----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test29
#
# Electron scattering from SF6 with orthogonality constraints
#
 LMax   15     # maximum l to be used for wave functions
 LMaxI  40     # maximum l value used to determine numerical angular grids
 LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
 RMax   14.0   # maximum R in inner grid
 EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 2
    16
   2.0 -1.0 1   # orbital occupation and coefficient for the K operators
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
   2.0 -1.0 1
  VCorr 'PZ'
  AsyPol
 0.25   # SwitchD, distance where switching function is down to 0.1
 7     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
16.198 # value of the spherical polarizability
 2     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 3     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 4     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 5     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 6     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 7     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 4.656 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
 ScatEng 1.0      # list of scattering energies
 FegeEng 13.29   # Energy correction used in the fege potential
 LMaxK   10    # Maximum l in the K matirx
#
Convert '/home/lucchese/ePolyScatE/tests/test29.g03' 'g03'
GetBlms
ExpOrb
GetPot
 ScatContSym 'A1G'  # Scattering symmetry
Scat
 ScatContSym 'T1G'  # Scattering symmetry
Scat
GrnType  1     # type of Green function (0 -> K matrix, 1 -> T matrix)
 ScatContSym 'A1G'  # Scattering symmetry
Scat
 ScatContSym 'T1G'  # Scattering symmetry
Scat
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 14.0
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 16 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.25 / 7 / 1 / 1 / 16.198 / 2 / 1 / 4.656 / 3 / 1 / 4.656 / 4 / 1 / 4.656 / 5 / 1 / 4.656 / 6 / 1 / 4.656 / 7 / 1
+ 4.656 / 3 / 0
+ Data Record ScatEng - 1.0
+ Data Record FegeEng - 13.29
+ Data Record LMaxK - 10

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test29.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    35  number already selected     0
Number of orbitals selected is    35
Highest orbital read in is =   35
Time Now =         0.0805  Delta time =         0.0805 End g03cnv

Atoms found    7
Z = 16 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 r =   0.0000000000   0.0000000000   2.9483998470
Z =  9 r =   0.0000000000   2.9483998470   0.0000000000
Z =  9 r =  -2.9483998470   0.0000000000   0.0000000000
Z =  9 r =   2.9483998470   0.0000000000   0.0000000000
Z =  9 r =   0.0000000000  -2.9483998470   0.0000000000
Z =  9 r =   0.0000000000   0.0000000000  -2.9483998470

