----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test30
#
# electron scattering from H2O in A1 symmetry
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  12    # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   8.5    # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'A1'  # Scattering symmetry
  LMaxK   3     # Maximum l in the K matirx
  ScatEng 20.0      # list of scattering energies (in eV)
  PCutRd 1.0e-8
  GrnType 1

   # do the scattering with the center of mass at the origin
Convert '/home/lucchese/ePolyScatE/tests/test30.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
   # do the scattering with the O at the origin
ECenter 0.0 0.0 0.116130
Convert '/home/lucchese/ePolyScatE/tests/test30.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
Exit
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 8.5
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3
+ Data Record ScatEng - 20.0
+ Data Record PCutRd - 1.0e-8
+ Data Record GrnType - 1

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test30.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.1528  Delta time =         0.1528 End g03cnv

Atoms found    3
Z =  1 r =   0.0000000000   1.4351714097  -0.8778174735
Z =  8 r =   0.0000000000   0.0000000000   0.2194538959
Z =  1 r =   0.0000000000  -1.4351714097  -0.8778174735

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  C2v
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =         0.2414  Delta time =         0.0886 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   8  0.21945
  2  0.00000  0.85308 -0.52178   1  1.68234
  3  0.00000 -0.85308 -0.52178   1  1.68234
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  1.00000  0.00000  0.00000
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12  3  3  3
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  2
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  2
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         66       1  1  1
 A2        1         2         47      -1 -1  1
 B1        1         3         56      -1  1 -1
 B2        1         4         59       1 -1 -1
Time Now =         1.1703  Delta time =         0.9289 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =         3.9571  Delta time =         2.7868 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     0.21945  Alpha Max = 0.15330E+05
    3  Center at =     1.68234  Alpha Max = 0.33870E+02

Generated Grid

  irg  nin  ntot      step          R end
    1    8     8    0.57419E-02     0.04594
    2    8    16    0.45400E-02     0.08226
    3    8    24    0.35897E-02     0.11097
    4    8    32    0.28383E-02     0.13368
    5    8    40    0.22442E-02     0.15163
    6    8    48    0.17745E-02     0.16583
    7    8    56    0.14031E-02     0.17705
    8    8    64    0.11094E-02     0.18593
    9    8    72    0.87716E-03     0.19295
   10    8    80    0.69356E-03     0.19849
   11    8    88    0.54839E-03     0.20288
   12    8    96    0.43360E-03     0.20635
   13    8   104    0.34284E-03     0.20909
   14    8   112    0.27108E-03     0.21126
   15    8   120    0.21434E-03     0.21298
   16    8   128    0.16947E-03     0.21433
   17    8   136    0.13400E-03     0.21540
   18    8   144    0.10595E-03     0.21625
   19    8   152    0.86075E-04     0.21694
   20   24   176    0.85135E-04     0.21898
   21    8   184    0.58748E-04     0.21945
   22   32   216    0.85135E-04     0.22218
   23    8   224    0.90811E-04     0.22290
   24    8   232    0.11503E-03     0.22382
   25    8   240    0.14570E-03     0.22499
   26    8   248    0.18455E-03     0.22647
   27    8   256    0.23377E-03     0.22834
   28    8   264    0.29611E-03     0.23071
   29    8   272    0.37507E-03     0.23371
   30    8   280    0.47509E-03     0.23751
   31    8   288    0.60178E-03     0.24232
   32    8   296    0.76225E-03     0.24842
   33    8   304    0.96552E-03     0.25614
   34    8   312    0.12230E-02     0.26593
   35    8   320    0.15491E-02     0.27832
   36    8   328    0.19622E-02     0.29402
   37    8   336    0.24855E-02     0.31390
   38    8   344    0.31483E-02     0.33909
   39    8   352    0.39878E-02     0.37099
   40    8   360    0.50512E-02     0.41140
   41    8   368    0.63982E-02     0.46259
   42    8   376    0.81044E-02     0.52742
   43    8   384    0.10266E-01     0.60955
   44   64   448    0.10990E-01     1.31289
   45    8   456    0.96666E-02     1.39022
   46    8   464    0.76432E-02     1.45137
   47    8   472    0.60433E-02     1.49972
   48    8   480    0.47784E-02     1.53794
   49    8   488    0.37782E-02     1.56817
   50    8   496    0.29874E-02     1.59207
   51    8   504    0.23621E-02     1.61096
   52    8   512    0.18676E-02     1.62590
   53   24   536    0.18112E-02     1.66937
   54    8   544    0.16213E-02     1.68234
   55   32   576    0.18112E-02     1.74030
   56    8   584    0.19320E-02     1.75576
   57    8   592    0.24472E-02     1.77534
   58    8   600    0.30997E-02     1.80013
   59    8   608    0.39263E-02     1.83154
   60    8   616    0.49734E-02     1.87133
   61    8   624    0.62996E-02     1.92173
   62    8   632    0.79795E-02     1.98556
   63    8   640    0.10107E-01     2.06642
   64    8   648    0.12803E-01     2.16884
   65   64   712    0.13657E-01     3.04287
   66   64   776    0.13657E-01     3.91689
   67   64   840    0.13657E-01     4.79092
   68   64   904    0.13657E-01     5.66494
   69   64   968    0.13657E-01     6.53897
   70   64  1032    0.13657E-01     7.41299
   71   64  1096    0.13657E-01     8.28702
   72    8  1104    0.13657E-01     8.39627
   73    8  1112    0.12966E-01     8.50000
Time Now =         3.9585  Delta time =         0.0014 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.00574  to (    7)         0.04019
    2 L =    3  from (    8)         0.04594  to (   15)         0.07772
    3 L =    7  from (   16)         0.08226  to (   23)         0.10738
    4 L =   11  from (   24)         0.11097  to (   31)         0.13084
    5 L =   15  from (   32)         0.13368  to ( 1104)         8.39627
    6 L =   12  from ( 1105)         8.40924  to ( 1112)         8.50000

