.41586E-02     0.15803
   23    8   208    0.52676E-02     0.20017
   24    8   216    0.66723E-02     0.25355
   25    8   224    0.84516E-02     0.32116
   26    8   232    0.10705E-01     0.40680
   27   64   296    0.10990E-01     1.11015
   28   64   360    0.10990E-01     1.81349
   29   64   424    0.10990E-01     2.51684
   30    8   432    0.10990E-01     2.60475
   31    8   440    0.89913E-02     2.67668
   32    8   448    0.71093E-02     2.73356
   33    8   456    0.56212E-02     2.77853
   34    8   464    0.44446E-02     2.81409
   35    8   472    0.35143E-02     2.84220
   36    8   480    0.27787E-02     2.86443
   37    8   488    0.21971E-02     2.88201
   38    8   496    0.17372E-02     2.89590
   39    8   504    0.13736E-02     2.90689
   40    8   512    0.10861E-02     2.91558
   41    8   520    0.85872E-03     2.92245
   42    8   528    0.67898E-03     2.92788
   43    8   536    0.53686E-03     2.93218
   44    8   544    0.42449E-03     2.93557
   45    8   552    0.33563E-03     2.93826
   46    8   560    0.26538E-03     2.94038
   47    8   568    0.20983E-03     2.94206
   48    8   576    0.16591E-03     2.94339
   49    8   584    0.13118E-03     2.94444
   50    8   592    0.10372E-03     2.94527
   51   24   616    0.98608E-04     2.94763
   52    8   624    0.95992E-04     2.94840
   53   32   656    0.98608E-04     2.95156
   54    8   664    0.10518E-03     2.95240
   55    8   672    0.13323E-03     2.95346
   56    8   680    0.16876E-03     2.95481
   57    8   688    0.21376E-03     2.95652
   58    8   696    0.27076E-03     2.95869
   59    8   704    0.34297E-03     2.96143
   60    8   712    0.43442E-03     2.96491
   61    8   720    0.55027E-03     2.96931
   62    8   728    0.69701E-03     2.97489
   63    8   736    0.88288E-03     2.98195
   64    8   744    0.11183E-02     2.99090
   65    8   752    0.14165E-02     3.00223
   66    8   760    0.17943E-02     3.01658
   67    8   768    0.22727E-02     3.03476
   68    8   776    0.28788E-02     3.05779
   69    8   784    0.36465E-02     3.08697
   70    8   792    0.46189E-02     3.12392
   71    8   800    0.58506E-02     3.17072
   72    8   808    0.74107E-02     3.23001
   73    8   816    0.93869E-02     3.30510
   74    8   824    0.11890E-01     3.40022
   75   64   888    0.13657E-01     4.27425
   76   64   952    0.13657E-01     5.14828
   77   64  1016    0.13657E-01     6.02230
   78   64  1080    0.13657E-01     6.89633
   79   64  1144    0.13657E-01     7.77035
   80   64  1208    0.13657E-01     8.64438
   81   64  1272    0.13657E-01     9.51840
   82   64  1336    0.13657E-01    10.39243
   83   64  1400    0.13657E-01    11.26645
   84   64  1464    0.13657E-01    12.14048
   85   64  1528    0.13657E-01    13.01450
   86   64  1592    0.13657E-01    13.88853
   87    8  1600    0.13657E-01    13.99778
   88    8  1608    0.27730E-03    14.00000

----------------------------------------------------------------------
anggct - Program to generate angular functions
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:44:06 2001
Maximum scattering l (lmaxs) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Minimum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (pcutar) =  0.10000000E-07
Input unit for full symmetry blms (iuins) =   40
Input unit for abelian sub-group blms (iuini) =   42
Unit for geometry information (iugeom) =   51
Unit for radial grid information (iugrd) =   54
Output unit for angular grid and functions (iuang) =   41
Output unit for angular grid cutoffs (iuanrd) =   62
Print flag (iprnfg) =    0
 Actual value of lmasym found =     15
Number of regions of the same l expansion (NAngReg) =   12
 Point group from iuins is Oh
 From iuins nthd =    2  nphid =    4  nabop =    7

 Number of radial functions in full symmetry
   1 Symmetry type A1G   1  Number of radial functions =      8
   2 Symmetry type A2G   1  Number of radial functions =      4
   3 Symmetry type EG    1  Number of radial functions =     12
   4 Symmetry type EG    2  Number of radial functions =     12
   5 Symmetry type T1G   1  Number of radial functions =     12
   6 Symmetry type T1G   2  Number of radial functions =     12
   7 Symmetry type T1G   3  Number of radial functions =     12
   8 Symmetry type T2G   1  Number of radial functions =     16
   9 Symmetry type T2G   2  Number of radial functions =     16
  10 Symmetry type T2G   3  Number of radial functions =     16
  11 Symmetry type A1U   1  Number of radial functions =      3
  12 Symmetry type A2U   1  Number of radial functions =      7
  13 Symmetry type EU    1  Number of radial functions =      9
  14 Symmetry type EU    2  Number of radial functions =      9
  15 Symmetry type T1U   1  Number of radial functions =     20
  16 Symmetry type T1U   2  Number of radial functions =     20
  17 Symmetry type T1U   3  Number of radial functions =     20
  18 Symmetry type T2U   1  Number of radial functions =     16
  19 Symmetry type T2U   2  Number of radial functions =     16
  20 Symmetry type T2U   3  Number of radial functions =     16

 Number of radial functions in abelian subgroup
   1 Symmetry type AG    1  Number of radial functions =    136
   2 Symmetry type B1G   1  Number of radial functions =    120
   3 Symmetry type B2G   1  Number of radial functions =    120
   4 Symmetry type B3G   1  Number of radial functions =    120
   5 Symmetry type AU    1  Number of radial functions =    105
   6 Symmetry type B1U   1  Number of radial functions =    120
   7 Symmetry type B2U   1  Number of radial functions =    120
   8 Symmetry type B3U   1  Number of radial functions =    120