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Oh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.1136  Delta time =         0.0331 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   9  2.94840   9  2.94840
  2  0.00000  1.00000  0.00000   9  2.94840   9  2.94840
  3 -1.00000  0.00000  0.00000   9  2.94840   9  2.94840
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  0.00000  1.00000  0.00000
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12  3  3  3
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Oh
LMax = =   15
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    16    19    24     2     4     3     5
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         11       1  1  1  1  1  1  1
 EG        2         4         11       1  1  1  1  1  1  1
 T1G       1         5         11      -1 -1  1  1 -1 -1  1
 T1G       2         6         11      -1  1 -1  1 -1  1 -1
 T1G       3         7         11       1 -1 -1  1  1 -1 -1
 T2G       1         8         15      -1 -1  1  1 -1 -1  1
 T2G       2         9         15      -1  1 -1  1 -1  1 -1
 T2G       3        10         15       1 -1 -1  1  1 -1 -1
 A1U       1        11          1       1  1  1 -1 -1 -1 -1
 A2U       1        12          6       1  1  1 -1 -1 -1 -1
 EU        1        13          7       1  1  1 -1 -1 -1 -1
 EU        2        14          7       1  1  1 -1 -1 -1 -1
 T1U       1        15         18      -1 -1  1 -1  1  1 -1
 T1U       2        16         18      -1  1 -1 -1  1 -1  1
 T1U       3        17         18       1 -1 -1 -1 -1  1  1
 T2U       1        18         15      -1 -1  1 -1  1  1 -1
 T2U       2        19         15      -1  1 -1 -1  1 -1  1
 T2U       3        20         15       1 -1 -1 -1 -1  1  1
Time Now =         3.6640  Delta time =         3.5504 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120      -1 -1  1  1 -1 -1  1
 B2G       1         3        120       1 -1 -1  1  1 -1 -1
 B3G       1         4        120      -1  1 -1  1 -1  1 -1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120      -1 -1  1 -1  1  1 -1
 B2U       1         7        120       1 -1 -1 -1 -1  1  1
 B3U       1         8        120      -1  1 -1 -1  1 -1  1
Time Now =         8.4921  Delta time =         4.8281 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    14.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.93413E+05
    2  Center at =     2.94840  Alpha Max = 0.11427E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.34488E-04     0.00110
    2    8    40    0.36788E-04     0.00140
    3    8    48    0.46598E-04     0.00177
    4    8    56    0.59024E-04     0.00224
    5    8    64    0.74764E-04     0.00284
    6    8    72    0.94700E-04     0.00360
    7    8    80    0.11995E-03     0.00456
    8    8    88    0.15194E-03     0.00577
    9    8    96    0.19246E-03     0.00731
   10    8   104    0.24378E-03     0.00926
   11    8   112    0.30879E-03     0.01173
   12    8   120    0.39113E-03     0.01486
   13    8   128    0.49544E-03     0.01883
   14    8   136    0.62755E-03     0.02385
   15    8   144    0.79490E-03     0.03021
   16    8   152    0.10069E-02     0.03826
   17    8   160    0.12754E-02     0.04846
   18    8   168    0.16155E-02     0.06139
   19    8   176    0.20463E-02     0.07776
   20    8   184    0.25919E-02     0.09849
   21    8   192    0.32831E-02     0.12476
   22    8   200    0.41586E-02     0.15803
   23    8   208    0.52676E-02     0.20017
   24    8   216    0.66723E-02     0.25355
   25    8   224    0.84516E-02     0.32116
   26    8   232    0.10705E-01     0.40680
   27   64   296    0.10990E-01     1.11015
   28   64   360    0.10990E-01     1.81349
   29   64   424    0.10990E-01     2.51684
   30    8   432    0.10990E-01     2.60475
   31    8   440    0.89913E-02     2.67668
   32    8   448    0.71093E-02     2.73356
   33    8   456    0.56212E-02     2.77853
   34    8   464    0.44446E-02     2.81409
   35    8   472    0.35143E-02     2.84220
   36    8   480    0.27787E-02     2.86443
   37    8   488    0.21971E-02     2.88201
   38    8   496    0.17372E-02     2.89590
   39    8   504    0.13736E-02     2.90689
   40    8   512    0.10861E-02     2.91558
   41    8   520    0.85872E-03     2.92245
   42    8   528    0.67898E-03     2.92788
   43    8   536    0.53686E-03     2.93218
   44    8   544    0.42449E-03     2.93557
   45    8   552    0.33563E-03     2.93826
   46    8   560    0.26538E-03     2.94038
   47    8   568    0.20983E-03     2.94206
   48    8   576    0.16591E-03     2.94339
   49    8   584    0.13118E-03     2.94444
   50    8   592    0.10372E-03     2.94527
   51   24   616    0.98608E-04     2.94763
   52    8   624    0.95992E-04     2.94840
   53   32   656    0.98608E-04     2.95156
   54    8   664    0.10518E-03     2.95240
   55    8   672    0.13323E-03     2.95346
   56    8   680    0.16876E-03     2.95481
   57    8   688    0.21376E-03     2.95652
   58    8   696    0.27076E-03     2.95869
   59    8   704    0.34297E-03     2.96143
   60    8   712    0.43442E-03     2.96491
   61    8   720    0.55027E-03     2.96931
   62    8   728    0.69701E-03     2.97489
   63    8   736    0.88288E-03     2.98195
   64    8   744    0.11183E-02     2.99090
   65    8   752    0.14165E-02     3.00223
   66    8   760    0.17943E-02     3.01658
   67    8   768    0.22727E-02     3.03476
   68    8   776    0.28788E-02     3.05779
   69    8   784    0.36465E-02     3.08697
   70    8   792    0.46189E-02     3.12392
   71    8   800    0.58506E-02     3.17072
   72    8   808    0.74107E-02     3.23001
   73    8   816    0.93869E-02     3.30510
   74    8   824    0.11890E-01     3.40022
   75   64   888    0.13657E-01     4.27425
   76   64   952    0.13657E-01     5.14827
   77   64  1016    0.13657E-01     6.02230
   78   64  1080    0.13657E-01     6.89632
   79   64  1144    0.13657E-01     7.77035
   80   64  1208    0.13657E-01     8.64438
   81   64  1272    0.13657E-01     9.51840
   82   64  1336    0.13657E-01    10.39243
   83   64  1400    0.13657E-01    11.26645
   84   64  1464    0.13657E-01    12.14048
   85   64  1528    0.13657E-01    13.01450
   86   64  1592    0.13657E-01    13.88853
   87    8  1600    0.13657E-01    13.99778
   88    8  1608    0.27763E-03    14.00000
Time Now =         8.4933  Delta time =         0.0012 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    5
Angular regions
    1 L =    2  from (    1)         0.00003  to (    7)         0.00024
    2 L =    3  from (    8)         0.00028  to (   71)         0.00350
    3 L =    8  from (   72)         0.00360  to (  183)         0.09590
    4 L =   15  from (  184)         0.09849  to ( 1600)        13.99778
    5 L =   12  from ( 1601)        13.99806  to ( 1608)        14.00000

