/scratch2/people/lucchese/polyangd/tests/test04.job
test04 - SiH4, G90 output, polarization potential
Thu Jan 25 15:03:57 CST 2001
0.064u 0.054s 0:00.12 91.6% 0+0k 1+0io 0pf+0w

**********************************************************************
SetUp - set up command scripts
**********************************************************************

wrkdir = tst153258
Moving to /scratch2/lucchese/tst153258

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp  'Td'   # point group to use
 DoSym  'yes'  # compute the blms
 LMax   15     # maximum l to be used for wave functions
 LMaxI  30     # maximum l value used to determine numerical angular grids
 LMaxA  12     # maximum l included at large r
 LMax2  30     # maximum l to be used for potentials
 PrintFlag 0   # no extra printing
 MMax   -1     # maximum m to use (-1 means use LMax)
 MMaxI  -1     # maximum m to use in angular integrations (-1 means us LMaxI)
 ECenter  0.0 0.0 0.0 # center for exapnding about
 RMax  12.0    # maximum R in inner grid
 EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0
  End
  PCutRd  1.0e-8  # cutoff factor used in the radial grids
  VCorr 'PZ'
  AsyPol
 0.25  # SwitchD, distance where switching function is down to 0.1
 1     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 30.40 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
 End
 ScatEng 3 0.5 10.0 15.0      # list of scattering energies
 FegeEng 0.488398   # Energy correction used in the fege potential
 ScatContSym 'A1'  # Scattering symmetry
 LMaxK   10    # Maximum l in the K matirx
 IterMax  15    # Maximum Number of iterations
 GrnType  1     # type of Green function (0 -> K matrix, 1 -> T matrix)
 CnvgKMat 1.0e-6 # Convergence of the K matrix
 NIntReg  10    # Number of integration regions, number needed is controlled
                # by the instability in the integrator
 LMaxEx   -1    # -1 implies all terms (2*LMax) alternatively one can use just
                # LMax to save computer time

**********************************************************************
Convert - Convert file /scratch2/people/lucchese/polyangd/tests/test04.g90
          using the g90 conversion program
**********************************************************************


----------------------------------------------------------------------
g90cnv - G90 conversion program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:03:59 2001
 Unit which contains output from g90 (iuin) =   50
 Output unit for geometry information (iugeom) =   51
 Output unit for orbital information (iuorb) =   82
 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
 Convert G90 output Thu Jan 25 15:03:59 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0
Thu Jan 25 15:03:59 CST 2001
0.092u 0.108s 0:00.24 79.1% 0+0k 2+3io 0pf+0w

**********************************************************************
GetBlms - Compute blms for point group Td
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:03:59 2001
 lmax =   30
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    1
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1  1 -1
 B3        1         4        240      -1 -1  1
 Generate blms Thu Jan 25 15:03:59 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:03:59 2001
 lmax =   15
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group   43
 iprnfg =    0
 calculation type (calctp) = compute
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    1
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information
 Number of symmetry operations =    24
 symmetry operations
   1   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00
   2   0.100000E+01   0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   3  -0.100000E+01  -0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   4   0.100000E+01  -0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   5  -0.100000E+01   0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   6   0.100000E+01   0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   7  -0.100000E+01  -0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   8   0.100000E+01  -0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
   9  -0.100000E+01   0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
  10   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
  11   0.000000E+00   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  12   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.200000E+01
  13  -0.707107E+00   0.707107E+00   0.000000E+00   0.000000E+00   0.100000E+01
  14   0.707107E+00   0.000000E+00  -0.707107E+00   0.000000E+00   0.100000E+01
  15   0.000000E+00  -0.707107E+00   0.707107E+00   0.000000E+00   0.100000E+01
  16   0.000000E+00   0.707107E+00   0.707107E+00   0.000000E+00   0.100000E+01
  17  -0.707107E+00   0.000000E+00  -0.707107E+00   0.000000E+00   0.100000E+01
  18   0.707107E+00   0.707107E+00   0.000000E+00   0.000000E+00   0.100000E+01
  19   0.000000E+00   0.000000E+00   0.100000E+01   0.900000E+02   0.300000E+01
  20   0.100000E+01   0.000000E+00   0.000000E+00   0.900000E+02   0.300000E+01
  21   0.000000E+00   0.100000E+01   0.000000E+00   0.900000E+02   0.300000E+01
  22   0.000000E+00   0.000000E+00   0.100000E+01  -0.900000E+02   0.300000E+01
  23   0.100000E+01   0.000000E+00   0.000000E+00  -0.900000E+02   0.300000E+01
  24   0.000000E+00   0.100000E+01   0.000000E+00  -0.900000E+02   0.300000E+01
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
    10    11    12
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         21       1  1  1
 E         2         4         21       1  1  1
 T1        1         5         28      -1 -1  1
 T1        2         6         28      -1  1 -1
 T1        3         7         28       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
 Generate blms Thu Jan 25 15:04:09 2001
 delt cpu =     9.5  tot cpu =     9.5  tot wall =    10.0
Thu Jan 25 15:04:09 CST 2001
9.658u 0.283s 0:10.31 96.3% 0+0k 12+5io 0pf+0w

**********************************************************************
ExpOrb - create grid and expand orbitals
**********************************************************************

Thu Jan 25 15:04:09 CST 2001
0.082u 0.079s 0:00.18 83.3% 0+0k 1+0io 0pf+0w

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Unit for geometry information (iUGeom) =   51
Unit fo basis function and orbital coefficients (iUOrb) =   82
Unit for the generated grid (iUGrd) =   54
Maximum R in the grid (RMax) =    12.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV

    1  Center at =     0.00000  Alpha Max = 0.16116E+05
    2  Center at =     2.76278  Alpha Max = 0.18731E+02

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.83033E-04     0.00266
    2    8    40    0.88569E-04     0.00337
    3    8    48    0.11219E-03     0.00426
    4    8    56    0.14210E-03     0.00540
    5    8    64    0.18000E-03     0.00684
    6    8    72    0.22800E-03     0.00866
    7    8    80    0.28880E-03     0.01097
    8    8    88    0.36581E-03     0.01390
    9    8    96    0.46336E-03     0.01761
   10    8   104    0.58692E-03     0.02230
   11    8   112    0.74343E-03     0.02825
   12    8   120    0.94168E-03     0.03578
   13    8   128    0.11928E-02     0.04533
   14    8   136    0.15109E-02     0.05741
   15    8   144    0.19138E-02     0.07272
   16    8   152    0.24241E-02     0.09212
   17    8   160    0.30705E-02     0.11668
   18    8   168    0.38894E-02     0.14780
   19    8   176    0.49265E-02     0.18721
   20    8   184    0.62403E-02     0.23713
   21    8   192    0.79043E-02     0.30036
   22    8   200    0.10012E-01     0.38046
   23   64   264    0.10990E-01     1.08381
   24   64   328    0.10990E-01     1.78715
   25   56   384    0.10990E-01     2.40258
   26    8   392    0.94245E-02     2.47797
   27    8   400    0.74518E-02     2.53759
   28    8   408    0.58920E-02     2.58472
   29    8   416    0.46587E-02     2.62199
   30    8   424    0.36836E-02     2.65146
   31    8   432    0.29125E-02     2.67476
   32   32   464    0.24355E-02     2.75270
   33    8   472    0.12598E-02     2.76278
   34   32   504    0.24355E-02     2.84072
   35    8   512    0.25979E-02     2.86150
   36    8   520    0.32907E-02     2.88783
   37    8   528    0.41682E-02     2.92117
   38    8   536    0.52797E-02     2.96341
   39    8   544    0.66877E-02     3.01691
   40    8   552    0.84710E-02     3.08468
   41    8   560    0.10730E-01     3.17052
   42    8   568    0.13591E-01     3.27925
   43   64   632    0.13657E-01     4.15327
   44   64   696    0.13657E-01     5.02730
   45   64   760    0.13657E-01     5.90132
   46   64   824    0.13657E-01     6.77535
   47   64   888    0.13657E-01     7.64938
   48   64   952    0.13657E-01     8.52340
   49   64  1016    0.13657E-01     9.39743
   50   64  1080    0.13657E-01    10.27145
   51   64  1144    0.13657E-01    11.14548
   52   56  1200    0.13657E-01    11.91025
   53    8  1208    0.11219E-01    12.00000

----------------------------------------------------------------------
anggct - Program to generate angular functions
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:04:10 2001
Maximum scattering l (lmaxs) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Minimum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (pcutar) =  0.10000000E-07
Input unit for full symmetry blms (iuins) =   40
Input unit for abelian sub-group blms (iuini) =   42
Unit for geometry information (iugeom) =   51
Unit for radial grid information (iugrd) =   54
Output unit for angular grid and functions (iuang) =   41
Output unit for angular grid cutoffs (iuanrd) =   62
Print flag (iprnfg) =    0
 Actual value of lmasym found =     14
Number of regions of the same l expansion (NAngReg) =   12
 Point group from iuins is TD
 From iuins nthd =    1  nphid =    4  nabop =    3

 Number of radial functions in full symmetry
   1 Symmetry type A1    1  Number of radial functions =     15
   2 Symmetry type A2    1  Number of radial functions =      7
   3 Symmetry type E     1  Number of radial functions =     21
   4 Symmetry type E     2  Number of radial functions =     21
   5 Symmetry type T1    1  Number of radial functions =     28
   6 Symmetry type T1    2  Number of radial functions =     28
   7 Symmetry type T1    3  Number of radial functions =     28
   8 Symmetry type T2    1  Number of radial functions =     36
   9 Symmetry type T2    2  Number of radial functions =     36
  10 Symmetry type T2    3  Number of radial functions =     36

 Number of radial functions in abelian subgroup
   1 Symmetry type A     1  Number of radial functions =    241
   2 Symmetry type B1    1  Number of radial functions =    240
   3 Symmetry type B2    1  Number of radial functions =    240
   4 Symmetry type B3    1  Number of radial functions =    240

 For analytic integrations ntheta =     32  nphi =     16
 For numerical integrations ntheti =     64 nphii =     31

 Maximum parameters needed
 Parameter         Value  Value Needed
     maxlm           120            36
    maxlma           680           241
    maxlmh           400            64
    maxthe            58            32
    maxphi           110            16
    maxthi           112            64
    maxpii           220            31
    maxfun          2601           256
    maxfub         10201           961
 Define angular grid Thu Jan 25 15:04:15 2001
 delt cpu =     5.7  tot cpu =     5.7  tot wall =     5.0
5.416u 0.511s 0:06.21 95.3% 0+0k 4+4io 0pf+0w

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =  -82
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Output file for rotated and typed orbitals (iUOrbSym) =   52
 Begining timer Thu Jan 25 15:04:15 2001

 R of maximum density
     1  A1    1 at max irg =   18  r =   0.07272
     2  A1    1 at max irg =   26  r =   0.46838
     3  T2    1 at max irg =   25  r =   0.38046
     4  T2    2 at max irg =   25  r =   0.38046
     5  T2    3 at max irg =   25  r =   0.38046
     6  A1    1 at max irg =   45  r =   2.13882
     7  T2    1 at max irg =   45  r =   2.13882
     8  T2    2 at max irg =   45  r =   2.13882
     9  T2    3 at max irg =   45  r =   2.13882

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3 -0.3133027475    4 -0.0203342715    5  0.9494355722

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  0.7645328562    4  0.5876494755    5  0.2648728105

Rotation coefficients for orbital     5  grp =    3 T2    3
     3 -0.5633213117    4  0.8088600691    5 -0.1685659765

Rotation coefficients for orbital     6  grp =    4 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    5 T2    1
     7  0.6515448325    8 -0.7489681570    9  0.1205654633