 For analytic integrations ntheta =     16  nphi =     16
 For numerical integrations ntheti =     32 nphii =     31

 Maximum parameters needed
 Parameter         Value  Value Needed
     maxlm           120            20
    maxlma           680           136
    maxlmh           400            36
    maxthe            58            16
    maxphi           110            16
    maxthi           112            32
    maxpii           220            31
    maxfun          2601           256
    maxfub         10201           961
 Define angular grid Thu Jan 25 15:44:09 2001
 delt cpu =     3.6  tot cpu =     3.6  tot wall =     3.0
3.501u 0.440s 0:04.17 94.4% 0+0k 0+10io 0pf+0w

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =  -82
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Output file for rotated and typed orbitals (iUOrbSym) =   52
 Begining timer Thu Jan 25 15:44:10 2001

 R of maximum density
     1  A1G   1 at max irg =   21  r =   0.06139
     2  EG    1 at max irg =   80  r =   2.94998
     3  EG    2 at max irg =   80  r =   2.94998
     4  T1U   1 at max irg =   80  r =   2.94998
     5  T1U   2 at max irg =   80  r =   2.94998
     6  T1U   3 at max irg =   80  r =   2.94998
     7  A1G   1 at max irg =   80  r =   2.94998
     8  A1G   1 at max irg =   29  r =   0.40680
     9  T1U   1 at max irg =   28  r =   0.32116
    10  T1U   2 at max irg =   28  r =   0.32116
    11  T1U   3 at max irg =   28  r =   0.32116
    12  A1G   1 at max irg =   54  r =   2.60475
    13  T1U   1 at max irg =   73  r =   2.94444
    14  T1U   2 at max irg =   73  r =   2.94444
    15  T1U   3 at max irg =   73  r =   2.94444
    16  EG    1 at max irg =   80  r =   2.94998
    17  EG    2 at max irg =   80  r =   2.94998
    18  A1G   1 at max irg =  103  r =   3.40022
    19  T1U   1 at max irg =   53  r =   2.51684
    20  T1U   2 at max irg =   53  r =   2.51684
    21  T1U   3 at max irg =   53  r =   2.51684
    22  T2G   1 at max irg =   93  r =   2.99090
    23  T2G   2 at max irg =   93  r =   2.99090
    24  T2G   3 at max irg =   93  r =   2.99090
    25  EG    1 at max irg =  104  r =   3.50948
    26  EG    2 at max irg =  104  r =   3.50948
    27  T2U   1 at max irg =   94  r =   3.00223
    28  T2U   2 at max irg =   94  r =   3.00223
    29  T2U   3 at max irg =   94  r =   3.00223
    30  T1U   1 at max irg =  100  r =   3.17072
    31  T1U   2 at max irg =  100  r =   3.17072
    32  T1U   3 at max irg =  100  r =   3.17072
    33  T1G   1 at max irg =   94  r =   3.00223
    34  T1G   2 at max irg =   94  r =   3.00223
    35  T1G   3 at max irg =   94  r =   3.00223

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 EG    1
     2 -0.3723399903    3  0.9280964021

Rotation coefficients for orbital     3  grp =    2 EG    2
     2 -0.9280964021    3 -0.3723399903

Rotation coefficients for orbital     4  grp =    3 T1U   1
     4 -0.0070392552    5 -0.9997781087    6  0.0198540259

Rotation coefficients for orbital     5  grp =    3 T1U   2
     4 -0.1798993512    5  0.0207967148    6  0.9834651596

Rotation coefficients for orbital     6  grp =    3 T1U   3
     4  0.9836598357    5 -0.0033511359    6  0.1800058264

Rotation coefficients for orbital     7  grp =    4 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    5 A1G   1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    6 T1U   1
     9  0.9504767906   10  0.1064064951   11  0.2920128909

Rotation coefficients for orbital    10  grp =    6 T1U   2
     9 -0.2115718483   10 -0.4667305527   11  0.8587199452

Rotation coefficients for orbital    11  grp =    6 T1U   3
     9 -0.2276647175   10  0.8779750845   11  0.4211039389

Rotation coefficients for orbital    12  grp =    7 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    8 T1U   1
    13  0.3486028342   14 -0.9309147183   15 -0.1089672023

Rotation coefficients for orbital    14  grp =    8 T1U   2
    13  0.9065174672   14  0.3053413894   15  0.2915351052

Rotation coefficients for orbital    15  grp =    8 T1U   3
    13 -0.2381221234   14 -0.2004106362   15  0.9503333264

Rotation coefficients for orbital    16  grp =    9 EG    1
    16 -0.7632185900   17 -0.6461403747

Rotation coefficients for orbital    17  grp =    9 EG    2
    16 -0.6461403747   17  0.7632185900

Rotation coefficients for orbital    18  grp =   10 A1G   1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   11 T1U   1
    19  0.8236074469   20 -0.5671119506   21 -0.0074033018

Rotation coefficients for orbital    20  grp =   11 T1U   2
    19  0.5352942578   20  0.7729528898   21  0.3405934346

Rotation coefficients for orbital    21  grp =   11 T1U   3
    19 -0.1874322035   20 -0.2844782340   21  0.9401815269

Rotation coefficients for orbital    22  grp =   12 T2G   1
    22  0.0394530435   23  0.9953938314   24  0.0873760704

Rotation coefficients for orbital    23  grp =   12 T2G   2
    22  0.1604818066   23 -0.0926211493   24  0.9826835261

Rotation coefficients for orbital    24  grp =   12 T2G   3
    22  0.9862499922   23 -0.0247475862   24 -0.1633967865

Rotation coefficients for orbital    25  grp =   13 EG    1
    25 -0.0565714487   26  0.9983985533

Rotation coefficients for orbital    26  grp =   13 EG    2
    25 -0.9983985533   26 -0.0565714487

