----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test31
#
# electron scattering from N2O in C-inf-v symmetry
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   8.5    # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  FegeEng 11.0   # Energy correction (in eV) used in the fege potential
  LMaxK   5     # Maximum l in the K matirx

Convert '/home/lucchese/ePolyScatE/tests/test31.molden' 'molden'
GetBlms
ExpOrb
GetPot
ScatEng  0.5 1.0
ScatContSym 'S'  # Scattering symmetry
Scat
ScatContSym 'A2'  # Scattering symmetry
Scat
ScatContSym 'B1'  # Scattering symmetry
Scat
ScatContSym 'B2'  # Scattering symmetry
Scat
ScatContSym 'P'  # Scattering symmetry
Scat
ScatContSym 'D'  # Scattering symmetry
Scat
ScatContSym 'F'  # Scattering symmetry
Scat
ScatContSym 'G'  # Scattering symmetry
Scat
TotalCrossSection

+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 8.5
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 11.0
+ Data Record LMaxK - 5

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test31.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    165 basis functions
Selecting orbitals
Number of orbitals selected is    11
Selecting    1   1 Ene =     -20.6585 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.8462 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =     -15.6997 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -1.6145 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -1.4241 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.8343 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.7633 Spin =Alpha Occup =   2.000000
Selecting    8   8 Ene =      -0.7633 Spin =Alpha Occup =   2.000000
Selecting    9   9 Ene =      -0.6990 Spin =Alpha Occup =   2.000000
Selecting   10  10 Ene =      -0.4918 Spin =Alpha Occup =   2.000000
Selecting   11  11 Ene =      -0.4918 Spin =Alpha Occup =   2.000000

Atoms found    3
Z =  7 r =   0.0000000000   0.0000000000  -2.2669848812
Z =  7 r =   0.0000000000   0.0000000000  -0.1349958569
Z =  8 r =   0.0000000000   0.0000000000   2.1028178309

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  CAv
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =         0.2151  Delta time =         0.2151 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  2.26698   7  0.13500   8  2.10282
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is CAv
LMax = =   15
 The dimension of each irreducable representation is
    S     (  1)    A2    (  1)    B1    (  1)    B2    (  1)    P     (  2)
    D     (  2)    F     (  2)    G     (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
    11    16     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 S         1         1         19       1  1  1
 A2        1         2          3      -1 -1  1
 B1        1         3          8       1 -1 -1
 B2        1         4          8      -1  1 -1
 P         1         5         21      -1  1 -1
 P         2         6         21       1 -1 -1
 D         1         7         20      -1 -1  1
 D         2         8         20       1  1  1
 F         1         9         19      -1  1 -1
 F         2        10         19       1 -1 -1
 G         1        11         16      -1 -1  1
 G         2        12         16       1  1  1
Time Now =         1.9264  Delta time =         1.7113 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =         5.0870  Delta time =         3.1606 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     0.13500  Alpha Max = 0.11420E+05
    3  Center at =     2.10282  Alpha Max = 0.15330E+05
    4  Center at =     2.26698  Alpha Max = 0.11420E+05