Rotation coefficients for orbital     8  grp =    5 T2    2
     7 -0.0905188395    8  0.0810384864    9  0.9925921133

Rotation coefficients for orbital     9  grp =    5 T2    3
     7 -0.7531903285    8 -0.6576317081    9 -0.0149955214
Number of orbital groups and degeneracis are         5
  1  1  3  1  3
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  6  2  6
 Compute final expansions Thu Jan 25 15:04:21 2001
 delt cpu =     5.7  tot cpu =     5.7  tot wall =     6.0
Thu Jan 25 15:04:21 CST 2001
11.006u 0.699s 0:12.23 95.5% 0+0k 6+6io 0pf+0w

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =   52
 Unit for output of single center expanded orbitals (iuout) =   55
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Begining timer Thu Jan 25 15:04:22 2001
 Number of r points in each I/O block (nrpibk) =  113
 Number of blocks in each function (nblks) =   12
 Number of r points in each in memory block (nrpibko) =  339
 Direct access record sizxe (real words) (nsize) = 4068
 Total scratch file size in bytes =        1952640

 Normalization integral
 Sum(    1) =   0.9999974517
 Sum(    2) =   0.0000000727
 Sum(    3) =   0.0000000275
 Sum(    4) =   0.0000000143
 Sum(    5) =   0.0000000070
 Sum(    6) =   0.0000000005
 Sum(    7) =   0.0000000015
 Sum(    8) =   0.0000000014
 Sum(    9) =   0.0000000003
 Sum(   10) =   0.0000000002
 Sum(   11) =   0.0000000000
 Sum(   12) =   0.0000000004
 Sum(   13) =   0.0000000001
 Sum(   14) =   0.0000000000
 Sum(   15) =   0.0000000000
 Total      =   0.9999975777
 Orbital     1 of  A1    1 symmetry
     Normalization coefficient =   1.00000121

 Normalization integral
 Sum(    1) =   0.9999932294
 Sum(    2) =   0.0000000842
 Sum(    3) =   0.0000000240
 Sum(    4) =   0.0000000104
 Sum(    5) =   0.0000000050
 Sum(    6) =   0.0000000003
 Sum(    7) =   0.0000000011
 Sum(    8) =   0.0000000010
 Sum(    9) =   0.0000000002
 Sum(   10) =   0.0000000002
 Sum(   11) =   0.0000000000
 Sum(   12) =   0.0000000003
 Sum(   13) =   0.0000000001
 Sum(   14) =   0.0000000000
 Sum(   15) =   0.0000000000
 Total      =   0.9999933560
 Orbital     2 of  A1    1 symmetry
     Normalization coefficient =   1.00000332

 Normalization integral
 Sum(    1) =   1.0000069918
 Sum(    2) =   0.0000000719
 Sum(    3) =   0.0000000417
 Sum(    4) =   0.0000000573
 Sum(    5) =   0.0000000475
 Sum(    6) =   0.0000000013
 Sum(    7) =   0.0000000031
 Sum(    8) =   0.0000000130
 Sum(    9) =   0.0000000044
 Sum(   10) =   0.0000000042
 Sum(   11) =   0.0000000065
 Sum(   12) =   0.0000000005
 Sum(   13) =   0.0000000011
 Sum(   14) =   0.0000000018
 Sum(   15) =   0.0000000002
 Sum(   16) =   0.0000000000
 Sum(   17) =   0.0000000003
 Sum(   18) =   0.0000000011
 Sum(   19) =   0.0000000011
 Sum(   20) =   0.0000000001
 Sum(   21) =   0.0000000002
 Sum(   22) =   0.0000000004
 Sum(   23) =   0.0000000004
 Sum(   24) =   0.0000000000
 Sum(   25) =   0.0000000000
 Sum(   26) =   0.0000000000
 Sum(   27) =   0.0000000002
 Sum(   28) =   0.0000000001
 Sum(   29) =   0.0000000000
 Sum(   30) =   0.0000000002
 Sum(   31) =   0.0000000000
 Sum(   32) =   0.0000000001
 Sum(   33) =   0.0000000001
 Sum(   34) =   0.0000000001
 Sum(   35) =   0.0000000000
 Sum(   36) =   0.0000000000
 Total      =   1.0000072510
 Orbital     3 of  T2    1 symmetry
     Normalization coefficient =   0.99999637

 Normalization integral
 Sum(    1) =   0.9342475451
 Sum(    2) =   0.0471861775
 Sum(    3) =   0.0110973428
 Sum(    4) =   0.0041867827
 Sum(    5) =   0.0019922594
 Sum(    6) =   0.0001262325
 Sum(    7) =   0.0004195190
 Sum(    8) =   0.0003965185
 Sum(    9) =   0.0000727942
 Sum(   10) =   0.0000634872
 Sum(   11) =   0.0000018312
 Sum(   12) =   0.0001019428
 Sum(   13) =   0.0000340465
 Sum(   14) =   0.0000098660
 Sum(   15) =   0.0000021869
 Total      =   0.9999385321
 Orbital     4 of  A1    1 symmetry
     Normalization coefficient =   1.00003074