Rotation coefficients for orbital    27  grp =   14 T2U   1
    27 -0.0491925631   28 -0.4845682916   29  0.8733691445

Rotation coefficients for orbital    28  grp =   14 T2U   2
    27 -0.0633720067   28  0.8741801854   29  0.4814488469

Rotation coefficients for orbital    29  grp =   14 T2U   3
    27 -0.9967768459   28 -0.0316634525   29 -0.0737112290

Rotation coefficients for orbital    30  grp =   15 T1U   1
    30  0.3082948038   31  0.9241037646   32  0.2258020066

Rotation coefficients for orbital    31  grp =   15 T1U   2
    30  0.7300867767   31 -0.3820153074   32  0.5666018033

Rotation coefficients for orbital    32  grp =   15 T1U   3
    30 -0.6098586824   31  0.0098253327   32  0.7924492731

Rotation coefficients for orbital    33  grp =   16 T1G   1
    33  0.7655560716   34 -0.6403054429   35 -0.0627123684

Rotation coefficients for orbital    34  grp =   16 T1G   2
    33  0.0339167884   34 -0.0571734077   35  0.9977879799

Rotation coefficients for orbital    35  grp =   16 T1G   3
    33 -0.6424745542   34 -0.7659896483   35 -0.0220523452
Number of orbital groups and degeneracis are        16
  1  2  3  1  1  3  1  3  2  1  3  3  2  3  3  3
Number of orbital groups and number of electrons when fully occupied
        16
  2  4  6  2  2  6  2  6  4  2  6  6  4  6  6  6
 Compute final expansions Thu Jan 25 15:45:04 2001
 delt cpu =    52.7  tot cpu =    52.7  tot wall =    54.0
Thu Jan 25 15:45:04 CST 2001
56.050u 0.692s 0:58.57 96.8% 0+0k 0+14io 0pf+0w

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =   52
 Unit for output of single center expanded orbitals (iuout) =   55
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Begining timer Thu Jan 25 15:45:04 2001
 Number of r points in each I/O block (nrpibk) =  204
 Number of blocks in each function (nblks) =    8
 Number of r points in each in memory block (nrpibko) =  204
 Direct access record sizxe (real words) (nsize) = 4080
 Total scratch file size in bytes =        4177920

 Normalization integral
 Sum(    1) =   0.9999839775
 Sum(    2) =   0.0000000003
 Sum(    3) =   0.0000000002
 Sum(    4) =   0.0000000001
 Sum(    5) =   0.0000000000
 Sum(    6) =   0.0000000000
 Sum(    7) =   0.0000000000
 Sum(    8) =   0.0000000000
 Total      =   0.9999839781
 Orbital     1 of  A1G   1 symmetry
     Normalization coefficient =   1.00000801

 Normalization integral
 Sum(    1) =   0.0580891354
 Sum(    2) =   0.0399714831
 Sum(    3) =   0.1067960929
 Sum(    4) =   0.0378605546
 Sum(    5) =   0.0278049693
 Sum(    6) =   0.1045238532
 Sum(    7) =   0.0100266732
 Sum(    8) =   0.0440526671
 Sum(    9) =   0.0239886279
 Sum(   10) =   0.0768592739
 Sum(   11) =   0.0154673528
 Sum(   12) =   0.0046619778
 Total      =   0.5501026611
 Orbital     2 of  EG    1 symmetry
     Normalization coefficient =   1.34827390

 Normalization integral
 Sum(    1) =   0.0238768091
 Sum(    2) =   0.0523250931
 Sum(    3) =   0.0000000009
 Sum(    4) =   0.0738685562
 Sum(    5) =   0.0000000001
 Sum(    6) =   0.0871007841
 Sum(    7) =   0.0000000001
 Sum(    8) =   0.0000000001
 Sum(    9) =   0.0922251827
 Sum(   10) =   0.0000000000
 Sum(   11) =   0.0000000000
 Sum(   12) =   0.0907508230
 Sum(   13) =   0.0000000000
 Sum(   14) =   0.0000000000
 Sum(   15) =   0.0000000000
 Sum(   16) =   0.0846585068
 Sum(   17) =   0.0000000000
 Sum(   18) =   0.0000000000
 Sum(   19) =   0.0000000001
 Sum(   20) =   0.0758705152
 Total      =   0.5806762714
 Orbital     3 of  T1U   1 symmetry
     Normalization coefficient =   1.31229949

 Normalization integral
 Sum(    1) =   0.0241544758
 Sum(    2) =   0.1120465392
 Sum(    3) =   0.0305479337
 Sum(    4) =   0.1399689958
 Sum(    5) =   0.0467490533
 Sum(    6) =   0.0112039243
 Sum(    7) =   0.1165141640
 Sum(    8) =   0.0466819185
 Total      =   0.5278670045
 Orbital     4 of  A1G   1 symmetry
     Normalization coefficient =   1.37637806

 Normalization integral
 Sum(    1) =   1.0000045371
 Sum(    2) =   0.0000010554
 Sum(    3) =   0.0000001434
 Sum(    4) =   0.0000001949
 Sum(    5) =   0.0000000194
 Sum(    6) =   0.0000000031
 Sum(    7) =   0.0000000326
 Sum(    8) =   0.0000000140
 Total      =   1.0000060000
 Orbital     5 of  A1G   1 symmetry
     Normalization coefficient =   0.99999700

 Normalization integral
 Sum(    1) =   0.9999992744
 Sum(    2) =   0.0000017458
 Sum(    3) =   0.0000001209
 Sum(    4) =   0.0000008193
 Sum(    5) =   0.0000000263
 Sum(    6) =   0.0000001890
 Sum(    7) =   0.0000000043
 Sum(    8) =   0.0000000072
 Sum(    9) =   0.0000000888
 Sum(   10) =   0.0000000020
 Sum(   11) =   0.0000000027
 Sum(   12) =   0.0000000660
 Sum(   13) =   0.0000000006
 Sum(   14) =   0.0000000010
 Sum(   15) =   0.0000000013
 Sum(   16) =   0.0000000445
 Sum(   17) =   0.0000000004
 Sum(   18) =   0.0000000005
 Sum(   19) =   0.0000000006
 Sum(   20) =   0.0000000516
 Total      =   1.0000024473
 Orbital     6 of  T1U   1 symmetry
     Normalization coefficient =   0.99999878