Generated Grid

  irg  nin  ntot      step          R end
    1    8     8    0.35321E-02     0.02826
    2    8    16    0.27928E-02     0.05060
    3    8    24    0.22082E-02     0.06826
    4    8    32    0.17460E-02     0.08223
    5    8    40    0.13805E-02     0.09328
    6    8    48    0.10916E-02     0.10201
    7    8    56    0.86308E-03     0.10891
    8    8    64    0.68242E-03     0.11437
    9    8    72    0.53958E-03     0.11869
   10    8    80    0.42664E-03     0.12210
   11    8    88    0.33734E-03     0.12480
   12    8    96    0.26673E-03     0.12694
   13    8   104    0.21090E-03     0.12862
   14    8   112    0.16675E-03     0.12996
   15    8   120    0.13185E-03     0.13101
   16    8   128    0.10425E-03     0.13185
   17   24   152    0.98638E-04     0.13421
   18    8   160    0.97888E-04     0.13500
   19   32   192    0.98638E-04     0.13815
   20    8   200    0.10521E-03     0.13899
   21    8   208    0.13327E-03     0.14006
   22    8   216    0.16881E-03     0.14141
   23    8   224    0.21383E-03     0.14312
   24    8   232    0.27085E-03     0.14529
   25    8   240    0.34307E-03     0.14803
   26    8   248    0.43456E-03     0.15151
   27    8   256    0.55044E-03     0.15591
   28    8   264    0.69723E-03     0.16149
   29    8   272    0.88315E-03     0.16856
   30    8   280    0.11187E-02     0.17750
   31    8   288    0.14170E-02     0.18884
   32    8   296    0.17948E-02     0.20320
   33    8   304    0.22734E-02     0.22139
   34    8   312    0.28797E-02     0.24442
   35    8   320    0.36476E-02     0.27361
   36    8   328    0.46203E-02     0.31057
   37    8   336    0.58524E-02     0.35739
   38    8   344    0.74130E-02     0.41669
   39    8   352    0.93899E-02     0.49181
   40   64   416    0.10990E-01     1.19516
   41   48   464    0.10990E-01     1.72266
   42    8   472    0.99462E-02     1.80223
   43    8   480    0.78646E-02     1.86515
   44    8   488    0.62184E-02     1.91490
   45    8   496    0.49168E-02     1.95423
   46    8   504    0.38877E-02     1.98533
   47    8   512    0.30739E-02     2.00993
   48    8   520    0.24305E-02     2.02937
   49    8   528    0.19217E-02     2.04474
   50    8   536    0.15195E-02     2.05690
   51    8   544    0.12014E-02     2.06651
   52    8   552    0.94996E-03     2.07411
   53    8   560    0.75112E-03     2.08012
   54    8   568    0.59390E-03     2.08487
   55    8   576    0.46959E-03     2.08863
   56    8   584    0.37129E-03     2.09160
   57    8   592    0.29358E-03     2.09395
   58    8   600    0.23213E-03     2.09580
   59    8   608    0.18354E-03     2.09727
   60    8   616    0.14512E-03     2.09843
   61    8   624    0.11474E-03     2.09935
   62    8   632    0.90727E-04     2.10008
   63    8   640    0.85502E-04     2.10076
   64   24   664    0.85135E-04     2.10280
   65    8   672    0.18114E-05     2.10282
   66   32   704    0.85135E-04     2.10554
   67    8   712    0.90811E-04     2.10627
   68    8   720    0.11503E-03     2.10719
   69    8   728    0.14570E-03     2.10835
   70    8   736    0.18455E-03     2.10983
   71    8   744    0.23377E-03     2.11170
   72    8   752    0.29611E-03     2.11407
   73    8   760    0.37507E-03     2.11707
   74    8   768    0.47509E-03     2.12087
   75    8   776    0.60178E-03     2.12569
   76    8   784    0.76225E-03     2.13178
   77    8   792    0.96552E-03     2.13951
   78    8   800    0.12230E-02     2.14929
   79    8   808    0.15491E-02     2.16168
   80    8   816    0.19622E-02     2.17738
   81    8   824    0.23449E-02     2.19614
   82    8   832    0.18536E-02     2.21097
   83    8   840    0.14656E-02     2.22269
   84    8   848    0.11588E-02     2.23197
   85    8   856    0.91626E-03     2.23930
   86    8   864    0.72447E-03     2.24509
   87    8   872    0.57283E-03     2.24967
   88    8   880    0.45293E-03     2.25330
   89    8   888    0.35812E-03     2.25616
   90    8   896    0.28316E-03     2.25843
   91    8   904    0.22389E-03     2.26022
   92    8   912    0.17703E-03     2.26164
   93    8   920    0.13997E-03     2.26275
   94    8   928    0.11067E-03     2.26364
   95   32   960    0.98638E-04     2.26680
   96    8   968    0.23516E-04     2.26698
   97   32  1000    0.98638E-04     2.27014
   98    8  1008    0.10521E-03     2.27098
   99    8  1016    0.13327E-03     2.27205
  100    8  1024    0.16881E-03     2.27340
  101    8  1032    0.21383E-03     2.27511
  102    8  1040    0.27085E-03     2.27728
  103    8  1048    0.34307E-03     2.28002
  104    8  1056    0.43456E-03     2.28350
  105    8  1064    0.55044E-03     2.28790
  106    8  1072    0.69723E-03     2.29348
  107    8  1080    0.88315E-03     2.30054
  108    8  1088    0.11187E-02     2.30949
  109    8  1096    0.14170E-02     2.32083
  110    8  1104    0.17948E-02     2.33519
  111    8  1112    0.22734E-02     2.35338
  112    8  1120    0.28797E-02     2.37641
  113    8  1128    0.36476E-02     2.40559
  114    8  1136    0.46203E-02     2.44256
  115    8  1144    0.58524E-02     2.48938
  116    8  1152    0.74130E-02     2.54868
  117    8  1160    0.93899E-02     2.62380
  118    8  1168    0.11894E-01     2.71895
  119   64  1232    0.13657E-01     3.59298
  120   64  1296    0.13657E-01     4.46700
  121   64  1360    0.13657E-01     5.34103
  122   64  1424    0.13657E-01     6.21505
  123   64  1488    0.13657E-01     7.08908
  124   64  1552    0.13657E-01     7.96310
  125   32  1584    0.13657E-01     8.40011
  126    8  1592    0.12486E-01     8.50000
Time Now =         5.0891  Delta time =         0.0021 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.00353  to (    7)         0.02472
    2 L =    3  from (    8)         0.02826  to (   15)         0.04781
    3 L =    7  from (   16)         0.05060  to (   39)         0.09190
    4 L =   11  from (   40)         0.09328  to (   55)         0.10805
    5 L =   15  from (   56)         0.10891  to ( 1584)         8.40011
    6 L =   12  from ( 1585)         8.41260  to ( 1592)         8.50000