 Normalization integral
 Sum(    1) =   0.7816991348
 Sum(    2) =   0.1470507937
 Sum(    3) =   0.0289682999
 Sum(    4) =   0.0207992310
 Sum(    5) =   0.0123905248
 Sum(    6) =   0.0003539733
 Sum(    7) =   0.0007200399
 Sum(    8) =   0.0029454790
 Sum(    9) =   0.0009488045
 Sum(   10) =   0.0009241139
 Sum(   11) =   0.0013787051
 Sum(   12) =   0.0001124813
 Sum(   13) =   0.0002279069
 Sum(   14) =   0.0003753760
 Sum(   15) =   0.0000368457
 Sum(   16) =   0.0000096149
 Sum(   17) =   0.0000540433
 Sum(   18) =   0.0002391809
 Sum(   19) =   0.0002416904
 Sum(   20) =   0.0000125710
 Sum(   21) =   0.0000346190
 Sum(   22) =   0.0000823363
 Sum(   23) =   0.0000872576
 Sum(   24) =   0.0000056084
 Sum(   25) =   0.0000085026
 Sum(   26) =   0.0000016265
 Sum(   27) =   0.0000507579
 Sum(   28) =   0.0000189983
 Sum(   29) =   0.0000002723
 Sum(   30) =   0.0000485184
 Sum(   31) =   0.0000007892
 Sum(   32) =   0.0000199462
 Sum(   33) =   0.0000274677
 Sum(   34) =   0.0000220370
 Sum(   35) =   0.0000011178
 Sum(   36) =   0.0000001258
 Total      =   0.9998987911
 Orbital     5 of  T2    1 symmetry
     Normalization coefficient =   1.00005061
 Compute final expansions Thu Jan 25 15:04:48 2001
 delt cpu =    25.5  tot cpu =    25.5  tot wall =    26.0
Thu Jan 25 15:04:48 CST 2001
35.625u 1.615s 0:39.02 95.4% 0+0k 6+11io 0pf+0w

**********************************************************************
GetPot - compute local potential
**********************************************************************


----------------------------------------------------------------------
den - Electron density construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:04:48 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for angular grid cutoff information (iuanrd) =   62
 Unit for input of expanded orbitals (iuxorb) =   55
 Unit for output of density (iuden) =   56
Print flag =    0
 Compute density Thu Jan 25 15:04:56 2001
 delt cpu =     7.3  tot cpu =     7.3  tot wall =     8.0
Thu Jan 25 15:04:56 CST 2001
6.866u 0.588s 0:07.95 93.5% 0+0k 0+5io 0pf+0w

----------------------------------------------------------------------
stpot - Compute the static potential from the density
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of static potential (iustpt) =   57
 Begining timer Thu Jan 25 15:04:56 2001
 vasymp =  0.18000000E+02 facnorm =  0.10000000E+01
 Electronic part Thu Jan 25 15:04:59 2001
 delt cpu =     2.8  tot cpu =     2.8  tot wall =     3.0
 Nuclear part Thu Jan 25 15:05:01 2001
 delt cpu =     1.8  tot cpu =     4.6  tot wall =     5.0
Thu Jan 25 15:05:01 CST 2001
11.084u 1.080s 0:13.02 93.3% 0+0k 0+7io 0pf+0w

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:05:01 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of vcppol potential (iuvcpl) =   63
 Compute vcppol potential Thu Jan 25 15:05:10 2001
 delt cpu =     8.4  tot cpu =     8.4  tot wall =     9.0
Thu Jan 25 15:05:10 CST 2001
18.756u 1.962s 0:22.05 93.9% 0+0k 0+11io 0pf+0w