For analytic integrations ntheta =     16  nphi =     16
For numerical integrations ntheti =     44 nphii =     44
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     232
Proc id =    1  Last grid point =     328
Proc id =    2  Last grid point =     424
Proc id =    3  Last grid point =     520
Proc id =    4  Last grid point =     616
Proc id =    5  Last grid point =     712
Proc id =    6  Last grid point =     808
Proc id =    7  Last grid point =     904
Proc id =    8  Last grid point =     992
Proc id =    9  Last grid point =    1080
Proc id =   10  Last grid point =    1168
Proc id =   11  Last grid point =    1256
Proc id =   12  Last grid point =    1344
Proc id =   13  Last grid point =    1432
Proc id =   14  Last grid point =    1520
Proc id =   15  Last grid point =    1608
Time Now =         8.7292  Delta time =         0.2359 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1G   1 at max irg =   21  r =   0.06139
     2  EG    1 at max irg =   80  r =   2.94998
     3  EG    2 at max irg =   80  r =   2.94998
     4  T1U   1 at max irg =   80  r =   2.94998
     5  T1U   2 at max irg =   80  r =   2.94998
     6  T1U   3 at max irg =   80  r =   2.94998
     7  A1G   1 at max irg =   80  r =   2.94998
     8  A1G   1 at max irg =   29  r =   0.40680
     9  T1U   1 at max irg =   28  r =   0.32116
    10  T1U   2 at max irg =   28  r =   0.32116
    11  T1U   3 at max irg =   28  r =   0.32116
    12  A1G   1 at max irg =   54  r =   2.60475
    13  T1U   1 at max irg =   77  r =   2.94763
    14  T1U   2 at max irg =   77  r =   2.94763
    15  T1U   3 at max irg =   77  r =   2.94763
    16  EG    1 at max irg =   80  r =   2.94998
    17  EG    2 at max irg =   80  r =   2.94998
    18  A1G   1 at max irg =  103  r =   3.40022
    19  T1U   1 at max irg =  103  r =   3.40022
    20  T1U   2 at max irg =  103  r =   3.40022
    21  T1U   3 at max irg =  103  r =   3.40022
    22  T2G   1 at max irg =   93  r =   2.99090
    23  T2G   2 at max irg =   93  r =   2.99090
    24  T2G   3 at max irg =   93  r =   2.99090
    25  EG    1 at max irg =  104  r =   3.50948
    26  EG    2 at max irg =  104  r =   3.50948
    27  T2U   1 at max irg =   94  r =   3.00223
    28  T2U   2 at max irg =   94  r =   3.00223
    29  T2U   3 at max irg =   94  r =   3.00223
    30  T1U   1 at max irg =   97  r =   3.05779
    31  T1U   2 at max irg =   97  r =   3.05779
    32  T1U   3 at max irg =   97  r =   3.05779
    33  T1G   1 at max irg =   94  r =   3.00223
    34  T1G   2 at max irg =   94  r =   3.00223
    35  T1G   3 at max irg =   94  r =   3.00223

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 EG    1
     2 -0.1769667484    3  0.9842168308

Rotation coefficients for orbital     3  grp =    2 EG    2
     2  0.9842168308    3  0.1769667484

Rotation coefficients for orbital     4  grp =    3 T1U   1
     4  0.0000000000    5  0.0000000000    6  1.0000000000

Rotation coefficients for orbital     5  grp =    3 T1U   2
     4 -1.0000000000    5  0.0000000000    6  0.0000000000

Rotation coefficients for orbital     6  grp =    3 T1U   3
     4  0.0000000000    5  1.0000000000    6  0.0000000000