For analytic integrations ntheta =     32  nphi =     16
For numerical integrations ntheti =     64 nphii =     32
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     136
Proc id =    1  Last grid point =     240
Proc id =    2  Last grid point =     344
Proc id =    3  Last grid point =     440
Proc id =    4  Last grid point =     536
Proc id =    5  Last grid point =     632
Proc id =    6  Last grid point =     728
Proc id =    7  Last grid point =     824
Proc id =    8  Last grid point =     920
Proc id =    9  Last grid point =    1016
Proc id =   10  Last grid point =    1112
Proc id =   11  Last grid point =    1208
Proc id =   12  Last grid point =    1304
Proc id =   13  Last grid point =    1400
Proc id =   14  Last grid point =    1496
Proc id =   15  Last grid point =    1592
Time Now =         5.5862  Delta time =         0.4971 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  S     1 at max irg =   88  r =   2.10554
     2  S     1 at max irg =   36  r =   0.18884
     3  S     1 at max irg =  125  r =   2.27014
     4  S     1 at max irg =   55  r =   1.45891
     5  S     1 at max irg =   57  r =   1.63475
     6  S     1 at max irg =  146  r =   2.71895
     7  P     1 at max irg =   94  r =   2.11407
     8  P     2 at max irg =   94  r =   2.11407
     9  S     1 at max irg =  148  r =   2.93746
    10  P     1 at max irg =  109  r =   2.24967
    11  P     2 at max irg =  109  r =   2.24967

Rotation coefficients for orbital     1  grp =    1 S     1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 S     1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 S     1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 S     1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 S     1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 S     1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    7 P     1
     7  1.0000000000    8  0.0000000000

Rotation coefficients for orbital     8  grp =    7 P     2
     7  0.0000000000    8  1.0000000000

Rotation coefficients for orbital     9  grp =    8 S     1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =    9 P     1
    10  1.0000000000   11  0.0000000000