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:05:10 2001
 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for input of grid cutoffs (iuanrd) =   62
 Unit for input of local polarization potential (iupoll) =   63
 Unit for output of total polarization potential (iupolt) =   64
 Print flag (iprnfg) =    0
Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Last center is at (RCenterX) =   0.00000
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   4.8500009457
 i =   1 l =   0 vdif =      0.00000000  pola =     -0.09738257  lfix =   6
 i =   2 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   3 l =   2 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   4 l =   3 vdif =     -0.01851689  pola =      0.00000000  lfix =   5
 i =   5 l =   4 vdif =      0.00406627  pola =      0.00000000  lfix =   6
 i =   6 l =   4 vdif =      0.00000000  pola =      0.00000000  lfix =   6
 i =   7 l =   4 vdif =      0.00343662  pola =      0.00000000  lfix =   6
 i =   8 l =   5 vdif =      0.00000000  pola =      0.00000000  lfix =   7
 i =   9 l =   5 vdif =      0.00000000  pola =      0.00000000  lfix =   7
 i =  10 l =   6 vdif =      0.00046326  pola =      0.00000000  lfix =   8
 i =  11 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =  12 l =   6 vdif =     -0.00122568  pola =      0.00000000  lfix =   8
 i =  13 l =   6 vdif =      0.00000000  pola =      0.00000000  lfix =   8
 i =  14 l =   7 vdif =     -0.00036917  pola =      0.00000000  lfix =   9
 i =  15 l =   7 vdif =      0.00000000  pola =      0.00000000  lfix =   9
 i =  16 l =   7 vdif =     -0.00033959  pola =      0.00000000  lfix =   9
 i =  17 l =   8 vdif =      0.00006730  pola =      0.00000000  lfix =  10
 i =  18 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  19 l =   8 vdif =      0.00003579  pola =      0.00000000  lfix =  10
 i =  20 l =   8 vdif =      0.00000000  pola =      0.00000000  lfix =  10
 i =  21 l =   8 vdif =      0.00005453  pola =      0.00000000  lfix =  10
 i =  22 l =   9 vdif =     -0.00024047  pola =      0.00000000  lfix =  11
 i =  23 l =   9 vdif =      0.00000000  pola =      0.00000000  lfix =  11
 i =  24 l =   9 vdif =      0.00050058  pola =      0.00000000  lfix =  11
 i =  25 l =   9 vdif =      0.00000000  pola =      0.00000000  lfix =  11
 i =  26 l =  10 vdif =      0.00012192  pola =      0.00000000  lfix =  12
 i =  27 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  28 l =  10 vdif =     -0.00017374  pola =      0.00000000  lfix =  12
 i =  29 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  30 l =  10 vdif =     -0.00020679  pola =      0.00000000  lfix =  12
 i =  31 l =  10 vdif =      0.00000000  pola =      0.00000000  lfix =  12
 i =  32 l =  11 vdif =     -0.00005641  pola =      0.00000000  lfix =  13
 i =  33 l =  11 vdif =      0.00000000  pola =      0.00000000  lfix =  13
 i =  34 l =  11 vdif =     -0.00003894  pola =      0.00000000  lfix =  13
 i =  35 l =  11 vdif =      0.00000000  pola =      0.00000000  lfix =  13
 i =  36 l =  11 vdif =     -0.00004990  pola =      0.00000000  lfix =  13
 i =  37 l =  12 vdif =      0.00003797  pola =      0.00000000  lfix =  14
 i =  38 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  39 l =  12 vdif =     -0.00005058  pola =      0.00000000  lfix =  14
 i =  40 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  41 l =  12 vdif =      0.00011672  pola =      0.00000000  lfix =  14
 i =  42 l =  12 vdif =      0.00000000  pola =      0.00000000  lfix =  14
 i =  43 l =  12 vdif =      0.00000626  pola =      0.00000000  lfix =  14
 i =  44 l =  13 vdif =     -0.00003778  pola =      0.00000000  lfix =  15
 i =  45 l =  13 vdif =      0.00000000  pola =      0.00000000  lfix =  15
 i =  46 l =  13 vdif =      0.00003748  pola =      0.00000000  lfix =  15
 i =  47 l =  13 vdif =      0.00000000  pola =      0.00000000  lfix =  15
 i =  48 l =  13 vdif =      0.00005420  pola =      0.00000000  lfix =  15
 i =  49 l =  13 vdif =      0.00000000  pola =      0.00000000  lfix =  15
 i =  50 l =  14 vdif =      0.00001304  pola =      0.00000000  lfix =  16
 i =  51 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  52 l =  14 vdif =     -0.00001356  pola =      0.00000000  lfix =  16
 i =  53 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  54 l =  14 vdif =     -0.00001455  pola =      0.00000000  lfix =  16
 i =  55 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  56 l =  14 vdif =     -0.00001767  pola =      0.00000000  lfix =  16
 i =  57 l =  14 vdif =      0.00000000  pola =      0.00000000  lfix =  16
 i =  58 l =  15 vdif =     -0.00001652  pola =      0.00000000  lfix =  17
 i =  59 l =  15 vdif =      0.00000000  pola =      0.00000000  lfix =  17
 i =  60 l =  15 vdif =      0.00001482  pola =      0.00000000  lfix =  17
 i =  61 l =  15 vdif =      0.00000000  pola =      0.00000000  lfix =  17
 i =  62 l =  15 vdif =     -0.00003792  pola =      0.00000000  lfix =  17
 i =  63 l =  15 vdif =      0.00000000  pola =      0.00000000  lfix =  17
 i =  64 l =  15 vdif =     -0.00000376  pola =      0.00000000  lfix =  17
First nonzero weight at R =        4.15327
Last point of the switching region R=        5.57357
Matching factors (BFac):
  -0.890714E-01  -0.954539E+00   0.000000E+00  -0.713483E-01  -0.732076E-01
   0.000000E+00  -0.732076E-01  -0.145561E+01   0.000000E+00  -0.973402E-01
   0.000000E+00  -0.973402E-01   0.000000E+00  -0.803485E-01   0.000000E+00
  -0.803485E-01  -0.762022E-01   0.000000E+00  -0.762022E-01   0.000000E+00
  -0.762022E-01  -0.143566E+00   0.000000E+00  -0.143566E+00   0.000000E+00
  -0.143155E+00   0.000000E+00  -0.143155E+00   0.000000E+00  -0.143155E+00
   0.000000E+00  -0.143977E+00   0.000000E+00  -0.143977E+00   0.000000E+00
  -0.143977E+00  -0.147808E+00   0.000000E+00  -0.148722E+00   0.000000E+00
  -0.148375E+00   0.000000E+00  -0.145443E+00  -0.149146E+00   0.000000E+00
  -0.149146E+00   0.000000E+00  -0.149146E+00   0.000000E+00  -0.156181E+00
   0.000000E+00  -0.156181E+00   0.000000E+00  -0.156181E+00   0.000000E+00
  -0.156181E+00   0.000000E+00  -0.168910E+00   0.000000E+00  -0.169961E+00
   0.000000E+00  -0.169366E+00   0.000000E+00  -0.167095E+00
Total asymptotic potential is   0.30400000E+02
 Compute total polarizaiton potential Thu Jan 25 15:05:16 2001
 delt cpu =     5.2  tot cpu =     5.2  tot wall =     6.0
Thu Jan 25 15:05:16 CST 2001
Thu Jan 25 15:05:16 CST 2001
23.457u 2.603s 0:28.15 92.5% 0+0k 0+15io 0pf+0w

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:05:17 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.48839800E+00  AU
 Do E =  0.50000000E+00 eV (  0.18374655E-01 AU)
 Do E =  0.10000000E+02 eV (  0.36749309E+00 AU)
 Do E =  0.15000000E+02 eV (  0.55123964E+00 AU)
 Compute fege potential Thu Jan 25 15:05:36 2001
 delt cpu =    17.8  tot cpu =    17.8  tot wall =    19.0
Thu Jan 25 15:05:36 CST 2001
17.020u 1.073s 0:18.97 95.3% 0+0k 1+4io 0pf+0w
Thu Jan 25 15:05:36 CST 2001
17.023u 1.084s 0:18.99 95.3% 0+0k 1+4io 0pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:05:36 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =   64
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's function to use (iGrnType) =     1
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   10
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.30400000E+02  au
Number of integration regions used =    10
Number of points per region =   123
Number of partial waves (np) =    15
Number of asymptotic solutions on the right (NAsymR) =     8
Number of asymptotic solutions on the left (NAsymL) =     8
 Number of orthogonality constraints (NOrthUse) =    0

 Maximum l used in usual function (lmaxa) =   15
 Maximum m used in usual function (mmaxa) =   15
 Maxamum l used in expanding static potential (lpotct) =   30
 Maximum l used in exapnding the exchange potential (lmaxab) =   30
 Maximum m used potentials (mmaxab) =   30
 Higest l included in the expansion of the wave function (lnp) =   15
 Higest l included in the K matrix (lna) =   10
 Highest l used at large r (lpasym) =   14
 Higest l used in the asymptotic potential (lpzb) =   28