 Normalization integral
 Sum(    1) =   0.7327345608
 Sum(    2) =   0.2050699594
 Sum(    3) =   0.0097890088
 Sum(    4) =   0.0072446869
 Sum(    5) =   0.0018480754
 Sum(    6) =   0.0006901894
 Sum(    7) =   0.0071775892
 Sum(    8) =   0.0035084459
 Total      =   0.9680625159
 Orbital     7 of  A1G   1 symmetry
     Normalization coefficient =   1.01636172

 Normalization integral
 Sum(    1) =   0.5655255112
 Sum(    2) =   0.2672725733
 Sum(    3) =   0.0001803023
 Sum(    4) =   0.0888365536
 Sum(    5) =   0.0001487314
 Sum(    6) =   0.0148450386
 Sum(    7) =   0.0000456475
 Sum(    8) =   0.0000751985
 Sum(    9) =   0.0047795914
 Sum(   10) =   0.0000238745
 Sum(   11) =   0.0000310451
 Sum(   12) =   0.0064204988
 Sum(   13) =   0.0000062073
 Sum(   14) =   0.0000106830
 Sum(   15) =   0.0000126524
 Sum(   16) =   0.0072878254
 Sum(   17) =   0.0000037019
 Sum(   18) =   0.0000049866
 Sum(   19) =   0.0000056143
 Sum(   20) =   0.0080479932
 Total      =   0.9635642303
 Orbital     8 of  T1U   1 symmetry
     Normalization coefficient =   1.01873134

 Normalization integral
 Sum(    1) =   0.7530111801
 Sum(    2) =   0.1136878031
 Sum(    3) =   0.0592462010
 Sum(    4) =   0.0037295864
 Sum(    5) =   0.0028610945
 Sum(    6) =   0.0063169794
 Sum(    7) =   0.0006111729
 Sum(    8) =   0.0038959110
 Sum(    9) =   0.0021497178
 Sum(   10) =   0.0082956208
 Sum(   11) =   0.0016782942
 Sum(   12) =   0.0005112446
 Total      =   0.9559948059
 Orbital     9 of  EG    1 symmetry
     Normalization coefficient =   1.02275647

 Normalization integral
 Sum(    1) =   0.5833344608
 Sum(    2) =   0.3116284718
 Sum(    3) =   0.0282767664
 Sum(    4) =   0.0440144555
 Sum(    5) =   0.0061258052
 Sum(    6) =   0.0008162075
 Sum(    7) =   0.0084882427
 Sum(    8) =   0.0024405446
 Total      =   0.9851249545
 Orbital    10 of  A1G   1 symmetry
     Normalization coefficient =   1.00752154

 Normalization integral
 Sum(    1) =   0.4262402415
 Sum(    2) =   0.3298766136
 Sum(    3) =   0.0279208032
 Sum(    4) =   0.0675992619
 Sum(    5) =   0.0149403282
 Sum(    6) =   0.0690535530
 Sum(    7) =   0.0042120567
 Sum(    8) =   0.0069376940
 Sum(    9) =   0.0157542076
 Sum(   10) =   0.0023554611
 Sum(   11) =   0.0030629504
 Sum(   12) =   0.0111922753
 Sum(   13) =   0.0006820133
 Sum(   14) =   0.0011742852
 Sum(   15) =   0.0013906700
 Sum(   16) =   0.0050315705
 Sum(   17) =   0.0004440226
 Sum(   18) =   0.0005986406
 Sum(   19) =   0.0006749327
 Sum(   20) =   0.0022298476
 Total      =   0.9913714290
 Orbital    11 of  T1U   1 symmetry
     Normalization coefficient =   1.00434241

 Normalization integral
 Sum(    1) =   0.5260108515
 Sum(    2) =   0.0617949350
 Sum(    3) =   0.2420073670
 Sum(    4) =   0.0124367538
 Sum(    5) =   0.0368821287
 Sum(    6) =   0.0029171751
 Sum(    7) =   0.0598954552
 Sum(    8) =   0.0090125255
 Sum(    9) =   0.0008738507
 Sum(   10) =   0.0104722288
 Sum(   11) =   0.0025984689
 Sum(   12) =   0.0002438395
 Sum(   13) =   0.0146394135
 Sum(   14) =   0.0030209005
 Sum(   15) =   0.0008668781
 Sum(   16) =   0.0000942955
 Total      =   0.9837670675
 Orbital    12 of  T2G   1 symmetry
     Normalization coefficient =   1.00821664

 Normalization integral
 Sum(    1) =   0.6430971780
 Sum(    2) =   0.1362086846
 Sum(    3) =   0.1387389330
 Sum(    4) =   0.0197107003
 Sum(    5) =   0.0140581619
 Sum(    6) =   0.0253305605
 Sum(    7) =   0.0023892055
 Sum(    8) =   0.0053328200
 Sum(    9) =   0.0028709110
 Sum(   10) =   0.0050093231
 Sum(   11) =   0.0010086619
 Sum(   12) =   0.0003044682
 Total      =   0.9940596079
 Orbital    13 of  EG    1 symmetry
     Normalization coefficient =   1.00298349