Rotation coefficients for orbital    11  grp =    9 P     2
    10  0.0000000000   11  1.0000000000
Number of orbital groups and degeneracis are         9
  1  1  1  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
         9
  2  2  2  2  2  2  4  2  4
Time Now =         7.2934  Delta time =         1.7072 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    9
Orbital     1 of  S     1 symmetry normalization integral =  0.81879082
Orbital     2 of  S     1 symmetry normalization integral =  1.00001148
Orbital     3 of  S     1 symmetry normalization integral =  0.84554001
Orbital     4 of  S     1 symmetry normalization integral =  0.99263230
Orbital     5 of  S     1 symmetry normalization integral =  0.99187608
Orbital     6 of  S     1 symmetry normalization integral =  0.99409237
Orbital     7 of  P     1 symmetry normalization integral =  0.99939671
Orbital     8 of  S     1 symmetry normalization integral =  0.99643213
Orbital     9 of  P     1 symmetry normalization integral =  0.99820643
Time Now =        14.0266  Delta time =         6.7331 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     22.00000000
Time Now =        14.0644  Delta time =         0.0378 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.22000000E+02 facnorm =  0.10000000E+01
Time Now =        14.0730  Delta time =         0.0086 Electronic part
Time Now =        14.0804  Delta time =         0.0074 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =        14.1819  Delta time =         0.1015 End VcpPol
+ Data Record ScatEng - 0.5 1.0
+ Data Record ScatContSym - 'S'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        14.3042  Delta time =         0.1223 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =S
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    19
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        14.3234  Delta time =         0.0192 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67068743E+02
 i =  2  lval =   2  stpote =  0.47789035E+00
 i =  3  lval =   3  stpote = -0.21950784E-14
 i =  4  lval =   3  stpote =  0.11268054E+01
Number of asymptotic regions =     204
Final point in integration =   0.35655203E+04
Iter =   1 c.s. =     14.35918648 angs^2  rmsk=     0.06911400
Iter =   2 c.s. =      6.67403181 angs^2  rmsk=     0.02930856
Iter =   3 c.s. =      6.18197825 angs^2  rmsk=     0.00225656
Iter =   4 c.s. =      6.12007251 angs^2  rmsk=     0.00031498
Iter =   5 c.s. =      6.11786606 angs^2  rmsk=     0.00001080
Iter =   6 c.s. =      6.11785167 angs^2  rmsk=     0.00000011
Iter =   7 c.s. =      6.11785146 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.18813851E+00-0.75992925E-01-0.47868543E-01 0.10876143E-02-0.41586515E-03
 -0.10002127E-05
     ROW  2
 -0.75992926E-01 0.22587767E-01-0.61395267E-01-0.54958424E-02-0.52270637E-04
 -0.50077748E-04
     ROW  3
 -0.47868541E-01-0.61395268E-01 0.29276127E-01-0.39796713E-01-0.16873796E-02
  0.21527044E-05
     ROW  4
  0.10876141E-02-0.54958430E-02-0.39796713E-01 0.99926694E-02-0.29440490E-01
 -0.94608422E-03
     ROW  5
 -0.41586516E-03-0.52270629E-04-0.16873799E-02-0.29440490E-01 0.41674159E-02
 -0.23467462E-01
     ROW  6
 -0.10002128E-05-0.50077747E-04 0.21527131E-05-0.94608438E-03-0.23467462E-01
  0.20449701E-02
 eigenphases
 -0.2257788E+00 -0.4223355E-01 -0.1157941E-01  0.1968716E-01  0.4709002E-01
  0.9635031E-01
 eigenphase sum-0.116464E+00  scattering length=   0.61029
 eps+pi 0.302513E+01  eps+2*pi 0.616672E+01

Iter =   7 c.s. =      6.11785146 angs^2  rmsk=     0.00000000
Time Now =        43.3940  Delta time =        29.0706 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        43.5149  Delta time =         0.1209 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =S
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    19
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        43.5283  Delta time =         0.0134 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67067410E+02
 i =  2  lval =   2  stpote =  0.47788903E+00
 i =  3  lval =   3  stpote = -0.19731479E-14
 i =  4  lval =   3  stpote =  0.11269214E+01
Number of asymptotic regions =     204
Final point in integration =   0.25265086E+04
Iter =   1 c.s. =     16.72705330 angs^2  rmsk=     0.11769054
Iter =   2 c.s. =      9.14656506 angs^2  rmsk=     0.04090627
Iter =   3 c.s. =      8.61962935 angs^2  rmsk=     0.00316247
Iter =   4 c.s. =      8.56153896 angs^2  rmsk=     0.00036407
Iter =   5 c.s. =      8.55916248 angs^2  rmsk=     0.00001318
Iter =   6 c.s. =      8.55915288 angs^2  rmsk=     0.00000021
Iter =   7 c.s. =      8.55915298 angs^2  rmsk=     0.00000000
Iter =   8 c.s. =      8.55915301 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.39801792E+00-0.45337257E-01-0.11579009E+00 0.34462492E-02-0.14658967E-02
  0.27609982E-04
     ROW  2
 -0.45337261E-01-0.49683992E-01-0.60605564E-01-0.12185658E-01-0.82053474E-04
 -0.11156771E-03
     ROW  3
 -0.11579008E+00-0.60605565E-01 0.53577882E-01-0.40371025E-01-0.26044277E-02
 -0.77125431E-05
     ROW  4
  0.34462481E-02-0.12185658E-01-0.40371025E-01 0.22315866E-01-0.29460086E-01
 -0.14498076E-02
     ROW  5
 -0.14658967E-02-0.82053417E-04-0.26044280E-02-0.29460086E-01 0.95465795E-02
 -0.23457141E-01
     ROW  6
  0.27609968E-04-0.11156771E-03-0.77125253E-05-0.14498078E-02-0.23457141E-01
  0.48691943E-02
 eigenphases
 -0.4103738E+00 -0.6553156E-01 -0.2547138E-01  0.1085254E-01  0.4543263E-01
  0.1119982E+00
 eigenphase sum-0.333093E+00  scattering length=   1.27620
 eps+pi 0.280850E+01  eps+2*pi 0.595009E+01