For analytic integrations ntheta =     32  nphi =     16
For numerical integrations ntheti =     64 nphii =     32
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      96
Proc id =    1  Last grid point =     168
Proc id =    2  Last grid point =     240
Proc id =    3  Last grid point =     312
Proc id =    4  Last grid point =     384
Proc id =    5  Last grid point =     456
Proc id =    6  Last grid point =     528
Proc id =    7  Last grid point =     600
Proc id =    8  Last grid point =     664
Proc id =    9  Last grid point =     728
Proc id =   10  Last grid point =     792
Proc id =   11  Last grid point =     856
Proc id =   12  Last grid point =     920
Proc id =   13  Last grid point =     984
Proc id =   14  Last grid point =    1048
Proc id =   15  Last grid point =    1112
Time Now =         4.3394  Delta time =         0.3809 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   36  r =   0.24232
     2  A1    1 at max irg =   52  r =   0.96122
     3  B2    1 at max irg =   54  r =   1.13705
     4  A1    1 at max irg =   53  r =   1.04914
     5  B1    1 at max irg =   51  r =   0.87330

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 B2    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A1    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 B1    1
     5  1.0000000000
Number of orbital groups and degeneracis are         5
  1  1  1  1  1
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  2  2  2
Time Now =         4.8962  Delta time =         0.5568 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  0.99998422
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999592
Orbital     3 of  B2    1 symmetry normalization integral =  0.99999088
Orbital     4 of  A1    1 symmetry normalization integral =  0.99999366
Orbital     5 of  B1    1 symmetry normalization integral =  0.99999314
Time Now =         6.5857  Delta time =         1.6895 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =         6.6065  Delta time =         0.0208 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =         6.6137  Delta time =         0.0072 Electronic part
Time Now =         6.6192  Delta time =         0.0054 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         6.6861  Delta time =         0.0670 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =         6.7671  Delta time =         0.0810 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    53
Number of partial waves (np) =    66
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   49
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =         6.7994  Delta time =         0.0322 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.43266575E+02
 i =  2  lval =   2  stpote =  0.16113532E+01
 i =  3  lval =   3  stpote =  0.26830473E+01
 i =  4  lval =   3  stpote =  0.59108548E+00
Number of asymptotic regions =     495
Final point in integration =   0.10345282E+04
Iter =   1 c.s. =      4.85842991 angs^2  rmsk=     0.23743533
Iter =   2 c.s. =      5.28081500 angs^2  rmsk=     0.03141435
Iter =   3 c.s. =      5.28598195 angs^2  rmsk=     0.00129655
Iter =   4 c.s. =      5.28625919 angs^2  rmsk=     0.00003699
Iter =   5 c.s. =      5.28624820 angs^2  rmsk=     0.00000109