 Normalization integral
 Sum(    1) =   0.4498239292
 Sum(    2) =   0.2270435433
 Sum(    3) =   0.0606165348
 Sum(    4) =   0.0974014391
 Sum(    5) =   0.0325388516
 Sum(    6) =   0.0400179787
 Sum(    7) =   0.0090905409
 Sum(    8) =   0.0153795591
 Sum(    9) =   0.0180286317
 Sum(   10) =   0.0054982632
 Sum(   11) =   0.0073048188
 Sum(   12) =   0.0079699534
 Sum(   13) =   0.0017382281
 Sum(   14) =   0.0030304208
 Sum(   15) =   0.0036525340
 Sum(   16) =   0.0039596373
 Total      =   0.9830948641
 Orbital    14 of  T2U   1 symmetry
     Normalization coefficient =   1.00856127

 Normalization integral
 Sum(    1) =   0.2083290200
 Sum(    2) =   0.2451869787
 Sum(    3) =   0.1252280521
 Sum(    4) =   0.1738434893
 Sum(    5) =   0.0621400468
 Sum(    6) =   0.0361010791
 Sum(    7) =   0.0171987630
 Sum(    8) =   0.0283274193
 Sum(    9) =   0.0315455356
 Sum(   10) =   0.0096807649
 Sum(   11) =   0.0125880088
 Sum(   12) =   0.0066105854
 Sum(   13) =   0.0028349388
 Sum(   14) =   0.0048810902
 Sum(   15) =   0.0057802913
 Sum(   16) =   0.0067282644
 Sum(   17) =   0.0018633358
 Sum(   18) =   0.0025121093
 Sum(   19) =   0.0028320077
 Sum(   20) =   0.0015858413
 Total      =   0.9857976218
 Orbital    15 of  T1U   1 symmetry
     Normalization coefficient =   1.00717774

 Normalization integral
 Sum(    1) =   0.6247543736
 Sum(    2) =   0.0800461699
 Sum(    3) =   0.1630955110
 Sum(    4) =   0.0175635176
 Sum(    5) =   0.0266036247
 Sum(    6) =   0.0046948291
 Sum(    7) =   0.0382003667
 Sum(    8) =   0.0069596521
 Sum(    9) =   0.0014139353
 Sum(   10) =   0.0073994379
 Sum(   11) =   0.0022305457
 Sum(   12) =   0.0004842842
 Total      =   0.9734462479
 Orbital    16 of  T1G   1 symmetry
     Normalization coefficient =   1.01354728
 Compute final expansions Thu Jan 25 15:46:47 2001
 delt cpu =    99.7  tot cpu =    99.7  tot wall =   103.0
Thu Jan 25 15:46:47 CST 2001
154.541u 2.008s 2:41.96 96.6% 0+0k 0+20io 0pf+0w

**********************************************************************
GetPot - compute local potential
**********************************************************************


----------------------------------------------------------------------
den - Electron density construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:46:47 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for angular grid cutoff information (iuanrd) =   62
 Unit for input of expanded orbitals (iuxorb) =   55
 Unit for output of density (iuden) =   56
Print flag =    0
 Compute density Thu Jan 25 15:46:59 2001
 delt cpu =    11.4  tot cpu =    11.4  tot wall =    12.0
Thu Jan 25 15:46:59 CST 2001
11.011u 0.573s 0:12.22 94.7% 0+0k 1+5io 0pf+0w

----------------------------------------------------------------------
stpot - Compute the static potential from the density
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of static potential (iustpt) =   57
 Begining timer Thu Jan 25 15:47:00 2001
 vasymp =  0.70000000E+02 facnorm =  0.10000000E+01
 Electronic part Thu Jan 25 15:47:02 2001
 delt cpu =     2.1  tot cpu =     2.1  tot wall =     2.0
 Nuclear part Thu Jan 25 15:47:03 2001
 delt cpu =     1.6  tot cpu =     3.7  tot wall =     3.0
Thu Jan 25 15:47:03 CST 2001
14.343u 1.008s 0:16.20 94.6% 0+0k 1+7io 0pf+0w

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:47:04 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of vcppol potential (iuvcpl) =   63
 Compute vcppol potential Thu Jan 25 15:47:10 2001
 delt cpu =     5.7  tot cpu =     5.7  tot wall =     6.0
Thu Jan 25 15:47:10 CST 2001
19.549u 1.661s 0:22.38 94.7% 0+0k 1+11io 0pf+0w