Rotation coefficients for orbital     7  grp =    4 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    5 A1G   1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    6 T1U   1
     9  0.0000000000   10  1.0000000000   11  0.0000000000

Rotation coefficients for orbital    10  grp =    6 T1U   2
     9  0.0000000000   10  0.0000000000   11  1.0000000000

Rotation coefficients for orbital    11  grp =    6 T1U   3
     9  1.0000000000   10  0.0000000000   11  0.0000000000

Rotation coefficients for orbital    12  grp =    7 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    8 T1U   1
    13  0.0000000000   14  1.0000000000   15  0.0000000000

Rotation coefficients for orbital    14  grp =    8 T1U   2
    13 -1.0000000000   14  0.0000000000   15  0.0000000000

Rotation coefficients for orbital    15  grp =    8 T1U   3
    13  0.0000000000   14  0.0000000000   15  1.0000000000

Rotation coefficients for orbital    16  grp =    9 EG    1
    16 -0.5002934362   17 -0.8658559220

Rotation coefficients for orbital    17  grp =    9 EG    2
    16  0.8658559220   17 -0.5002934362

Rotation coefficients for orbital    18  grp =   10 A1G   1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   11 T1U   1
    19  0.0000000000   20  0.0000000000   21 -1.0000000000

Rotation coefficients for orbital    20  grp =   11 T1U   2
    19  0.0000000000   20 -1.0000000000   21  0.0000000000

Rotation coefficients for orbital    21  grp =   11 T1U   3
    19 -1.0000000000   20  0.0000000000   21  0.0000000000

Rotation coefficients for orbital    22  grp =   12 T2G   1
    22  0.0000000000   23  1.0000000000   24  0.0000000000

Rotation coefficients for orbital    23  grp =   12 T2G   2
    22  0.0000000000   23  0.0000000000   24  1.0000000000

Rotation coefficients for orbital    24  grp =   12 T2G   3
    22  1.0000000000   23  0.0000000000   24  0.0000000000

Rotation coefficients for orbital    25  grp =   13 EG    1
    25 -0.1633372267   26  0.9865702967

Rotation coefficients for orbital    26  grp =   13 EG    2
    25 -0.9865702967   26 -0.1633372267

Rotation coefficients for orbital    27  grp =   14 T2U   1
    27  0.0000000000   28  0.0000000000   29 -1.0000000000

Rotation coefficients for orbital    28  grp =   14 T2U   2
    27  0.0000000000   28  1.0000000000   29  0.0000000000

Rotation coefficients for orbital    29  grp =   14 T2U   3
    27  1.0000000000   28  0.0000000000   29  0.0000000000

Rotation coefficients for orbital    30  grp =   15 T1U   1
    30  0.0000000000   31  0.0000000000   32  1.0000000000

Rotation coefficients for orbital    31  grp =   15 T1U   2
    30  1.0000000000   31  0.0000000000   32  0.0000000000

Rotation coefficients for orbital    32  grp =   15 T1U   3
    30  0.0000000000   31  1.0000000000   32  0.0000000000

Rotation coefficients for orbital    33  grp =   16 T1G   1
    33  0.0000000000   34 -1.0000000000   35  0.0000000000

Rotation coefficients for orbital    34  grp =   16 T1G   2
    33  1.0000000000   34  0.0000000000   35  0.0000000000

