/scratch2/people/lucchese/polyangd/tests/test03.job
test03 - Hondo target, T2 symmetry, static exchaneg
Thu Jan 25 15:01:37 CST 2001
0.064u 0.051s 0:00.12 91.6% 0+0k 0+0io 0pf+0w

**********************************************************************
SetUp - set up command scripts
**********************************************************************

wrkdir = tst154779
Moving to /scratch2/lucchese/tst154779

**********************************************************************
AddData - add data to data file
**********************************************************************


----------------------------------------------------------------------
adt - Add data to data file
----------------------------------------------------------------------

 PtGrp  'Td'   # point group to use
 DoSym  'yes'  # compute the blms
 LMax   15     # maximum l to be used for wave functions
 LMaxI  30     # maximum l value used to determine numerical angular grids
 LMaxA  12     # maximum l included at large r
 LMax2  30     # maximum l to be used for potentials
 PrintFlag 0   # no extra printing
 MMax   -1     # maximum m to use (-1 means use LMax)
 MMaxI  -1     # maximum m to use in angular integrations (-1 means us LMaxI)
 ECenter  0.0 0.0 0.0 # center for exapnding about
 RMax   8.5    # maximum R in inner grid
 EMax  10.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 2
   3
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
  End
  PCutRd  1.0e-8  # cutoff factor used in the radial grids
 ScatEng 1 0.5      # list of scattering energies
 FegeEng 0.477398   # Energy correction used in the fege potential
 ScatContSym 'T2'  # Scattering symmetry
 LMaxK   4     # Maximum l in the K matirx
IterMax  15    # Maximum Number of iterations
GrnType  0     # type of Green function (0 -> K matrix, 1 -> T matrix)
CnvgKMat 1.0e-6 # Convergence of the K matrix
NIntReg  10    # Number of integration regions, number needed is controlled
               # by the instability in the integrator
LMaxEx   -1    # -1 implies all terms (2*LMax) alternatively one can use just
               # LMax to save computer time

**********************************************************************
Convert - Convert file hondo.out
          using the hondo conversion program
**********************************************************************


----------------------------------------------------------------------
hndcnv - Program to convert geometry and orbital information from hondo format
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:01:38 2001
 Unit which contains output from Hondo (iuin) =   50
 Output unit for geometry information (iugeom) =   51
 Output unit for orbital information (iuorb) =   82
    Methane DZP Basis Set expanded as a1-a1-t2z-t2x-t2y

 Number of atoms =     5


                    --------------------
                     MOLECULAR GEOMETRY
                    --------------------


  C   6   0.0000000      0.0000000      0.0000000
  H   1   1.1930000      1.1930000      1.1930000
  H   1  -1.1930000     -1.1930000      1.1930000
  H   1   1.1930000     -1.1930000     -1.1930000
  H   1  -1.1930000      1.1930000     -1.1930000

                    --------------------
                    MOLECULAR BASIS SET
                    --------------------


                    1     S     1     4232.610000       0.758836       0.000000
                    1     S     2      634.882000       1.400365       0.000000
                    1     S     3      146.097000       2.258530       0.000000
                    1     S     4       42.497400       3.050137       0.000000
                    1     S     5       14.189200       3.108344       0.000000
                    1     S     6        1.966600       0.287038       0.000000

                    2     S     7        5.147700       2.435679       0.000000

                    3     S     8        0.496200       0.421359       0.000000

                    4     S     9        0.153300       0.174609       0.000000

                    5     X    11       18.155700       0.990092       0.000000
                    5     X    12        3.986400       0.926894       0.000000
                    5     X    13        1.142900       0.650533       0.000000
                    5     X    14        0.359400       0.253894       0.000000

                    6     Y    11       18.155700       0.990092       0.000000
                    6     Y    12        3.986400       0.926894       0.000000
                    6     Y    13        1.142900       0.650533       0.000000
                    6     Y    14        0.359400       0.253894       0.000000

                    7     Z    11       18.155700       0.990092       0.000000
                    7     Z    12        3.986400       0.926894       0.000000
                    7     Z    13        1.142900       0.650533       0.000000
                    7     Z    14        0.359400       0.253894       0.000000