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:47:10 2001
 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of local polarization potential (iupoll) =   63
 Unit for output of total polarization potential (iupolt) =   64
 Print flag (iprnfg) =    0
Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    7
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Term =    2  At center =    2
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.29484000E+01
Type =    1
Term =    3  At center =    3
Explicit coordinates =  0.00000000E+00  0.29484000E+01  0.00000000E+00
Type =    1
Term =    4  At center =    4
Explicit coordinates = -0.29484000E+01  0.00000000E+00  0.00000000E+00
Type =    1
Term =    5  At center =    5
Explicit coordinates =  0.29484000E+01  0.00000000E+00  0.00000000E+00
Type =    1
Term =    6  At center =    6
Explicit coordinates =  0.00000000E+00 -0.29484000E+01  0.00000000E+00
Type =    1
Term =    7  At center =    7
Explicit coordinates =  0.00000000E+00  0.00000000E+00 -0.29484000E+01
Type =    1
Last center is at (RCenterX) =   2.94840
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Using closest approach for matching r
 Matching point is at r =   6.1688235313
 i =   1 l =   0 vdif =      0.02315642  pola =     -0.07726213  lfix =   6
 i =   2 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   3 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   4 l =   4 vdif =     -0.00361238  pola =     -0.00972874  lfix =   6
 i =   5 l =   4 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   6 l =   4 vdif =     -0.00305302  pola =     -0.00822229  lfix =   6
 i =   7 l =   6 vdif =      0.00004073  pola =     -0.00066576  lfix =   8
 i =   8 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =   9 l =   6 vdif =     -0.00010777  pola =      0.00176143  lfix =   8
 i =  10 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =  11 l =   8 vdif =      0.00188775  pola =     -0.00080550  lfix =  10
 i =  12 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  13 l =   8 vdif =      0.00100394  pola =     -0.00042838  lfix =  10
 i =  14 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  15 l =   8 vdif =      0.00152962  pola =     -0.00065269  lfix =  10
 i =  16 l =  10 vdif =      0.00025328  pola =     -0.00007375  lfix =  12
 i =  17 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  18 l =  10 vdif =     -0.00036094  pola =      0.00010510  lfix =  12
 i =  19 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  20 l =  10 vdif =     -0.00042960  pola =      0.00012509  lfix =  12
 i =  21 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  22 l =  12 vdif =     -0.00010619  pola =     -0.00005685  lfix =  14
 i =  23 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  24 l =  12 vdif =     -0.00007198  pola =     -0.00002568  lfix =  14
 i =  25 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  26 l =  12 vdif =     -0.00001856  pola =     -0.00002848  lfix =  14
 i =  27 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  28 l =  12 vdif =     -0.00009141  pola =     -0.00004449  lfix =  14
 i =  29 l =  14 vdif =     -0.00003645  pola =     -0.00000600  lfix =  16
 i =  30 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  31 l =  14 vdif =      0.00003790  pola =      0.00000624  lfix =  16
 i =  32 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  33 l =  14 vdif =      0.00004067  pola =      0.00000669  lfix =  16
 i =  34 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  35 l =  14 vdif =      0.00004939  pola =      0.00000812  lfix =  16
 i =  36 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
First nonzero weight at R =        5.47603
Last point of the switching region R=        6.89633
Matching factors (BFac):
   0.228155E+00   0.257305E+01   0.000000E+00  -0.196345E+00   0.000000E+00
  -0.196345E+00  -0.121132E+00   0.000000E+00  -0.121132E+00   0.000000E+00
   0.690328E-02   0.000000E+00   0.690327E-02   0.000000E+00   0.690328E-02
  -0.181646E+00   0.000000E+00  -0.181646E+00   0.000000E+00  -0.181646E+00
   0.000000E+00   0.444049E-01   0.000000E+00   0.333617E-01   0.000000E+00
   0.632472E-01   0.000000E+00   0.419983E-01  -0.253336E+00   0.000000E+00
  -0.253336E+00   0.000000E+00  -0.253336E+00   0.000000E+00  -0.253336E+00
   0.000000E+00
Total asymptotic potential is   0.44134000E+02
 Compute total polarizaiton potential Thu Jan 25 15:47:16 2001
 delt cpu =     5.9  tot cpu =     5.9  tot wall =     6.0
Thu Jan 25 15:47:16 CST 2001
Thu Jan 25 15:47:16 CST 2001
25.076u 2.193s 0:28.72 94.9% 0+0k 1+16io 0pf+0w

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 ScatContSym 'A1G'  # Scattering symmetry

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:47:17 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.48839800E+00  AU
 Do E =  0.10000000E+01 eV (  0.36749309E-01 AU)
 Compute fege potential Thu Jan 25 15:47:23 2001
 delt cpu =     6.1  tot cpu =     6.1  tot wall =     6.0
Thu Jan 25 15:47:23 CST 2001
5.649u 0.700s 0:06.83 92.8% 0+0k 0+5io 0pf+0w
Thu Jan 25 15:47:23 CST 2001
5.653u 0.711s 0:06.85 92.8% 0+0k 0+5io 0pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:47:23 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =   64
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G
Form of the Green's function to use (iGrnType) =     0
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   10
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    10
Number of points per region =   163
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
 Number of orthogonality constraints (NOrthUse) =    0

 Maximum l used in usual function (lmaxa) =   15
 Maximum m used in usual function (mmaxa) =   15
 Maxamum l used in expanding static potential (lpotct) =   30
 Maximum l used in exapnding the exchange potential (lmaxab) =   30
 Maximum m used potentials (mmaxab) =   30
 Higest l included in the expansion of the wave function (lnp) =   14
 Higest l included in the K matrix (lna) =   10
 Highest l used at large r (lpasym) =   15
 Higest l used in the asymptotic potential (lpzb) =   30

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       32       32    0.000034    0.001104
     2        8       40    0.000037    0.001398
     3        8       48    0.000047    0.001771
     4        8       56    0.000059    0.002243
     5        8       64    0.000075    0.002841
     6        8       72    0.000095    0.003599
     7        8       80    0.000120    0.004558
     8        8       88    0.000152    0.005774
     9        8       96    0.000192    0.007313
    10        8      104    0.000244    0.009264
    11        8      112    0.000309    0.011734
    12        8      120    0.000391    0.014863
    13        8      128    0.000495    0.018827
    14        8      136    0.000628    0.023847
    15        8      144    0.000795    0.030206
    16        8      152    0.001007    0.038261
    17        8      160    0.001275    0.048464
    18        8      168    0.001615    0.061388
    19        8      176    0.002046    0.077758
    20        8      184    0.002592    0.098494
    21        8      192    0.003283    0.124759
    22        8      200    0.004159    0.158028
    23        8      208    0.005268    0.200168
    24        8      216    0.006672    0.253547
    25        8      224    0.008452    0.321159
    26        8      232    0.010705    0.406802
    27       64      296    0.010990    1.110146
    28       64      360    0.010990    1.813491
    29       64      424    0.010990    2.516836
    30        8      432    0.010990    2.604754
    31        8      440    0.008991    2.676685
    32        8      448    0.007109    2.733559
    33        8      456    0.005621    2.778529
    34        8      464    0.004445    2.814085
    35        8      472    0.003514    2.842200
    36        8      480    0.002779    2.864429
    37        8      488    0.002197    2.882006
    38        8      496    0.001737    2.895903
    39        8      504    0.001374    2.906891
    40        8      512    0.001086    2.915580
    41        8      520    0.000859    2.922450
    42        8      528    0.000679    2.927881
    43        8      536    0.000537    2.932176
    44        8      544    0.000424    2.935572
    45        8      552    0.000336    2.938257
    46        8      560    0.000265    2.940380
    47        8      568    0.000210    2.942059
    48        8      576    0.000166    2.943386
    49        8      584    0.000131    2.944436
    50        8      592    0.000104    2.945265
    51       24      616    0.000099    2.947632
    52        8      624    0.000096    2.948400
    53       32      656    0.000099    2.951555
    54        8      664    0.000105    2.952397
    55        8      672    0.000133    2.953463
    56        8      680    0.000169    2.954813
    57        8      688    0.000214    2.956523
    58        8      696    0.000271    2.958689
    59        8      704    0.000343    2.961433
    60        8      712    0.000434    2.964908
    61        8      720    0.000550    2.969310
    62        8      728    0.000697    2.974886
    63        8      736    0.000883    2.981949
    64        8      744    0.001118    2.990896
    65        8      752    0.001417    3.002228
    66        8      760    0.001794    3.016582
    67        8      768    0.002273    3.034764
    68        8      776    0.002879    3.057795
    69        8      784    0.003646    3.086966
    70        8      792    0.004619    3.123918
    71        8      800    0.005851    3.170722
    72        8      808    0.007411    3.230008
    73        8      816    0.009387    3.305104
    74        8      824    0.011890    3.400225
    75       64      888    0.013657    4.274250
    76       64      952    0.013657    5.148275
    77       64     1016    0.013657    6.022301
    78       64     1080    0.013657    6.896326
    79       64     1144    0.013657    7.770351
    80       64     1208    0.013657    8.644377
    81       64     1272    0.013657    9.518402
    82       64     1336    0.013657   10.392427
    83       64     1400    0.013657   11.266452
    84       64     1464    0.013657   12.140478
    85       64     1528    0.013657   13.014503
    86       64     1592    0.013657   13.888528
    87        8     1600    0.013657   13.997782
    88        8     1608    0.000277   14.000000