Rotation coefficients for orbital    35  grp =   16 T1G   3
    33  0.0000000000   34  0.0000000000   35  1.0000000000
Number of orbital groups and degeneracis are        16
  1  2  3  1  1  3  1  3  2  1  3  3  2  3  3  3
Number of orbital groups and number of electrons when fully occupied
        16
  2  4  6  2  2  6  2  6  4  2  6  6  4  6  6  6
Time Now =        14.3543  Delta time =         5.6250 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   16
Orbital     1 of  A1G   1 symmetry normalization integral =  1.00000010
Orbital     2 of  EG    1 symmetry normalization integral =  0.55843506
Orbital     3 of  T1U   1 symmetry normalization integral =  0.58773015
Orbital     4 of  A1G   1 symmetry normalization integral =  0.53527422
Orbital     5 of  A1G   1 symmetry normalization integral =  0.99999995
Orbital     6 of  T1U   1 symmetry normalization integral =  0.99999983
Orbital     7 of  A1G   1 symmetry normalization integral =  0.96812201
Orbital     8 of  T1U   1 symmetry normalization integral =  0.96361790
Orbital     9 of  EG    1 symmetry normalization integral =  0.95603090
Orbital    10 of  A1G   1 symmetry normalization integral =  0.98514732
Orbital    11 of  T1U   1 symmetry normalization integral =  0.99135486
Orbital    12 of  T2G   1 symmetry normalization integral =  0.98380448
Orbital    13 of  EG    1 symmetry normalization integral =  0.99404942
Orbital    14 of  T2U   1 symmetry normalization integral =  0.98304624
Orbital    15 of  T1U   1 symmetry normalization integral =  0.98575827
Orbital    16 of  T1G   1 symmetry normalization integral =  0.97340206
Time Now =        19.5621  Delta time =         5.2078 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     70.00000000
Time Now =        19.6238  Delta time =         0.0618 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.70000000E+02 facnorm =  0.10000000E+01
Time Now =        19.6290  Delta time =         0.0051 Electronic part
Time Now =        19.6412  Delta time =         0.0122 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =        19.7198  Delta time =         0.0786 End VcpPol

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    7
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    1
Term =    2  At center =    2
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.29483998E+01
Type =    1
Term =    3  At center =    3
Explicit coordinates =  0.00000000E+00  0.29483998E+01  0.00000000E+00
Type =    1
Term =    4  At center =    4
Explicit coordinates = -0.29483998E+01  0.00000000E+00  0.00000000E+00
Type =    1
Term =    5  At center =    5
Explicit coordinates =  0.29483998E+01  0.00000000E+00  0.00000000E+00
Type =    1
Term =    6  At center =    6
Explicit coordinates =  0.00000000E+00 -0.29483998E+01  0.00000000E+00
Type =    1
Term =    7  At center =    7
Explicit coordinates =  0.00000000E+00  0.00000000E+00 -0.29483998E+01
Type =    1
Last center is at (RCenterX) =   2.94840
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Using closest approach for matching r
 Matching point is at r =   6.1686107834
First nonzero weight at R =        5.47603
Last point of the switching region R=        6.89632
Total asymptotic potential is   0.44134000E+02
Time Now =        20.2699  Delta time =         0.5501 End AsyPol
+ Data Record ScatContSym - 'A1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        20.3672  Delta time =         0.0973 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    53
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    5
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        20.3828  Delta time =         0.0156 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote =  0.35451608E+03
 i =  2  lval =   3  stpote =  0.94849162E-13
 i =  3  lval =   3  stpote =  0.22793046E-12
 i =  4  lval =   5  stpote = -0.83181588E+02
Number of asymptotic regions =      10
Final point in integration =   0.16834977E+03
Iter =   1 c.s. =     22.92180704 angs^2  rmsk=     0.19160162
Iter =   2 c.s. =     23.10833612 angs^2  rmsk=     0.00150190
Iter =   3 c.s. =     23.00993286 angs^2  rmsk=     0.00079312
Iter =   4 c.s. =     23.00998434 angs^2  rmsk=     0.00000042
Iter =   5 c.s. =     23.00998399 angs^2  rmsk=     0.00000000
Iter =   6 c.s. =     23.00998399 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.96140873E+00-0.51368917E-03 0.20101863E-05-0.67429907E-07 0.96863179E-10
     ROW  2
 -0.51369246E-03 0.15508814E-01-0.24503855E-03 0.17043036E-04-0.19567663E-07
     ROW  3
  0.20102033E-05-0.24503855E-03 0.45742492E-02-0.33051179E-04 0.40168498E-05
     ROW  4
 -0.67430012E-07 0.17043037E-04-0.33051179E-04 0.21412533E-02-0.18417653E-04
     ROW  5
  0.96863296E-10-0.19567668E-07 0.40168498E-05-0.18417653E-04 0.10951052E-02
 eigenphases
 -0.7657256E+00  0.1094777E-02  0.2141109E-02  0.4569174E-02  0.1551335E-01
 eigenphase sum-0.742407E+00  scattering length=   3.38433
 eps+pi 0.239919E+01  eps+2*pi 0.554078E+01