Iter =   6 c.s. =      5.28624802 angs^2  rmsk=     0.00000009
Iter =   7 c.s. =      5.28624803 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.15035008E+00, 0.67004356E+00) ( 0.37075291E-01, 0.27920682E+00)
  (-0.31486082E+00, 0.13849710E-01) ( 0.55237297E-01, 0.19770012E-01)
  ( 0.98385599E-01, 0.15880154E-01) ( 0.77382323E-01,-0.47073920E-02)
     ROW  2
  ( 0.37075586E-01, 0.27920806E+00) (-0.27474768E+00, 0.47617853E+00)
  ( 0.13026064E-01, 0.10849613E+00) (-0.27655930E+00, 0.43729070E-01)
  (-0.46467196E-01,-0.21198400E-01) (-0.36583630E-01, 0.70849933E-02)
     ROW  3
  (-0.31486116E+00, 0.13849946E-01) ( 0.13025850E-01, 0.10849564E+00)
  ( 0.26688016E+00, 0.60392150E+00) ( 0.36208924E-01, 0.14541811E+00)
  (-0.18842486E-01,-0.14836477E+00) ( 0.14357826E-01,-0.10260392E+00)
     ROW  4
  ( 0.55237539E-01, 0.19770220E-01) (-0.27655923E+00, 0.43729055E-01)
  ( 0.36209055E-01, 0.14541820E+00) ( 0.33353205E+00, 0.32823562E+00)
  ( 0.10980190E-01,-0.45471726E-02) (-0.52768630E-01,-0.40554322E-01)
     ROW  5
  ( 0.98385789E-01, 0.15880167E-01) (-0.46467172E-01,-0.21198258E-01)
  (-0.18842446E-01,-0.14836476E+00) ( 0.10980215E-01,-0.45471366E-02)
  ( 0.16728906E+00, 0.83998204E-01) ( 0.55462445E-01, 0.51014204E-01)
     ROW  6
  ( 0.77382462E-01,-0.47074194E-02) (-0.36583590E-01, 0.70850957E-02)
  ( 0.14357856E-01,-0.10260392E+00) (-0.52768604E-01,-0.40554300E-01)
  ( 0.55462445E-01, 0.51014205E-01) ( 0.15472678E+00, 0.64431138E-01)
 eigenphases
 -0.1260354E+01 -0.5362202E+00  0.9934941E-01  0.2381830E+00  0.5577328E+00
  0.9904094E+00
 eigenphase sum 0.891005E-01  scattering length=  -0.07368
 eps+pi 0.323069E+01  eps+2*pi 0.637229E+01

Iter =   7 c.s. =      5.28624803 angs^2  rmsk=     0.00000000
Time Now =        61.3427  Delta time =        54.5434 End ScatStab
+ Data Record ECenter - 0.0 0.0 0.116130

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test30.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.1161300000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =        61.3515  Delta time =         0.0087 End g03cnv

Atoms found    3
Z =  1 r =   0.0000000000   1.4351714097  -1.0972713694
Z =  8 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 r =   0.0000000000  -1.4351714097  -1.0972713694

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  C2v
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =        61.3520  Delta time =         0.0005 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.00000  0.79441 -0.60738   1  1.80658
  3  0.00000 -0.79441 -0.60738   1  1.80658
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  1.00000  0.00000  0.00000
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 -1 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  2
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  2
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         60       1  1  1
 A2        1         2         44      -1 -1  1
 B1        1         3         50      -1  1 -1
 B2        1         4         53       1 -1 -1
Time Now =        61.9136  Delta time =         0.5616 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =        64.6428  Delta time =         2.7292 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.15330E+05
    2  Center at =     1.80658  Alpha Max = 0.33870E+02