Iter =   8 c.s. =      8.55915301 angs^2  rmsk=     0.00000000
Time Now =        76.9347  Delta time =        33.4065 End ScatStab
+ Data Record ScatContSym - 'A2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        77.0560  Delta time =         0.1213 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
No asymptotic partial waves with this value of LMaxK

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        77.1771  Delta time =         0.1211 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A2
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        77.2988  Delta time =         0.1216 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    8
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   12
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        77.3338  Delta time =         0.0350 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67068743E+02
 i =  2  lval =   2  stpote =  0.47789035E+00
 i =  3  lval =   3  stpote = -0.21950784E-14
 i =  4  lval =   3  stpote =  0.11268054E+01
Number of asymptotic regions =     204
Final point in integration =   0.35655203E+04
Iter =   1 c.s. =      0.00268202 angs^2  rmsk=     0.00529243
Iter =   2 c.s. =      0.00268202 angs^2  rmsk=     0.00000000
Iter =   3 c.s. =      0.00268202 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.52924328E-02
 eigenphases
  0.5292383E-02
 eigenphase sum 0.529238E-02  scattering length=  -0.02761
 eps+pi 0.314689E+01  eps+2*pi 0.628848E+01

Iter =   3 c.s. =      0.00268202 angs^2  rmsk=     0.00000000
Time Now =        81.5533  Delta time =         4.2195 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        81.6741  Delta time =         0.1208 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    8
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   12
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        81.6876  Delta time =         0.0135 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67067410E+02
 i =  2  lval =   2  stpote =  0.47788903E+00
 i =  3  lval =   3  stpote = -0.19731479E-14
 i =  4  lval =   3  stpote =  0.11269214E+01
Number of asymptotic regions =     204
Final point in integration =   0.25265086E+04
Iter =   1 c.s. =      0.00416519 angs^2  rmsk=     0.00932760
Iter =   2 c.s. =      0.00416519 angs^2  rmsk=     0.00000000
Iter =   3 c.s. =      0.00416519 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.93275989E-02
 eigenphases
  0.9327328E-02
 eigenphase sum 0.932733E-02  scattering length=  -0.03441
 eps+pi 0.315092E+01  eps+2*pi 0.629251E+01

Iter =   3 c.s. =      0.00416519 angs^2  rmsk=     0.00000000
Time Now =        85.8302  Delta time =         4.1426 End ScatStab
+ Data Record ScatContSym - 'B2'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        85.9512  Delta time =         0.1210 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    8
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   12
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        85.9646  Delta time =         0.0134 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67068743E+02
 i =  2  lval =   2  stpote =  0.47789035E+00
 i =  3  lval =   3  stpote = -0.21950784E-14
 i =  4  lval =   3  stpote =  0.11268054E+01
Number of asymptotic regions =     204
Final point in integration =   0.35655203E+04
Iter =   1 c.s. =      0.00268202 angs^2  rmsk=     0.00529243
Iter =   2 c.s. =      0.00268202 angs^2  rmsk=     0.00000000
Iter =   3 c.s. =      0.00268202 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.52924328E-02
 eigenphases
  0.5292383E-02
 eigenphase sum 0.529238E-02  scattering length=  -0.02761
 eps+pi 0.314689E+01  eps+2*pi 0.628848E+01

Iter =   3 c.s. =      0.00268202 angs^2  rmsk=     0.00000000
Time Now =        90.1334  Delta time =         4.1688 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        90.2543  Delta time =         0.1209 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B2
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     1
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    8
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   12
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        90.2677  Delta time =         0.0134 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67067410E+02
 i =  2  lval =   2  stpote =  0.47788903E+00
 i =  3  lval =   3  stpote = -0.19731479E-14
 i =  4  lval =   3  stpote =  0.11269214E+01
Number of asymptotic regions =     204
Final point in integration =   0.25265086E+04
Iter =   1 c.s. =      0.00416519 angs^2  rmsk=     0.00932760
Iter =   2 c.s. =      0.00416519 angs^2  rmsk=     0.00000000
Iter =   3 c.s. =      0.00416519 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.93275989E-02
 eigenphases
  0.9327328E-02
 eigenphase sum 0.932733E-02  scattering length=  -0.03441
 eps+pi 0.315092E+01  eps+2*pi 0.629251E+01