Iter =   6 c.s. =     23.00998399 angs^2  rmsk=     0.00000000
Time Now =        42.6585  Delta time =        22.2757 End ScatStab
+ Data Record ScatContSym - 'T1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        42.7549  Delta time =         0.0964 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1G
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    53
Number of partial waves (np) =    11
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    1
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        42.7708  Delta time =         0.0159 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote =  0.35451608E+03
 i =  2  lval =   3  stpote =  0.94849162E-13
 i =  3  lval =   3  stpote =  0.22793046E-12
 i =  4  lval =   5  stpote = -0.83181588E+02
Number of asymptotic regions =      10
Final point in integration =   0.16834977E+03
Iter =   1 c.s. =      0.01234008 angs^2  rmsk=     0.00267599
Iter =   2 c.s. =      0.01234123 angs^2  rmsk=     0.00000013
Iter =   3 c.s. =      0.01234122 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.15008247E-01-0.17895120E-03 0.15339894E-04 0.47419846E-05-0.20110369E-07
  0.16553358E-08
     ROW  2
 -0.17895120E-03 0.46096863E-02-0.20560617E-04-0.27406999E-04 0.29972872E-05
  0.29747086E-05
     ROW  3
  0.15339894E-04-0.20560617E-04 0.21375487E-02 0.56423762E-05-0.15035011E-04
 -0.38241727E-06
     ROW  4
  0.47419847E-05-0.27406999E-04 0.56423762E-05 0.20698932E-02-0.10746057E-04
 -0.30426345E-05
     ROW  5
 -0.20110374E-07 0.29972873E-05-0.15035011E-04-0.10746057E-04 0.10909879E-02
  0.49008740E-05
     ROW  6
  0.16553353E-08 0.29747086E-05-0.38241727E-06-0.30426345E-05 0.49008740E-05
  0.10995055E-02
 eigenphases
  0.1088505E-02  0.1101642E-02  0.2069265E-02  0.2138028E-02  0.4607043E-02
  0.1501022E-01
 eigenphase sum 0.260147E-01  scattering length=  -0.09598
 eps+pi 0.316761E+01  eps+2*pi 0.630920E+01

Iter =   3 c.s. =      0.01234122 angs^2  rmsk=     0.00000000
Time Now =        52.5382  Delta time =         9.7674 End ScatStab
+ Data Record GrnType - 1
+ Data Record ScatContSym - 'A1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        52.6344  Delta time =         0.0963 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    53
Number of partial waves (np) =     8
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    5
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        52.6509  Delta time =         0.0164 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote =  0.35451608E+03
 i =  2  lval =   3  stpote =  0.94849162E-13
 i =  3  lval =   3  stpote =  0.22793046E-12
 i =  4  lval =   5  stpote = -0.83181588E+02
Number of asymptotic regions =      10
Final point in integration =   0.16834977E+03
Iter =   1 c.s. =     22.92180704 angs^2  rmsk=     0.13838469
Iter =   2 c.s. =     23.10833603 angs^2  rmsk=     0.00078085
Iter =   3 c.s. =     23.00993287 angs^2  rmsk=     0.00041135
Iter =   4 c.s. =     23.00998435 angs^2  rmsk=     0.00000022
Iter =   5 c.s. =     23.00998399 angs^2  rmsk=     0.00000000
Iter =   6 c.s. =     23.00998399 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.49961290E+00, 0.48033234E+00) (-0.27086299E-03, 0.25244470E-03)
  ( 0.11107555E-05,-0.93286095E-06) (-0.39436391E-07, 0.28951367E-07)
  ( 0.59598231E-10,-0.37840607E-10)
     ROW  2
  (-0.27086473E-03, 0.25244631E-03) ( 0.15505210E-01, 0.24066686E-03)
  (-0.24495757E-03,-0.49209788E-05) ( 0.17038128E-04, 0.30885356E-06)
  (-0.19535746E-07,-0.16225810E-08)
     ROW  3
  ( 0.11107649E-05,-0.93286897E-06) (-0.24495757E-03,-0.49209788E-05)
  ( 0.45741520E-02, 0.20984445E-04) (-0.33049917E-04,-0.22619823E-06)
  ( 0.40167356E-05, 0.23385975E-07)
     ROW  4
  (-0.39436474E-07, 0.28951389E-07) ( 0.17038128E-04, 0.30885356E-06)
  (-0.33049917E-04,-0.22619823E-06) ( 0.21412435E-02, 0.45866719E-05)
  (-0.18417502E-04,-0.59750071E-07)
     ROW  5
  ( 0.59598358E-10,-0.37840591E-10) (-0.19535751E-07,-0.16225811E-08)
  ( 0.40167356E-05, 0.23385975E-07) (-0.18417502E-04,-0.59750071E-07)
  ( 0.10951039E-02, 0.11997069E-05)
 eigenphases
 -0.7657256E+00  0.1094777E-02  0.2141109E-02  0.4569174E-02  0.1551335E-01
 eigenphase sum-0.742407E+00  scattering length=   3.38433
 eps+pi 0.239919E+01  eps+2*pi 0.554078E+01