 Energy independent setup Thu Jan 25 15:47:33 2001
 delt cpu =     9.3  tot cpu =     9.3  tot wall =    10.0

 Compute solution for E =    1.0000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote =  0.35436558E+03
 i =  2  lval =   3  stpote =  0.30325393E-08
 i =  3  lval =   3  stpote =  0.19825154E-12
 i =  4  lval =   5  stpote = -0.98015657E+02
Asymptotic region to R =       201.1247  in      3 regions
Iter =   1 c.s. =     30.69882564 (a.u)  rmsk=     0.22740852
Iter =   2 c.s. =     29.64257152 (a.u)  rmsk=     0.00876009
Iter =   3 c.s. =     29.68032503 (a.u)  rmsk=     0.00030618
Iter =   4 c.s. =     29.64733081 (a.u)  rmsk=     0.00026745
Iter =   5 c.s. =     29.64694659 (a.u)  rmsk=     0.00000311
Iter =   6 c.s. =     29.64694478 (a.u)  rmsk=     0.00000001
Iter =   7 c.s. =     29.64694478 (a.u)  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.10933031E+01-0.21221544E-02 0.10161086E-04-0.13402034E-06 0.18735170E-09
     ROW  2
 -0.21221546E-02 0.15484837E-01-0.24389336E-03 0.16984238E-04-0.19530135E-07
     ROW  3
  0.10161087E-04-0.24389336E-03 0.45770540E-02-0.32910386E-04 0.40076517E-05
     ROW  4
 -0.13402032E-06 0.16984239E-04-0.32910386E-04 0.21432911E-02-0.18332061E-04
     ROW  5
  0.18735165E-09-0.19530140E-07 0.40076517E-05-0.18332061E-04 0.10975133E-02
 eigenphases
 -0.8299427E+00  0.1097188E-02  0.2143148E-02  0.4572014E-02  0.1549313E-01
 eigenphase sum-0.806637E+00  scattering length=   3.84870
 eps+pi 0.233496E+01  eps+2*pi 0.547655E+01

Iter =   7 c.s. =     29.64694478 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 15:56:08 2001
 delt cpu =   489.4  tot cpu =   498.7  tot wall =   525.0
Thu Jan 25 15:56:08 CST 2001
479.465u 25.956s 8:52.05 94.9% 0+0k 0+79io 0pf+0w

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 ScatContSym 'T1G'  # Scattering symmetry

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:56:09 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.48839800E+00  AU
 Do E =  0.10000000E+01 eV (  0.36749309E-01 AU)
 Compute fege potential Thu Jan 25 15:56:15 2001
 delt cpu =     6.1  tot cpu =     6.1  tot wall =     6.0
Thu Jan 25 15:56:15 CST 2001
5.639u 0.695s 0:06.67 94.7% 0+0k 0+5io 0pf+0w
Thu Jan 25 15:56:15 CST 2001
5.642u 0.706s 0:06.68 94.9% 0+0k 0+5io 0pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:56:15 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =   64
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1G
Form of the Green's function to use (iGrnType) =     0
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   10
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    10
Number of points per region =   163
Number of partial waves (np) =    12
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
 Number of orthogonality constraints (NOrthUse) =    0

 Maximum l used in usual function (lmaxa) =   15
 Maximum m used in usual function (mmaxa) =   15
 Maxamum l used in expanding static potential (lpotct) =   30
 Maximum l used in exapnding the exchange potential (lmaxab) =   30
 Maximum m used potentials (mmaxab) =   30
 Higest l included in the expansion of the wave function (lnp) =   14
 Higest l included in the K matrix (lna) =   10
 Highest l used at large r (lpasym) =   15
 Higest l used in the asymptotic potential (lpzb) =   30