Iter =   3 c.s. =      0.00416519 angs^2  rmsk=     0.00000000
Time Now =        94.2333  Delta time =         3.9656 End ScatStab
+ Data Record ScatContSym - 'P'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =        94.3544  Delta time =         0.1212 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =P
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        94.3677  Delta time =         0.0132 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67068743E+02
 i =  2  lval =   2  stpote =  0.47789035E+00
 i =  3  lval =   3  stpote = -0.21950784E-14
 i =  4  lval =   3  stpote =  0.11268054E+01
Number of asymptotic regions =     204
Final point in integration =   0.35655203E+04
Iter =   1 c.s. =      5.02589582 angs^2  rmsk=     0.04681538
Iter =   2 c.s. =      5.22463127 angs^2  rmsk=     0.00111484
Iter =   3 c.s. =      4.51574600 angs^2  rmsk=     0.00439932
Iter =   4 c.s. =      5.47113360 angs^2  rmsk=     0.00556679
Iter =   5 c.s. =      5.47196200 angs^2  rmsk=     0.00000699
Iter =   6 c.s. =      5.47163873 angs^2  rmsk=     0.00000170
Iter =   7 c.s. =      5.47164302 angs^2  rmsk=     0.00000006
Iter =   8 c.s. =      5.47164301 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.21429697E+00-0.58489759E-01 0.11372556E-02 0.28774612E-04-0.39471792E-04
     ROW  2
 -0.58489758E-01 0.38955689E-01-0.37497059E-01-0.13926911E-02 0.69965356E-05
     ROW  3
  0.11372553E-02-0.37497059E-01 0.11341240E-01-0.28494447E-01-0.86324626E-03
     ROW  4
  0.28774634E-04-0.13926914E-02-0.28494447E-01 0.45409168E-02-0.22992753E-01
     ROW  5
 -0.39471796E-04 0.69965425E-05-0.86324641E-03-0.22992753E-01 0.21935152E-02
 eigenphases
 -0.3901742E-01 -0.7742588E-02  0.2593258E-01  0.5941289E-01  0.2286189E+00
 eigenphase sum 0.267204E+00  scattering length=  -1.42801
 eps+pi 0.340880E+01  eps+2*pi 0.655039E+01

Iter =   8 c.s. =      5.47164301 angs^2  rmsk=     0.00000000
Time Now =       124.7882  Delta time =        30.4206 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       124.9092  Delta time =         0.1209 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =P
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    21
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       124.9225  Delta time =         0.0134 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67067410E+02
 i =  2  lval =   2  stpote =  0.47788903E+00
 i =  3  lval =   3  stpote = -0.19731479E-14
 i =  4  lval =   3  stpote =  0.11269214E+01
Number of asymptotic regions =     204
Final point in integration =   0.25265086E+04
Iter =   1 c.s. =      4.41534574 angs^2  rmsk=     0.06323189
Iter =   2 c.s. =      4.87232828 angs^2  rmsk=     0.00434942
Iter =   3 c.s. =      3.50197282 angs^2  rmsk=     0.01446392
Iter =   4 c.s. =      5.39410555 angs^2  rmsk=     0.01785794
Iter =   5 c.s. =      5.40049014 angs^2  rmsk=     0.00007634
Iter =   6 c.s. =      5.39999229 angs^2  rmsk=     0.00000402
Iter =   7 c.s. =      5.39999733 angs^2  rmsk=     0.00000009
Iter =   8 c.s. =      5.39999732 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.31602081E+00-0.78063979E-01 0.12495059E-01-0.28871694E-03 0.15603069E-04
     ROW  2
 -0.78063978E-01 0.75989442E-01-0.40582531E-01-0.20228323E-02-0.17092422E-04
     ROW  3
  0.12495059E-01-0.40582531E-01 0.25993598E-01-0.28541930E-01-0.12585159E-02
     ROW  4
 -0.28871689E-03-0.20228325E-02-0.28541930E-01 0.10167517E-01-0.22976523E-01
     ROW  5
  0.15603057E-04-0.17092412E-04-0.12585160E-02-0.22976523E-01 0.50986793E-02
 eigenphases
 -0.2916745E-01  0.4007731E-02  0.3734005E-01  0.7994326E-01  0.3286047E+00
 eigenphase sum 0.420728E+00  scattering length=  -1.65045
 eps+pi 0.356232E+01  eps+2*pi 0.670391E+01