                    8     X    15        0.114600       0.095043       0.000000

                    9     Y    15        0.114600       0.095043       0.000000

                   10     Z    15        0.114600       0.095043       0.000000

                   11     S     1       19.240600       0.214941       0.000000
                   11     S     2        2.899200       0.366118       0.000000
                   11     S     3        0.653400       0.423295       0.000000

                   12     S     4        0.177600       0.194981       0.000000

                   13     S     1       19.240600       0.214941       0.000000
                   13     S     2        2.899200       0.366118       0.000000
                   13     S     3        0.653400       0.423295       0.000000

                   14     S     4        0.177600       0.194981       0.000000

                   15     S     1       19.240600       0.214941       0.000000
                   15     S     2        2.899200       0.366118       0.000000
                   15     S     3        0.653400       0.423295       0.000000

                   16     S     4        0.177600       0.194981       0.000000

                   17     S     1       19.240600       0.214941       0.000000
                   17     S     2        2.899200       0.366118       0.000000
                   17     S     3        0.653400       0.423295       0.000000

                   18     S     4        0.177600       0.194981       0.000000


                    --------------------
                        C - MATRIX
                    --------------------

  1  0.60086000E+00 0.43742000E+00 0.49700000E-02-0.11000000E-02 0.00000000E+00
  1  0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00
  1  0.42000000E-03 0.25000000E-03 0.42000000E-03 0.25000000E-03 0.42000000E-03
  1  0.25000000E-03 0.42000000E-03 0.25000000E-03 0.00000000E+00 0.00000000E+00
  2 -0.11925000E+00-0.16071000E+00 0.42586000E+00 0.41077000E+00 0.00000000E+00
  2  0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00
  2  0.13274000E+00 0.18120000E-01 0.13274000E+00 0.18120000E-01 0.13274000E+00
  2  0.18120000E-01 0.13274000E+00 0.18120000E-01 0.00000000E+00 0.00000000E+00
  3  0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00-0.27950000E-01
  3  0.32291000E+00 0.40475000E+00-0.70800000E-02 0.81790000E-01 0.10252000E+00
  3  0.22676000E+00 0.18245000E+00 0.35580000E-01 0.28630000E-01-0.24487000E+00
  3 -0.19703000E+00-0.17460000E-01-0.14050000E-01 0.00000000E+00 0.00000000E+00
  4  0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.47364000E+00
  4 -0.14782000E+00 0.15064000E+00 0.11997000E+00-0.37440000E-01 0.38160000E-01
  4  0.15441000E+00 0.12424000E+00-0.56770000E-01-0.45680000E-01 0.15258000E+00
  4  0.12277000E+00-0.25021000E+00-0.20132000E+00 0.00000000E+00 0.00000000E+00
  5  0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.20919000E+00
  5  0.37783000E+00-0.28699000E+00 0.52990000E-01 0.95700000E-01-0.72690000E-01
  5  0.97230000E-01 0.78230000E-01-0.28324000E+00-0.22790000E+00 0.38350000E-01
  5  0.30860000E-01 0.14765000E+00 0.11880000E+00 0.00000000E+00 0.00000000E+00
 Convert Hondo output Thu Jan 25 15:01:38 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0
Thu Jan 25 15:01:38 CST 2001
0.093u 0.106s 0:00.27 70.3% 0+0k 1+3io 1pf+0w

**********************************************************************
GetBlms - Compute blms for point group Td
**********************************************************************


----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:01:39 2001
 lmax =   30
 iuout (unit to put out final bs formatted) =   42
 iumatrep (unit for output of matrix representation of the group    0
 iprnfg =    0
 calculation type (calctp) = table
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    1
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information - Table form
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1  1 -1
 B3        1         4        240      -1 -1  1
 Generate blms Thu Jan 25 15:01:39 2001
 delt cpu =     0.0  tot cpu =     0.0  tot wall =     0.0