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       32       32    0.000083    0.002657
     2        8       40    0.000089    0.003366
     3        8       48    0.000112    0.004263
     4        8       56    0.000142    0.005400
     5        8       64    0.000180    0.006840
     6        8       72    0.000228    0.008664
     7        8       80    0.000289    0.010974
     8        8       88    0.000366    0.013901
     9        8       96    0.000463    0.017608
    10        8      104    0.000587    0.022303
    11        8      112    0.000743    0.028250
    12        8      120    0.000942    0.035784
    13        8      128    0.001193    0.045326
    14        8      136    0.001511    0.057413
    15        8      144    0.001914    0.072723
    16        8      152    0.002424    0.092116
    17        8      160    0.003071    0.116681
    18        8      168    0.003889    0.147796
    19        8      176    0.004927    0.187208
    20        8      184    0.006240    0.237130
    21        8      192    0.007904    0.300364
    22        8      200    0.010012    0.380461
    23       64      264    0.010990    1.083806
    24       64      328    0.010990    1.787151
    25       56      384    0.010990    2.402578
    26        8      392    0.009424    2.477974
    27        8      400    0.007452    2.537588
    28        8      408    0.005892    2.584724
    29        8      416    0.004659    2.621994
    30        8      424    0.003684    2.651462
    31        8      432    0.002913    2.674762
    32       32      464    0.002436    2.752700
    33        8      472    0.001260    2.762779
    34       32      504    0.002436    2.840716
    35        8      512    0.002598    2.861500
    36        8      520    0.003291    2.887825
    37        8      528    0.004168    2.921171
    38        8      536    0.005280    2.963409
    39        8      544    0.006688    3.016910
    40        8      552    0.008471    3.084678
    41        8      560    0.010730    3.170518
    42        8      568    0.013591    3.279249
    43       64      632    0.013657    4.153274
    44       64      696    0.013657    5.027300
    45       64      760    0.013657    5.901325
    46       64      824    0.013657    6.775350
    47       64      888    0.013657    7.649376
    48       64      952    0.013657    8.523401
    49       64     1016    0.013657    9.397426
    50       64     1080    0.013657   10.271452
    51       64     1144    0.013657   11.145477
    52       56     1200    0.013657   11.910249
    53        8     1208    0.011219   12.000000

 Energy independent setup Thu Jan 25 15:05:44 2001
 delt cpu =     7.9  tot cpu =     7.9  tot wall =     8.0

 Compute solution for E =    0.5000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.30400000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.24808218E-04
 i =  2  lval =   3  stpote =  0.17796618E-10
 i =  3  lval =   3  stpote =  0.24187433E-14
 i =  4  lval =   4  stpote =  0.99936302E+01
Asymptotic region to R =       194.0860  in      3 regions
Iter =   1 c.s. =      6.14625609 (a.u)  rmsk=     0.02970366
Iter =   2 c.s. =      1.91328019 (a.u)  rmsk=     0.01338491
Iter =   3 c.s. =      1.39254479 (a.u)  rmsk=     0.00246595
Iter =   4 c.s. =      1.38949173 (a.u)  rmsk=     0.00001571
Iter =   5 c.s. =      1.38944297 (a.u)  rmsk=     0.00000025
Iter =   6 c.s. =      1.38944310 (a.u)  rmsk=     0.00000000
Iter =   7 c.s. =      1.38944310 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.11155389E+00, 0.12604572E-01) ( 0.11817267E-02,-0.12016510E-03)
  (-0.11444514E-03, 0.13488825E-04) (-0.44132058E-06, 0.14754979E-06)
  (-0.18106931E-07, 0.72661488E-08) ( 0.22234964E-09,-0.68695390E-10)
  (-0.20357098E-10, 0.11505061E-10) ( 0.65262910E-12,-0.36050225E-12)
     ROW  2
  ( 0.11817267E-02,-0.12016512E-03) ( 0.11255643E-01, 0.12904894E-03)
  ( 0.96173739E-03, 0.15589267E-04) ( 0.81796129E-04, 0.10481567E-05)
  ( 0.64382760E-06,-0.39378201E-07) (-0.28113121E-09, 0.33932898E-09)
  ( 0.40185261E-09,-0.15579835E-08) (-0.11756800E-12, 0.15449181E-10)
     ROW  3
  (-0.11444513E-03, 0.13488825E-04) ( 0.96173739E-03, 0.15589267E-04)
  ( 0.50941241E-02, 0.26890764E-04) (-0.55953822E-05, 0.46080674E-07)
  (-0.38041965E-04,-0.23256440E-06) ( 0.36439542E-06,-0.84434900E-09)
  (-0.42725804E-10, 0.12954258E-09) ( 0.11903741E-09,-0.46217141E-09)
     ROW  4
  (-0.44132067E-06, 0.14754981E-06) ( 0.81796129E-04, 0.10481567E-05)
  (-0.55953822E-05, 0.46080674E-07) ( 0.16303282E-02, 0.26821347E-05)
  (-0.13064878E-03,-0.35065588E-06) (-0.71216092E-06,-0.11490935E-07)
  (-0.19095108E-04,-0.40813604E-07) ( 0.91767131E-07,-0.21536313E-08)
     ROW  5
  (-0.18106934E-07, 0.72661496E-08) ( 0.64382759E-06,-0.39378201E-07)
  (-0.38041965E-04,-0.23256440E-06) (-0.13064878E-03,-0.35065588E-06)
  ( 0.10553496E-02, 0.11385134E-05) ( 0.78000890E-04, 0.13871373E-06)
  (-0.78237968E-06, 0.20485161E-09) ( 0.12148187E-04, 0.17341242E-07)
     ROW  6
  ( 0.22234966E-09,-0.68695397E-10) (-0.28113102E-09, 0.33932898E-09)
  ( 0.36439542E-06,-0.84434901E-09) (-0.71216092E-06,-0.11490935E-07)
  ( 0.78000890E-04, 0.13871373E-06) ( 0.72186549E-03, 0.52761683E-06)
  (-0.19749082E-04,-0.24456177E-07) (-0.41217399E-06,-0.62133555E-10)
     ROW  7
  (-0.20357100E-10, 0.11505065E-10) ( 0.40185125E-09,-0.15579835E-08)
  (-0.42725777E-10, 0.12954258E-09) (-0.19095108E-04,-0.40813604E-07)
  (-0.78237968E-06, 0.20485161E-09) (-0.19749082E-04,-0.24456177E-07)
  ( 0.51333120E-03, 0.26586660E-06) ( 0.39334978E-04, 0.35079919E-07)
     ROW  8
  ( 0.65262920E-12,-0.36050234E-12) (-0.11754393E-12, 0.15449181E-10)
  ( 0.11903712E-09,-0.46217141E-09) ( 0.91767131E-07,-0.21536313E-08)
  ( 0.12148187E-04, 0.17341242E-07) (-0.41217399E-06,-0.62133555E-10)
  ( 0.39334978E-04, 0.35079919E-07) ( 0.37846311E-03, 0.14590012E-06)
 eigenphases
 -0.1125125E+00  0.3675464E-03  0.5216996E-03  0.7055506E-03  0.1044871E-02
  0.1658569E-02  0.4948754E-02  0.1141469E-01
 eigenphase sum-0.918508E-01  scattering length=   0.48049
 eps+pi 0.304974E+01  eps+2*pi 0.619133E+01