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.85135E-04     0.00272
    2    8    40    0.90811E-04     0.00345
    3    8    48    0.11503E-03     0.00437
    4    8    56    0.14570E-03     0.00554
    5    8    64    0.18455E-03     0.00701
    6    8    72    0.23377E-03     0.00888
    7    8    80    0.29611E-03     0.01125
    8    8    88    0.37507E-03     0.01425
    9    8    96    0.47509E-03     0.01805
   10    8   104    0.60178E-03     0.02287
   11    8   112    0.76225E-03     0.02897
   12    8   120    0.96552E-03     0.03669
   13    8   128    0.12230E-02     0.04647
   14    8   136    0.15491E-02     0.05887
   15    8   144    0.19622E-02     0.07456
   16    8   152    0.24855E-02     0.09445
   17    8   160    0.31483E-02     0.11963
   18    8   168    0.39878E-02     0.15154
   19    8   176    0.50512E-02     0.19195
   20    8   184    0.63982E-02     0.24313
   21    8   192    0.81044E-02     0.30797
   22    8   200    0.10266E-01     0.39009
   23   64   264    0.10990E-01     1.09344
   24   32   296    0.10990E-01     1.44511
   25    8   304    0.94576E-02     1.52077
   26    8   312    0.74780E-02     1.58059
   27    8   320    0.59127E-02     1.62790
   28    8   328    0.46751E-02     1.66530
   29    8   336    0.36965E-02     1.69487
   30    8   344    0.29228E-02     1.71825
   31    8   352    0.23110E-02     1.73674
   32    8   360    0.18273E-02     1.75136
   33   24   384    0.18112E-02     1.79483
   34    8   392    0.14688E-02     1.80658
   35   32   424    0.18112E-02     1.86454
   36    8   432    0.19320E-02     1.87999
   37    8   440    0.24472E-02     1.89957
   38    8   448    0.30997E-02     1.92437
   39    8   456    0.39263E-02     1.95578
   40    8   464    0.49734E-02     1.99556
   41    8   472    0.62996E-02     2.04596
   42    8   480    0.79795E-02     2.10980
   43    8   488    0.10107E-01     2.19066
   44    8   496    0.12803E-01     2.29308
   45   64   560    0.13657E-01     3.16710
   46   64   624    0.13657E-01     4.04113
   47   64   688    0.13657E-01     4.91515
   48   64   752    0.13657E-01     5.78918
   49   64   816    0.13657E-01     6.66320
   50   64   880    0.13657E-01     7.53723
   51   64   944    0.13657E-01     8.41125
   52    8   952    0.11093E-01     8.50000
Time Now =        64.6436  Delta time =         0.0007 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.00009  to (    7)         0.00060
    2 L =    3  from (    8)         0.00068  to (   39)         0.00336
    3 L =    7  from (   40)         0.00345  to (  151)         0.09196
    4 L =   11  from (  152)         0.09445  to (  199)         0.37983
    5 L =   15  from (  200)         0.39009  to (  944)         8.41125
    6 L =   12  from (  945)         8.42235  to (  952)         8.50000

For analytic integrations ntheta =     32  nphi =     16
For numerical integrations ntheti =     64 nphii =     32
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     176
Proc id =    1  Last grid point =     240
Proc id =    2  Last grid point =     296
Proc id =    3  Last grid point =     352
Proc id =    4  Last grid point =     408
Proc id =    5  Last grid point =     464
Proc id =    6  Last grid point =     520
Proc id =    7  Last grid point =     568
Proc id =    8  Last grid point =     616
Proc id =    9  Last grid point =     664
Proc id =   10  Last grid point =     712
Proc id =   11  Last grid point =     760
Proc id =   12  Last grid point =     808
Proc id =   13  Last grid point =     856
Proc id =   14  Last grid point =     904
Proc id =   15  Last grid point =     952
Time Now =        64.9651  Delta time =         0.3215 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   20  r =   0.11963
     2  A1    1 at max irg =   31  r =   0.91760
     3  B2    1 at max irg =   33  r =   1.09344
     4  A1    1 at max irg =   31  r =   0.91760
     5  B1    1 at max irg =   31  r =   0.91760