----------------------------------------------------------------------
symgen - Symmetry function generation program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:01:39 2001
 lmax =   15
 iuout (unit to put out final bs formatted) =   40
 iumatrep (unit for output of matrix representation of the group   43
 iprnfg =    0
 calculation type (calctp) = compute
 representation form (rtype) = real
 Number of redundant theta regions (1 or 2) (nthd) =    1
 Number of redundant phi regions (1, 2, or 4) (nphid) =    4
 The representation is expected to be real
 Symmetry Information
 Number of symmetry operations =    24
 symmetry operations
   1   0.000000E+00   0.000000E+00   0.100000E+01   0.000000E+00   0.000000E+00
   2   0.100000E+01   0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   3  -0.100000E+01  -0.100000E+01   0.100000E+01   0.120000E+03   0.200000E+01
   4   0.100000E+01  -0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   5  -0.100000E+01   0.100000E+01  -0.100000E+01   0.120000E+03   0.200000E+01
   6   0.100000E+01   0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   7  -0.100000E+01  -0.100000E+01   0.100000E+01  -0.120000E+03   0.200000E+01
   8   0.100000E+01  -0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
   9  -0.100000E+01   0.100000E+01  -0.100000E+01  -0.120000E+03   0.200000E+01
  10   0.000000E+00   0.000000E+00   0.100000E+01   0.180000E+03   0.200000E+01
  11   0.000000E+00   0.100000E+01   0.000000E+00   0.180000E+03   0.200000E+01
  12   0.100000E+01   0.000000E+00   0.000000E+00   0.180000E+03   0.200000E+01
  13  -0.707107E+00   0.707107E+00   0.000000E+00   0.000000E+00   0.100000E+01
  14   0.707107E+00   0.000000E+00  -0.707107E+00   0.000000E+00   0.100000E+01
  15   0.000000E+00  -0.707107E+00   0.707107E+00   0.000000E+00   0.100000E+01
  16   0.000000E+00   0.707107E+00   0.707107E+00   0.000000E+00   0.100000E+01
  17  -0.707107E+00   0.000000E+00  -0.707107E+00   0.000000E+00   0.100000E+01
  18   0.707107E+00   0.707107E+00   0.000000E+00   0.000000E+00   0.100000E+01
  19   0.000000E+00   0.000000E+00   0.100000E+01   0.900000E+02   0.300000E+01
  20   0.100000E+01   0.000000E+00   0.000000E+00   0.900000E+02   0.300000E+01
  21   0.000000E+00   0.100000E+01   0.000000E+00   0.900000E+02   0.300000E+01
  22   0.000000E+00   0.000000E+00   0.100000E+01  -0.900000E+02   0.300000E+01
  23   0.100000E+01   0.000000E+00   0.000000E+00  -0.900000E+02   0.300000E+01
  24   0.000000E+00   0.100000E+01   0.000000E+00  -0.900000E+02   0.300000E+01
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
    10    11    12
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         21       1  1  1
 E         2         4         21       1  1  1
 T1        1         5         28      -1 -1  1
 T1        2         6         28      -1  1 -1
 T1        3         7         28       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
 Generate blms Thu Jan 25 15:01:49 2001
 delt cpu =     9.6  tot cpu =     9.6  tot wall =    10.0
Thu Jan 25 15:01:49 CST 2001
9.717u 0.284s 0:10.39 96.1% 0+0k 12+5io 0pf+0w

**********************************************************************
ExpOrb - create grid and expand orbitals
**********************************************************************

Thu Jan 25 15:01:49 CST 2001
0.082u 0.076s 0:00.17 88.2% 0+0k 0+0io 0pf+0w

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Unit for geometry information (iUGeom) =   51
Unit fo basis function and orbital coefficients (iUOrb) =   82
Unit for the generated grid (iUGrd) =   54
Maximum R in the grid (RMax) =     8.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  10.00000 eV