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       32       32    0.000034    0.001104
     2        8       40    0.000037    0.001398
     3        8       48    0.000047    0.001771
     4        8       56    0.000059    0.002243
     5        8       64    0.000075    0.002841
     6        8       72    0.000095    0.003599
     7        8       80    0.000120    0.004558
     8        8       88    0.000152    0.005774
     9        8       96    0.000192    0.007313
    10        8      104    0.000244    0.009264
    11        8      112    0.000309    0.011734
    12        8      120    0.000391    0.014863
    13        8      128    0.000495    0.018827
    14        8      136    0.000628    0.023847
    15        8      144    0.000795    0.030206
    16        8      152    0.001007    0.038261
    17        8      160    0.001275    0.048464
    18        8      168    0.001615    0.061388
    19        8      176    0.002046    0.077758
    20        8      184    0.002592    0.098494
    21        8      192    0.003283    0.124759
    22        8      200    0.004159    0.158028
    23        8      208    0.005268    0.200168
    24        8      216    0.006672    0.253547
    25        8      224    0.008452    0.321159
    26        8      232    0.010705    0.406802
    27       64      296    0.010990    1.110146
    28       64      360    0.010990    1.813491
    29       64      424    0.010990    2.516836
    30        8      432    0.010990    2.604754
    31        8      440    0.008991    2.676685
    32        8      448    0.007109    2.733559
    33        8      456    0.005621    2.778529
    34        8      464    0.004445    2.814085
    35        8      472    0.003514    2.842200
    36        8      480    0.002779    2.864429
    37        8      488    0.002197    2.882006
    38        8      496    0.001737    2.895903
    39        8      504    0.001374    2.906891
    40        8      512    0.001086    2.915580
    41        8      520    0.000859    2.922450
    42        8      528    0.000679    2.927881
    43        8      536    0.000537    2.932176
    44        8      544    0.000424    2.935572
    45        8      552    0.000336    2.938257
    46        8      560    0.000265    2.940380
    47        8      568    0.000210    2.942059
    48        8      576    0.000166    2.943386
    49        8      584    0.000131    2.944436
    50        8      592    0.000104    2.945265
    51       24      616    0.000099    2.947632
    52        8      624    0.000096    2.948400
    53       32      656    0.000099    2.951555
    54        8      664    0.000105    2.952397
    55        8      672    0.000133    2.953463
    56        8      680    0.000169    2.954813
    57        8      688    0.000214    2.956523
    58        8      696    0.000271    2.958689
    59        8      704    0.000343    2.961433
    60        8      712    0.000434    2.964908
    61        8      720    0.000550    2.969310
    62        8      728    0.000697    2.974886
    63        8      736    0.000883    2.981949
    64        8      744    0.001118    2.990896
    65        8      752    0.001417    3.002228
    66        8      760    0.001794    3.016582
    67        8      768    0.002273    3.034764
    68        8      776    0.002879    3.057795
    69        8      784    0.003646    3.086966
    70        8      792    0.004619    3.123918
    71        8      800    0.005851    3.170722
    72        8      808    0.007411    3.230008
    73        8      816    0.009387    3.305104
    74        8      824    0.011890    3.400225
    75       64      888    0.013657    4.274250
    76       64      952    0.013657    5.148275
    77       64     1016    0.013657    6.022301
    78       64     1080    0.013657    6.896326
    79       64     1144    0.013657    7.770351
    80       64     1208    0.013657    8.644377
    81       64     1272    0.013657    9.518402
    82       64     1336    0.013657   10.392427
    83       64     1400    0.013657   11.266452
    84       64     1464    0.013657   12.140478
    85       64     1528    0.013657   13.014503
    86       64     1592    0.013657   13.888528
    87        8     1600    0.013657   13.997782
    88        8     1608    0.000277   14.000000

 Energy independent setup Thu Jan 25 15:56:26 2001
 delt cpu =     9.7  tot cpu =     9.7  tot wall =    11.0

 Compute solution for E =    1.0000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote =  0.35436558E+03
 i =  2  lval =   3  stpote =  0.30325393E-08
 i =  3  lval =   3  stpote =  0.19825154E-12
 i =  4  lval =   5  stpote = -0.98015657E+02
Asymptotic region to R =       201.1247  in      3 regions
Iter =   1 c.s. =      0.01377531 (a.u)  rmsk=     0.00265186
Iter =   2 c.s. =      0.01402707 (a.u)  rmsk=     0.00002583
Iter =   3 c.s. =      0.01402748 (a.u)  rmsk=     0.00000004
Iter =   4 c.s. =      0.01402747 (a.u)  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.15005950E-01-0.17819171E-03 0.15287678E-04 0.47254067E-05-0.20070343E-07
  0.16488114E-08
     ROW  2
 -0.17819171E-03 0.46123480E-02-0.20473042E-04-0.27288958E-04 0.29904249E-05
  0.29679128E-05
     ROW  3
  0.15287678E-04-0.20473042E-04 0.21396008E-02 0.56207062E-05-0.14965068E-04
 -0.38072463E-06
     ROW  4
  0.47254068E-05-0.27288958E-04 0.56207062E-05 0.20722103E-02-0.10696218E-04
 -0.30286129E-05
     ROW  5
 -0.20070348E-07 0.29904249E-05-0.14965068E-04-0.10696218E-04 0.10934106E-02
  0.48833491E-05
     ROW  6
  0.16488110E-08 0.29679128E-05-0.38072463E-06-0.30286129E-05 0.48833491E-05
  0.11018975E-02
 eigenphases
  0.1090938E-02  0.1104027E-02  0.2071585E-02  0.2140078E-02  0.4609725E-02
  0.1500790E-01
 eigenphase sum 0.260243E-01  scattering length=  -0.09601
 eps+pi 0.316762E+01  eps+2*pi 0.630921E+01

Iter =   4 c.s. =      0.01402747 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 16:01:34 2001
 delt cpu =   291.5  tot cpu =   301.2  tot wall =   319.0
Thu Jan 25 16:01:34 CST 2001
290.176u 17.670s 5:25.98 94.4% 0+0k 2+106io 0pf+0w
Thu Jan 25 16:01:34 CST 2001
968.214u 49.069s 17:50.34 95.0% 0+0k 47+284io 0pf+0w