Iter =   8 c.s. =      5.39999732 angs^2  rmsk=     0.00000000
Time Now =       155.1188  Delta time =        30.1962 End ScatStab
+ Data Record ScatContSym - 'D'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       155.2401  Delta time =         0.1213 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =D
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   17
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       155.2535  Delta time =         0.0134 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67068743E+02
 i =  2  lval =   2  stpote =  0.47789035E+00
 i =  3  lval =   3  stpote = -0.21950784E-14
 i =  4  lval =   3  stpote =  0.11268054E+01
Number of asymptotic regions =     204
Final point in integration =   0.35655203E+04
Iter =   1 c.s. =      0.64793315 angs^2  rmsk=     0.02060389
Iter =   2 c.s. =      0.64968759 angs^2  rmsk=     0.00004367
Iter =   3 c.s. =      0.64968683 angs^2  rmsk=     0.00000002
Iter =   4 c.s. =      0.64968683 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.50778712E-01-0.29630081E-01-0.52917335E-03 0.21323374E-04
     ROW  2
 -0.29630081E-01 0.14619715E-01-0.25472015E-01-0.64205631E-03
     ROW  3
 -0.52917355E-03-0.25472015E-01 0.56030271E-02-0.21510079E-01
     ROW  4
  0.21323378E-04-0.64205644E-03-0.21510079E-01 0.26303354E-02
 eigenphases
 -0.2941076E-01  0.9659991E-03  0.3187830E-01  0.7008098E-01
 eigenphase sum 0.735145E-01  scattering length=  -0.38418
 eps+pi 0.321511E+01  eps+2*pi 0.635670E+01

Iter =   4 c.s. =      0.64968683 angs^2  rmsk=     0.00000000
Time Now =       167.7960  Delta time =        12.5425 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       167.9168  Delta time =         0.1208 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =D
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    20
Number of asymptotic solutions on the right (NAsymR) =     4
Number of asymptotic solutions on the left (NAsymL) =     4
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   17
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       167.9303  Delta time =         0.0135 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67067410E+02
 i =  2  lval =   2  stpote =  0.47788903E+00
 i =  3  lval =   3  stpote = -0.19731479E-14
 i =  4  lval =   3  stpote =  0.11269214E+01
Number of asymptotic regions =     204
Final point in integration =   0.25265086E+04
Iter =   1 c.s. =      0.66142540 angs^2  rmsk=     0.02952579
Iter =   2 c.s. =      0.67046990 angs^2  rmsk=     0.00024544
Iter =   3 c.s. =      0.67046583 angs^2  rmsk=     0.00000011
Iter =   4 c.s. =      0.67046583 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.95018105E-01-0.30247695E-01-0.15651291E-03 0.61479432E-04
     ROW  2
 -0.30247695E-01 0.29861273E-01-0.25428649E-01-0.86649628E-03
     ROW  3
 -0.15651307E-03-0.25428649E-01 0.11803785E-01-0.21495061E-01
     ROW  4
  0.61479444E-04-0.86649641E-03-0.21495061E-01 0.57643076E-02
 eigenphases
 -0.2118297E-01  0.1202128E-01  0.4372361E-01  0.1074449E+00
 eigenphase sum 0.142007E+00  scattering length=  -0.52735
 eps+pi 0.328360E+01  eps+2*pi 0.642519E+01

Iter =   4 c.s. =      0.67046583 angs^2  rmsk=     0.00000000
Time Now =       179.9160  Delta time =        11.9857 End ScatStab
+ Data Record ScatContSym - 'F'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       180.0372  Delta time =         0.1211 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =F
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    19
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       180.0507  Delta time =         0.0136 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67068743E+02
 i =  2  lval =   2  stpote =  0.47789035E+00
 i =  3  lval =   3  stpote = -0.21950784E-14
 i =  4  lval =   3  stpote =  0.11268054E+01
Number of asymptotic regions =     204
Final point in integration =   0.35655203E+04
Iter =   1 c.s. =      0.17859662 angs^2  rmsk=     0.01440376
Iter =   2 c.s. =      0.17859635 angs^2  rmsk=     0.00000003
Iter =   3 c.s. =      0.17859635 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.18303893E-01-0.19531067E-01-0.32418608E-03
     ROW  2
 -0.19531067E-01 0.72139516E-02-0.18787302E-01
     ROW  3
 -0.32418616E-03-0.18787302E-01 0.33283471E-02
 eigenphases
 -0.1905200E-01  0.1059101E-01  0.3729179E-01
 eigenphase sum 0.288308E-01  scattering length=  -0.15044
 eps+pi 0.317042E+01  eps+2*pi 0.631202E+01