    1  Center at =     0.00000  Alpha Max = 0.42326E+04
    2  Center at =     2.06634  Alpha Max = 0.19241E+02

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.16202E-03     0.00518
    2    8    40    0.17282E-03     0.00657
    3    8    48    0.21891E-03     0.00832
    4    8    56    0.27729E-03     0.01054
    5    8    64    0.35123E-03     0.01335
    6    8    72    0.44489E-03     0.01691
    7    8    80    0.56353E-03     0.02141
    8    8    88    0.71380E-03     0.02712
    9    8    96    0.90415E-03     0.03436
   10    8   104    0.11453E-02     0.04352
   11    8   112    0.14507E-02     0.05512
   12    8   120    0.18375E-02     0.06982
   13    8   128    0.23275E-02     0.08844
   14    8   136    0.29482E-02     0.11203
   15    8   144    0.37343E-02     0.14190
   16    8   152    0.47302E-02     0.17975
   17    8   160    0.59915E-02     0.22768
   18    8   168    0.75893E-02     0.28839
   19    8   176    0.96131E-02     0.36530
   20    8   184    0.12177E-01     0.46271
   21    8   192    0.15424E-01     0.58610
   22   56   248    0.15830E-01     1.47260
   23    8   256    0.15570E-01     1.59716
   24    8   264    0.12276E-01     1.69536
   25    8   272    0.97063E-02     1.77302
   26    8   280    0.76746E-02     1.83441
   27    8   288    0.60682E-02     1.88296
   28    8   296    0.47980E-02     1.92134
   29    8   304    0.37937E-02     1.95169
   30    8   312    0.29996E-02     1.97569
   31   32   344    0.24031E-02     2.05259
   32    8   352    0.17187E-02     2.06634
   33   32   384    0.24031E-02     2.14324
   34    8   392    0.25633E-02     2.16374
   35    8   400    0.32468E-02     2.18972
   36    8   408    0.41127E-02     2.22262
   37    8   416    0.52094E-02     2.26429
   38    8   424    0.65985E-02     2.31708
   39    8   432    0.83581E-02     2.38395
   40    8   440    0.10587E-01     2.46864
   41    8   448    0.13410E-01     2.57592
   42    8   456    0.16986E-01     2.71181
   43    8   464    0.21516E-01     2.88394
   44    8   472    0.27253E-01     3.10197
   45   64   536    0.30537E-01     5.05635
   46   64   600    0.30537E-01     7.01073
   47   48   648    0.30537E-01     8.47651
   48    8   656    0.29359E-02     8.50000

----------------------------------------------------------------------
anggct - Program to generate angular functions
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:01:49 2001
Maximum scattering l (lmaxs) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Minimum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (pcutar) =  0.10000000E-07
Input unit for full symmetry blms (iuins) =   40
Input unit for abelian sub-group blms (iuini) =   42
Unit for geometry information (iugeom) =   51
Unit for radial grid information (iugrd) =   54
Output unit for angular grid and functions (iuang) =   41
Output unit for angular grid cutoffs (iuanrd) =   62
Print flag (iprnfg) =    0
 Actual value of lmasym found =     14
Number of regions of the same l expansion (NAngReg) =   12
 Point group from iuins is TD
 From iuins nthd =    1  nphid =    4  nabop =    3

 Number of radial functions in full symmetry
   1 Symmetry type A1    1  Number of radial functions =     15
   2 Symmetry type A2    1  Number of radial functions =      7
   3 Symmetry type E     1  Number of radial functions =     21
   4 Symmetry type E     2  Number of radial functions =     21
   5 Symmetry type T1    1  Number of radial functions =     28
   6 Symmetry type T1    2  Number of radial functions =     28
   7 Symmetry type T1    3  Number of radial functions =     28
   8 Symmetry type T2    1  Number of radial functions =     36
   9 Symmetry type T2    2  Number of radial functions =     36
  10 Symmetry type T2    3  Number of radial functions =     36

 Number of radial functions in abelian subgroup
   1 Symmetry type A     1  Number of radial functions =    241
   2 Symmetry type B1    1  Number of radial functions =    240
   3 Symmetry type B2    1  Number of radial functions =    240
   4 Symmetry type B3    1  Number of radial functions =    240

 For analytic integrations ntheta =     32  nphi =     16
 For numerical integrations ntheti =     64 nphii =     31

 Maximum parameters needed
 Parameter         Value  Value Needed
     maxlm           120            36
    maxlma           680           241
    maxlmh           400            64
    maxthe            58            32
    maxphi           110            16
    maxthi           112            64
    maxpii           220            31
    maxfun          2601           256
    maxfub         10201           961
 Define angular grid Thu Jan 25 15:01:55 2001
 delt cpu =     5.4  tot cpu =     5.4  tot wall =     6.0
5.171u 0.465s 0:05.91 95.2% 0+0k 3+4io 0pf+0w

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =  -82
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Output file for rotated and typed orbitals (iUOrbSym) =   52
 Begining timer Thu Jan 25 15:01:55 2001

 R of maximum density
     1  A1    1 at max irg =   19  r =   0.17975
     2  A1    1 at max irg =   31  r =   1.47260
     3  T2    1 at max irg =   44  r =   2.06634
     4  T2    2 at max irg =   44  r =   2.06634
     5  T2    3 at max irg =   44  r =   2.06634