Iter =   6 c.s. =     23.00998399 angs^2  rmsk=     0.00000000
Time Now =        91.8169  Delta time =        39.1660 End ScatStab
+ Data Record ScatContSym - 'T1G'

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13290000E+02  eV
 Do E =  0.10000000E+01 eV (  0.36749326E-01 AU)
Time Now =        91.9134  Delta time =         0.0965 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1G
Form of the Green's operator used (iGrnType) =     1
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.44134000E+02  au
Number of integration regions used =    53
Number of partial waves (np) =    11
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     6
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    1
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        91.9292  Delta time =         0.0158 Energy independent setup

Compute solution for E =    1.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.44134000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote =  0.35451608E+03
 i =  2  lval =   3  stpote =  0.94849162E-13
 i =  3  lval =   3  stpote =  0.22793046E-12
 i =  4  lval =   5  stpote = -0.83181588E+02
Number of asymptotic regions =      10
Final point in integration =   0.16834977E+03
Iter =   1 c.s. =      0.01234008 angs^2  rmsk=     0.00267572
Iter =   2 c.s. =      0.01234123 angs^2  rmsk=     0.00000013
Iter =   3 c.s. =      0.01234122 angs^2  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.15004866E-01, 0.22522901E-03) (-0.17889471E-03,-0.35102327E-05)
  ( 0.15335796E-04, 0.26665930E-06) ( 0.47406410E-05, 0.85955173E-07)
  (-0.20089138E-07,-0.11413783E-08) ( 0.16663522E-08,-0.52587660E-09)
     ROW  2
  (-0.17889471E-03,-0.35102327E-05) ( 0.46095876E-02, 0.21281958E-04)
  (-0.20559822E-04,-0.14166865E-06) (-0.27406017E-04,-0.18406807E-06)
  ( 0.29971999E-05, 0.17708005E-07) ( 0.29746258E-05, 0.17088466E-07)
     ROW  3
  ( 0.15335797E-04, 0.26665931E-06) (-0.20559822E-04,-0.14166865E-06)
  ( 0.21375389E-02, 0.45700149E-05) ( 0.56422940E-05, 0.24538961E-07)
  (-0.15034888E-04,-0.48673292E-07) (-0.38241326E-06,-0.13914297E-08)
     ROW  4
  ( 0.47406411E-05, 0.85955175E-07) (-0.27406017E-04,-0.18406807E-06)
  ( 0.56422940E-05, 0.24538961E-07) ( 0.20698843E-02, 0.42853730E-05)
  (-0.10745972E-04,-0.34156612E-07) (-0.30426099E-05,-0.97832107E-08)
     ROW  5
  (-0.20089142E-07,-0.11413784E-08) ( 0.29971999E-05, 0.17708005E-07)
  (-0.15034888E-04,-0.48673292E-07) (-0.10745972E-04,-0.34156612E-07)
  ( 0.10909866E-02, 0.11906935E-05) ( 0.49008560E-05, 0.10822176E-07)
     ROW  6
  ( 0.16663518E-08,-0.52587661E-09) ( 0.29746258E-05, 0.17088466E-07)
  (-0.38241326E-06,-0.13914297E-08) (-0.30426099E-05,-0.97832107E-08)
  ( 0.49008560E-05, 0.10822176E-07) ( 0.10995042E-02, 0.12089805E-05)
 eigenphases
  0.1088505E-02  0.1101642E-02  0.2069265E-02  0.2138028E-02  0.4607043E-02
  0.1501022E-01
 eigenphase sum 0.260147E-01  scattering length=  -0.09598
 eps+pi 0.316761E+01  eps+2*pi 0.630920E+01

Iter =   3 c.s. =      0.01234122 angs^2  rmsk=     0.00000000
Time Now =       109.3642  Delta time =        17.4350 End ScatStab
Time Now =       109.3674  Delta time =         0.0031 Finalize