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 B2    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A1    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 B1    1
     5  1.0000000000
Number of orbital groups and degeneracis are         5
  1  1  1  1  1
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  2  2  2
Time Now =        65.3633  Delta time =         0.3982 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999994
Orbital     2 of  A1    1 symmetry normalization integral =  0.99999520
Orbital     3 of  B2    1 symmetry normalization integral =  0.99998772
Orbital     4 of  A1    1 symmetry normalization integral =  0.99999214
Orbital     5 of  B1    1 symmetry normalization integral =  0.99999301
Time Now =        66.6871  Delta time =         1.3238 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     10.00000000
Time Now =        66.7017  Delta time =         0.0146 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.10000000E+02 facnorm =  0.10000000E+01
Time Now =        66.7081  Delta time =         0.0065 Electronic part
Time Now =        66.7115  Delta time =         0.0034 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =        66.7487  Delta time =         0.0372 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E+02 eV (  0.73498652E+00 AU)
Time Now =        66.7937  Delta time =         0.0450 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    65
Number of partial waves (np) =    60
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   49
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    3
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        66.8491  Delta time =         0.0554 Energy independent setup

Compute solution for E =   20.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.43277094E+02
 i =  2  lval =   2  stpote =  0.16582649E+01
 i =  3  lval =   3  stpote =  0.26794535E+01
 i =  4  lval =   3  stpote =  0.40184624E-01
Number of asymptotic regions =     753
Final point in integration =   0.10490384E+04
Iter =   1 c.s. =      4.80263744 angs^2  rmsk=     0.23606808
Iter =   2 c.s. =      5.22329910 angs^2  rmsk=     0.03133491
Iter =   3 c.s. =      5.22949605 angs^2  rmsk=     0.00113093
Iter =   4 c.s. =      5.22944943 angs^2  rmsk=     0.00003605
Iter =   5 c.s. =      5.22943651 angs^2  rmsk=     0.00000079
Iter =   6 c.s. =      5.22943621 angs^2  rmsk=     0.00000005
Iter =   7 c.s. =      5.22943621 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.14370427E+00, 0.74833604E+00) ( 0.15855090E-01, 0.23833079E+00)
  (-0.29876685E+00, 0.32095330E-01) ( 0.24673131E-01,-0.11360797E-01)
  ( 0.11901367E+00, 0.87831893E-02) ( 0.65886948E-01,-0.55067086E-02)
     ROW  2
  ( 0.15855087E-01, 0.23833079E+00) (-0.34847570E+00, 0.40585520E+00)
  ( 0.59131358E-01, 0.11969314E+00) (-0.19445249E+00, 0.26406166E-01)
  (-0.63344314E-01,-0.33965500E-01) (-0.23143985E-01,-0.34972600E-02)
     ROW  3
  (-0.29876685E+00, 0.32095331E-01) ( 0.59131359E-01, 0.11969315E+00)
  ( 0.26216752E+00, 0.56881463E+00) ( 0.34662939E-01, 0.11455885E+00)
  (-0.31069102E-01,-0.19471569E+00) ( 0.13062494E-01,-0.11228137E+00)
     ROW  4
  ( 0.24673130E-01,-0.11360796E-01) (-0.19445249E+00, 0.26406166E-01)
  ( 0.34662938E-01, 0.11455885E+00) ( 0.38102286E+00, 0.30345172E+00)
  ( 0.20207167E-01,-0.78415268E-02) (-0.77909697E-01,-0.73785037E-01)
     ROW  5
  ( 0.11901367E+00, 0.87831900E-02) (-0.63344314E-01,-0.33965500E-01)
  (-0.31069102E-01,-0.19471569E+00) ( 0.20207167E-01,-0.78415265E-02)
  ( 0.15281799E+00, 0.11051579E+00) ( 0.50235648E-01, 0.58403945E-01)
     ROW  6
  ( 0.65886948E-01,-0.55067081E-02) (-0.23143986E-01,-0.34972597E-02)
  ( 0.13062494E-01,-0.11228137E+00) (-0.77909697E-01,-0.73785036E-01)
  ( 0.50235648E-01, 0.58403945E-01) ( 0.14859018E+00, 0.72211513E-01)
 eigenphases
 -0.1257579E+01 -0.5358482E+00  0.8017496E-01  0.2139669E+00  0.5563275E+00
  0.9878420E+00
 eigenphase sum 0.448839E-01  scattering length=  -0.03704
 eps+pi 0.318648E+01  eps+2*pi 0.632807E+01

Iter =   7 c.s. =      5.22943621 angs^2  rmsk=     0.00000000
Time Now =       129.8436  Delta time =        62.9945 End ScatStab
+ Command Exit
Time Now =       129.8458  Delta time =         0.0022 Finalize