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3 -0.0539044626    4  0.9134224199    5  0.4034275544

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  0.6227415429    4 -0.2850689236    5  0.7286485295

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.7805685618    4  0.2905085051    5 -0.5534596000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
 Compute final expansions Thu Jan 25 15:01:59 2001
 delt cpu =     3.8  tot cpu =     3.8  tot wall =     4.0
Thu Jan 25 15:01:59 CST 2001
8.853u 0.650s 0:10.08 94.2% 0+0k 5+7io 0pf+0w

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for information about l cutoff regions (iuanrd) =   62
 Unit for basis function and orbital coefficients (iuorb) =   52
 Unit for output of single center expanded orbitals (iuout) =   55
 First orbital to expand (mofr) =    0
 Last orbital to expand (moto) =    0
 Begining timer Thu Jan 25 15:01:59 2001
 Number of r points in each I/O block (nrpibk) =  113
 Number of blocks in each function (nblks) =   10
 Number of r points in each in memory block (nrpibko) =  565
 Direct access record sizxe (real words) (nsize) = 4068
 Total scratch file size in bytes =         976320

 Normalization integral
 Sum(    1) =   1.0000113777
 Sum(    2) =   0.0000002950
 Sum(    3) =   0.0000000566
 Sum(    4) =   0.0000000149
 Sum(    5) =   0.0000000066
 Sum(    6) =   0.0000000004
 Sum(    7) =   0.0000000013
 Sum(    8) =   0.0000000012
 Sum(    9) =   0.0000000002
 Sum(   10) =   0.0000000002
 Sum(   11) =   0.0000000000
 Sum(   12) =   0.0000000002
 Sum(   13) =   0.0000000001
 Sum(   14) =   0.0000000000
 Sum(   15) =   0.0000000000
 Total      =   1.0000117543
 Orbital     1 of  A1    1 symmetry
     Normalization coefficient =   0.99999412

 Normalization integral
 Sum(    1) =   0.9671644195
 Sum(    2) =   0.0249160585
 Sum(    3) =   0.0053054912
 Sum(    4) =   0.0014776300
 Sum(    5) =   0.0006598683
 Sum(    6) =   0.0000412938
 Sum(    7) =   0.0001341301
 Sum(    8) =   0.0001183914
 Sum(    9) =   0.0000195484
 Sum(   10) =   0.0000152353
 Sum(   11) =   0.0000004394
 Sum(   12) =   0.0000224727
 Sum(   13) =   0.0000072704
 Sum(   14) =   0.0000021735
 Sum(   15) =   0.0000004818
 Total      =   0.9998849043
 Orbital     2 of  A1    1 symmetry
     Normalization coefficient =   1.00005755

 Normalization integral
 Sum(    1) =   0.8947026447
 Sum(    2) =   0.0752943311
 Sum(    3) =   0.0136112498
 Sum(    4) =   0.0088873793
 Sum(    5) =   0.0046329927
 Sum(    6) =   0.0001323499
 Sum(    7) =   0.0002391741
 Sum(    8) =   0.0009785142
 Sum(    9) =   0.0002987176
 Sum(   10) =   0.0002909390
 Sum(   11) =   0.0004302581
 Sum(   12) =   0.0000351015
 Sum(   13) =   0.0000695923
 Sum(   14) =   0.0001146218
 Sum(   15) =   0.0000112499
 Sum(   16) =   0.0000027439
 Sum(   17) =   0.0000154132
 Sum(   18) =   0.0000682217
 Sum(   19) =   0.0000620058
 Sum(   20) =   0.0000032252
 Sum(   21) =   0.0000088824
 Sum(   22) =   0.0000188783
 Sum(   23) =   0.0000200057
 Sum(   24) =   0.0000012856
 Sum(   25) =   0.0000017907
 Sum(   26) =   0.0000003426
 Sum(   27) =   0.0000106898
 Sum(   28) =   0.0000040016
 Sum(   29) =   0.0000000554
 Sum(   30) =   0.0000098990
 Sum(   31) =   0.0000001611
 Sum(   32) =   0.0000040692
 Sum(   33) =   0.0000057810
 Sum(   34) =   0.0000046380
 Sum(   35) =   0.0000002353
 Sum(   36) =   0.0000000264
 Total      =   0.9999714680
 Orbital     3 of  T2    1 symmetry
     Normalization coefficient =   1.00001427
 Compute final expansions Thu Jan 25 15:02:11 2001
 delt cpu =    11.1  tot cpu =    11.1  tot wall =    12.0
Thu Jan 25 15:02:11 CST 2001
19.295u 1.407s 0:22.25 92.9% 0+0k 5+10io 0pf+0w