Iter =   7 c.s. =      1.38944310 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 15:18:58 2001
 delt cpu =   755.0  tot cpu =   762.9  tot wall =   802.0

 Compute solution for E =   10.0000000000 eV
Asymptotic region to R =       101.3919  in      6 regions
Iter =   1 c.s. =      8.65961193 (a.u)  rmsk=     0.15767717
Iter =   2 c.s. =      8.66019737 (a.u)  rmsk=     0.05702254
Iter =   3 c.s. =      8.69290993 (a.u)  rmsk=     0.00186923
Iter =   4 c.s. =      8.68900159 (a.u)  rmsk=     0.00024816
Iter =   5 c.s. =      8.68899609 (a.u)  rmsk=     0.00000045
Iter =   6 c.s. =      8.68899603 (a.u)  rmsk=     0.00000000
Iter =   7 c.s. =      8.68899603 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.11169994E+00, 0.77934685E+00) ( 0.38587029E+00,-0.60849032E-01)
  (-0.77995117E-01, 0.27776854E-01) (-0.56698449E-02, 0.14376341E-02)
  (-0.95337166E-03, 0.23006453E-03) ( 0.50849153E-04,-0.10410993E-04)
  (-0.18000099E-04, 0.32538816E-05) ( 0.26578567E-05,-0.30475366E-06)
     ROW  2
  ( 0.38587029E+00,-0.60849043E-01) (-0.73535905E-02, 0.76930077E+00)
  ( 0.33213463E-01,-0.15358175E+00) ( 0.10689235E-02,-0.11366794E-01)
  ( 0.12329446E-03,-0.19140038E-02) (-0.15575725E-04, 0.97767983E-04)
  (-0.15746999E-05,-0.36147809E-04) ( 0.22735359E-06, 0.52209241E-05)
     ROW  3
  (-0.77995116E-01, 0.27776856E-01) ( 0.33213464E-01,-0.15358175E+00)
  ( 0.11017264E+00, 0.45786039E-01) ( 0.46521970E-03, 0.24449362E-02)
  ( 0.13128581E-03, 0.41388624E-03) (-0.66867753E-04,-0.29305083E-04)
  ( 0.55030305E-05, 0.78841903E-05) (-0.14087473E-05,-0.11943231E-05)
     ROW  4
  (-0.56698448E-02, 0.14376342E-02) ( 0.10689235E-02,-0.11366793E-01)
  ( 0.46521969E-03, 0.24449362E-02) ( 0.33353257E-01, 0.12896025E-02)
  (-0.21598002E-02,-0.89611124E-04) (-0.35539487E-04,-0.62599743E-05)
  (-0.26597018E-03,-0.10945291E-04) ( 0.35590497E-05,-0.58308008E-06)
     ROW  5
  (-0.95337164E-03, 0.23006455E-03) ( 0.12329446E-03,-0.19140037E-02)
  ( 0.13128581E-03, 0.41388624E-03) (-0.21598002E-02,-0.89611123E-04)
  ( 0.21335207E-01, 0.46703064E-03) ( 0.14391750E-02, 0.51631547E-04)
  (-0.60439735E-04,-0.16390041E-05) ( 0.20517369E-03, 0.58267258E-05)
     ROW  6
  ( 0.50849152E-04,-0.10410994E-04) (-0.15575725E-04, 0.97767982E-04)
  (-0.66867753E-04,-0.29305083E-04) (-0.35539487E-04,-0.62599743E-05)
  ( 0.14391750E-02, 0.51631547E-04) ( 0.14632925E-01, 0.21642772E-03)
  (-0.38280118E-03,-0.96616525E-05) (-0.35204243E-04,-0.70564238E-06)
     ROW  7
  (-0.18000099E-04, 0.32538821E-05) (-0.15746998E-05,-0.36147809E-04)
  ( 0.55030304E-05, 0.78841902E-05) (-0.26597018E-03,-0.10945291E-04)
  (-0.60439735E-04,-0.16390041E-05) (-0.38280118E-03,-0.96616525E-05)
  ( 0.10316696E-01, 0.10729741E-03) ( 0.78015102E-03, 0.14019187E-04)
     ROW  8
  ( 0.26578566E-05,-0.30475375E-06) ( 0.22735358E-06, 0.52209241E-05)
  (-0.14087474E-05,-0.11943231E-05) ( 0.35590497E-05,-0.58308008E-06)
  ( 0.20517369E-03, 0.58267257E-05) (-0.35204243E-04,-0.70564238E-06)
  ( 0.78015102E-03, 0.14019187E-04) ( 0.76410947E-02, 0.59430511E-04)
 eigenphases
 -0.1181855E+01  0.7426522E-02  0.1048975E-01  0.1436466E-01  0.2127191E-01
  0.3377179E-01  0.1196013E+00  0.1017854E+01
 eigenphase sum 0.429243E-01  scattering length=  -0.05010
 eps+pi 0.318452E+01  eps+2*pi 0.632611E+01