Iter =   3 c.s. =      0.17859635 angs^2  rmsk=     0.00000000
Time Now =       187.8996  Delta time =         7.8489 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       188.0206  Delta time =         0.1210 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =F
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    19
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     3
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       188.0339  Delta time =         0.0133 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67067410E+02
 i =  2  lval =   2  stpote =  0.47788903E+00
 i =  3  lval =   3  stpote = -0.19731479E-14
 i =  4  lval =   3  stpote =  0.11269214E+01
Number of asymptotic regions =     204
Final point in integration =   0.25265086E+04
Iter =   1 c.s. =      0.13650934 angs^2  rmsk=     0.01781651
Iter =   2 c.s. =      0.13650795 angs^2  rmsk=     0.00000016
Iter =   3 c.s. =      0.13650796 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.33596388E-01-0.19677332E-01-0.26522567E-03
     ROW  2
 -0.19677332E-01 0.14181968E-01-0.18792444E-01
     ROW  3
 -0.26522575E-03-0.18792444E-01 0.67920206E-02
 eigenphases
 -0.1261434E-01  0.1874549E-01  0.4839987E-01
 eigenphase sum 0.545310E-01  scattering length=  -0.20134
 eps+pi 0.319612E+01  eps+2*pi 0.633772E+01

Iter =   3 c.s. =      0.13650796 angs^2  rmsk=     0.00000000
Time Now =       195.6202  Delta time =         7.5863 End ScatStab
+ Data Record ScatContSym - 'G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.50000000E+00 eV (  0.18374663E-01 AU)
Time Now =       195.7418  Delta time =         0.1216 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =G
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    16
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   12
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       195.7560  Delta time =         0.0142 Energy independent setup

Compute solution for E =    0.5000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67068743E+02
 i =  2  lval =   2  stpote =  0.47789035E+00
 i =  3  lval =   3  stpote = -0.21950784E-14
 i =  4  lval =   3  stpote =  0.11268054E+01
Number of asymptotic regions =     204
Final point in integration =   0.35655203E+04
Iter =   1 c.s. =      0.04772609 angs^2  rmsk=     0.01116483
Iter =   2 c.s. =      0.04772609 angs^2  rmsk=     0.00000000
Iter =   3 c.s. =      0.04772609 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.90560641E-02-0.14117668E-01
     ROW  2
 -0.14117668E-01 0.42408266E-02
 eigenphases
 -0.7672898E-02  0.2096687E-01
 eigenphase sum 0.132940E-01  scattering length=  -0.06935
 eps+pi 0.315489E+01  eps+2*pi 0.629648E+01

Iter =   3 c.s. =      0.04772609 angs^2  rmsk=     0.00000000
Time Now =       202.1663  Delta time =         6.4103 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.11000000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =       202.2873  Delta time =         0.1210 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =G
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    55
Number of partial waves (np) =    16
Number of asymptotic solutions on the right (NAsymR) =     2
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   12
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       202.3004  Delta time =         0.0131 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.67067410E+02
 i =  2  lval =   2  stpote =  0.47788903E+00
 i =  3  lval =   3  stpote = -0.19731479E-14
 i =  4  lval =   3  stpote =  0.11269214E+01
Number of asymptotic regions =     204
Final point in integration =   0.25265086E+04
Iter =   1 c.s. =      0.03501776 angs^2  rmsk=     0.01352707
Iter =   2 c.s. =      0.03501767 angs^2  rmsk=     0.00000003
Iter =   3 c.s. =      0.03501767 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.16269007E-01-0.14182213E-01
     ROW  2
 -0.14182212E-01 0.80606386E-02
 eigenphases
 -0.2599300E-02  0.2692244E-01
 eigenphase sum 0.243231E-01  scattering length=  -0.08974
 eps+pi 0.316592E+01  eps+2*pi 0.630751E+01

Iter =   3 c.s. =      0.03501767 angs^2  rmsk=     0.00000000
Time Now =       208.6461  Delta time =         6.3457 End ScatStab

+ Command TotalCrossSection
+
Symmetry S -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       6.117851      -0.116464
       1.000000       8.559153      -0.333093
Symmetry A2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.000000       0.000000
       1.000000       0.000000       0.000000
Symmetry B1 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.002682       0.005292
       1.000000       0.004165       0.009327
Symmetry B2 -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.002682       0.005292
       1.000000       0.004165       0.009327
Symmetry P -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       5.471643       0.267204
       1.000000       5.399997       0.420728
Symmetry D -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.649687       0.073515
       1.000000       0.670466       0.142007
Symmetry F -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.178596       0.028831
       1.000000       0.136508       0.054531
Symmetry G -
        E (eV)      XS(angs^2)    EPS(radians)
       0.500000       0.047726       0.013294
       1.000000       0.035018       0.024323

 Total Cross Sections

 Energy      Total Cross Section
   0.50000    18.81852
   1.00000    21.05146
Time Now =       208.6576  Delta time =         0.0115 Finalize