**********************************************************************
GetPot - compute local potential
**********************************************************************


----------------------------------------------------------------------
den - Electron density construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:02:11 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for angular grid cutoff information (iuanrd) =   62
 Unit for input of expanded orbitals (iuxorb) =   55
 Unit for output of density (iuden) =   56
Print flag =    0
 Compute density Thu Jan 25 15:02:15 2001
 delt cpu =     3.1  tot cpu =     3.1  tot wall =     4.0
Thu Jan 25 15:02:15 CST 2001
2.855u 0.391s 0:03.55 91.2% 0+0k 0+4io 0pf+0w

----------------------------------------------------------------------
stpot - Compute the static potential from the density
----------------------------------------------------------------------

 Unit for geometry information (iugeom) =   51
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of static potential (iustpt) =   57
 Begining timer Thu Jan 25 15:02:15 2001
 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
 Electronic part Thu Jan 25 15:02:17 2001
 delt cpu =     1.9  tot cpu =     1.9  tot wall =     2.0
 Nuclear part Thu Jan 25 15:02:18 2001
 delt cpu =     1.0  tot cpu =     2.9  tot wall =     3.0
Thu Jan 25 15:02:18 CST 2001
5.493u 0.709s 0:06.70 92.3% 0+0k 0+7io 0pf+0w
Thu Jan 25 15:02:18 CST 2001
5.514u 0.747s 0:06.76 92.4% 0+0k 0+7io 0pf+0w

**********************************************************************
Scat - Run the electron scattering code
**********************************************************************


**********************************************************************
DoLocExchg - compute requested local exchange potential
             at energy = ScatEng eV
**********************************************************************


----------------------------------------------------------------------
fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:02:18 2001
 Unit for angular grid information (iuang) =   41
 Unit for radial grid information (iugrd) =   54
 Unit for radial cutoffs (iuanrd) =   62
 Unit for input of density (iuden) =   56
 Unit for output of fege potential (iufege) =   59
 Off set energy for computing fege eta (ecor) =  0.47739800E+00  AU
 Do E =  0.50000000E+00 eV (  0.18374655E-01 AU)
 Compute fege potential Thu Jan 25 15:02:25 2001
 delt cpu =     6.1  tot cpu =     6.1  tot wall =     7.0
Thu Jan 25 15:02:25 CST 2001
5.630u 0.709s 0:06.77 93.5% 0+0k 0+4io 0pf+0w
Thu Jan 25 15:02:25 CST 2001
5.633u 0.720s 0:06.79 93.5% 0+0k 0+4io 0pf+0w

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program
----------------------------------------------------------------------

 Begining timer Thu Jan 25 15:02:25 2001
Unit for atomic geometry (iugeom) =   51
Unit for angular grid information (iuang) =   41
Unit for radial grid information (iugrd) =   54
Unit for input of radial cutoffs (iuanrd) =   62
Unit for input of static potential (iustpt) =   57
Unit for input of polarization potential (iupolt) =    0
Unit for input of model exchange potential (iufege) =   59
Unit for input of expanded orbitals (iuxorb) =   55
Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2
Form of the Green's function to use (iGrnType) =     0
Unit for dipole operator (iUDipole) =    0
Maximum l for computed scattering solutions (lna) =    4
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
Maximum l to include in 1/r12 expansion of exchange (LMaxEx) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   10
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    10
Number of points per region =    67
Number of partial waves (np) =    36
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
 Number of orthogonality constraints (NOrthUse) =    1

 Maximum l used in usual function (lmaxa) =   15
 Maximum m used in usual function (mmaxa) =   15
 Maxamum l used in expanding static potential (lpotct) =   30
 Maximum l used in exapnding the exchange potential (lmaxab) =   30
 Maximum m used potentials (mmaxab) =   30
 Higest l included in the expansion of the wave function (lnp) =   15
 Higest l included in the K matrix (lna) =    4
 Highest l used at large r (lpasym) =   14
 Higest l used in the asymptotic potential (lpzb) =   28