Iter =   7 c.s. =      8.68899603 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 15:32:28 2001
 delt cpu =   770.1  tot cpu =  1533.0  tot wall =  1612.0

 Compute solution for E =   15.0000000000 eV
Asymptotic region to R =        84.9936  in      6 regions
Iter =   1 c.s. =      5.61387041 (a.u)  rmsk=     0.15548784
Iter =   2 c.s. =      5.39394316 (a.u)  rmsk=     0.02511050
Iter =   3 c.s. =      5.40020084 (a.u)  rmsk=     0.00087069
Iter =   4 c.s. =      5.39988794 (a.u)  rmsk=     0.00002536
Iter =   5 c.s. =      5.39988631 (a.u)  rmsk=     0.00000011
Iter =   6 c.s. =      5.39988633 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.33857897E+00, 0.63733856E+00) ( 0.31483991E+00,-0.99204987E-01)
  (-0.74628528E-01, 0.43548178E-01) (-0.77191392E-02, 0.28739665E-02)
  (-0.16254215E-02, 0.48758529E-03) ( 0.11085895E-03,-0.23291989E-04)
  (-0.46251540E-04, 0.34312944E-05) ( 0.83829731E-05, 0.57384032E-07)
     ROW  2
  ( 0.31483991E+00,-0.99204990E-01) (-0.16308389E+00, 0.76385567E+00)
  ( 0.96193854E-01,-0.18750193E+00) ( 0.65317253E-02,-0.18690220E-01)
  ( 0.13802049E-02,-0.37190752E-02) (-0.12762004E-03, 0.22145103E-03)
  ( 0.24103104E-04,-0.95233353E-04) (-0.53817799E-05, 0.15658349E-04)
     ROW  3
  (-0.74628527E-01, 0.43548179E-01) ( 0.96193854E-01,-0.18750193E+00)
  ( 0.15273202E+00, 0.81957490E-01) ( 0.14784476E-02, 0.56115987E-02)
  ( 0.13283851E-02, 0.13241761E-02) (-0.29168512E-03,-0.12163041E-03)
  ( 0.29665103E-04, 0.31041113E-04) (-0.12168083E-04,-0.62783979E-05)
     ROW  4
  (-0.77191390E-02, 0.28739665E-02) ( 0.65317253E-02,-0.18690220E-01)
  ( 0.14784476E-02, 0.56115986E-02) ( 0.52039322E-01, 0.32170474E-02)
  (-0.22484849E-02,-0.88475571E-04) (-0.32127362E-04,-0.13521335E-04)
  (-0.18322490E-03,-0.97313004E-05) (-0.12906841E-04,-0.19454493E-05)
     ROW  5
  (-0.16254214E-02, 0.48758529E-03) ( 0.13802049E-02,-0.37190751E-02)
  ( 0.13283851E-02, 0.13241761E-02) (-0.22484849E-02,-0.88475572E-04)
  ( 0.32422941E-01, 0.10831181E-02) ( 0.18551095E-02, 0.99517769E-04)
  (-0.67432428E-04,-0.30210609E-05) ( 0.21012315E-03, 0.89856863E-05)
     ROW  6
  ( 0.11085895E-03,-0.23291989E-04) (-0.12762004E-03, 0.22145103E-03)
  (-0.29168512E-03,-0.12163041E-03) (-0.32127362E-04,-0.13521335E-04)
  ( 0.18551095E-02, 0.99517769E-04) ( 0.22023133E-01, 0.48919235E-03)
  (-0.52497289E-03,-0.19927712E-04) (-0.52707069E-04,-0.18047945E-05)
     ROW  7
  (-0.46251539E-04, 0.34312944E-05) ( 0.24103104E-04,-0.95233350E-04)
  ( 0.29665103E-04, 0.31041112E-04) (-0.18322490E-03,-0.97313004E-05)
  (-0.67432428E-04,-0.30210609E-05) (-0.52497289E-03,-0.19927712E-04)
  ( 0.15498655E-01, 0.24185451E-03) ( 0.11059944E-02, 0.29866487E-04)
     ROW  8
  ( 0.83829730E-05, 0.57383969E-07) (-0.53817799E-05, 0.15658349E-04)
  (-0.12168083E-04,-0.62783978E-05) (-0.12906841E-04,-0.19454493E-05)
  ( 0.21012315E-03, 0.89856863E-05) (-0.52707069E-04,-0.18047945E-05)
  ( 0.11059944E-02, 0.29866487E-04) ( 0.11468576E-01, 0.13364187E-03)
 eigenphases
 -0.1191976E+01  0.1118325E-01  0.1573958E-01  0.2174630E-01  0.3250452E-01
  0.5245879E-01  0.1835253E+00  0.8729754E+00
 eigenphase sum-0.184245E-02  scattering length=   0.00175
 eps+pi 0.313975E+01  eps+2*pi 0.628134E+01

Iter =   6 c.s. =      5.39988633 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 15:43:44 2001
 delt cpu =   643.1  tot cpu =  2176.2  tot wall =  2288.0
Thu Jan 25 15:43:44 CST 2001
2098.868u 95.742s 38:27.27 95.1% 0+0k 2+149io 1pf+0w
Thu Jan 25 15:43:44 CST 2001
2168.013u 101.073s 39:46.50 95.0% 0+0k 26+230io 1pf+0w