 Radial grid information (standard grid)
 region   no pts  cum pts       h       r end
     1       32       32    0.000162    0.005185
     2        8       40    0.000173    0.006567
     3        8       48    0.000219    0.008319
     4        8       56    0.000277    0.010537
     5        8       64    0.000351    0.013347
     6        8       72    0.000445    0.016906
     7        8       80    0.000564    0.021414
     8        8       88    0.000714    0.027124
     9        8       96    0.000904    0.034358
    10        8      104    0.001145    0.043520
    11        8      112    0.001451    0.055125
    12        8      120    0.001837    0.069825
    13        8      128    0.002327    0.088445
    14        8      136    0.002948    0.112030
    15        8      144    0.003734    0.141905
    16        8      152    0.004730    0.179746
    17        8      160    0.005992    0.227679
    18        8      168    0.007589    0.288393
    19        8      176    0.009613    0.365298
    20        8      184    0.012177    0.462710
    21        8      192    0.015424    0.586100
    22       56      248    0.015830    1.472600
    23        8      256    0.015570    1.597159
    24        8      264    0.012276    1.695365
    25        8      272    0.009706    1.773015
    26        8      280    0.007675    1.834412
    27        8      288    0.006068    1.882958
    28        8      296    0.004798    1.921342
    29        8      304    0.003794    1.951691
    30        8      312    0.003000    1.975688
    31       32      344    0.002403    2.052587
    32        8      352    0.001719    2.066337
    33       32      384    0.002403    2.143235
    34        8      392    0.002563    2.163742
    35        8      400    0.003247    2.189716
    36        8      408    0.004113    2.222618
    37        8      416    0.005209    2.264293
    38        8      424    0.006599    2.317081
    39        8      432    0.008358    2.383946
    40        8      440    0.010587    2.468642
    41        8      448    0.013410    2.575923
    42        8      456    0.016986    2.711813
    43        8      464    0.021516    2.883940
    44        8      472    0.027253    3.101968
    45       64      536    0.030537    5.056348
    46       64      600    0.030537    7.010728
    47       48      648    0.030537    8.476513
    48        8      656    0.002936    8.500000

 Energy independent setup Thu Jan 25 15:02:30 2001
 delt cpu =     4.3  tot cpu =     4.3  tot wall =     5.0

 Compute solution for E =    0.5000000000 eV
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.30221261E-03
 i =  2  lval =   3  stpote =  0.84384001E-11
 i =  3  lval =   3  stpote =  0.52314370E-15
 i =  4  lval =   4  stpote = -0.53479337E+01
Asymptotic region to R =       135.3548  in      4 regions
Iter =   1 c.s. =      0.20958159 (a.u)  rmsk=     0.01098066
Iter =   2 c.s. =      0.15900083 (a.u)  rmsk=     0.00143410
Iter =   3 c.s. =      0.15925861 (a.u)  rmsk=     0.00000783
Iter =   4 c.s. =      0.15925847 (a.u)  rmsk=     0.00000000
Iter =   5 c.s. =      0.15925856 (a.u)  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.38169156E-01 0.15636553E-02-0.12071821E-03 0.23482238E-03
     ROW  2
  0.15636557E-02 0.10580017E-02-0.10580466E-02 0.23834138E-04
     ROW  3
 -0.12071823E-03-0.10580466E-02-0.39029778E-04-0.97078731E-04
     ROW  4
  0.23482238E-03 0.23834138E-04-0.97078731E-04 0.19344098E-04
 eigenphases
 -0.3821436E-01 -0.6756345E-03  0.2369505E-04  0.1754072E-02
 eigenphase sum-0.371122E-01  scattering length=   0.19368
 eps+pi 0.310448E+01  eps+2*pi 0.624607E+01

Iter =   5 c.s. =      0.15925856 (a.u)  rmsk=     0.00000000
 End of this energy Thu Jan 25 15:03:57 2001
 delt cpu =    79.6  tot cpu =    84.0  tot wall =    92.0
Thu Jan 25 15:03:57 CST 2001
82.855u 7.828s 1:39.16 91.4% 0+0k 7+69io 3pf+0w
Thu Jan 25 15:03:57 CST 2001
117.787u 11.096s 2:20.32 91.8% 0+0k 26+142io 4pf+0w