----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# inpuut file for test28
#
# Determine SiF4 normal modes
#
 LMax   25
 LMaxA  15         # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l

 Convert '/home/lucchese/ePolyScatE/tests/test28.g03' 'g03'
 GetBlms
 SymNormMode
 GeomNormMode 7 0.
 GeomNormMode 7 -1. 1.
 GeomNormMode 8 -1. 1.
 GeomNormMode 9 -1. 1.
+ End of input reached
+ Data Record LMax - 25
+ Data Record LMaxA - 15
+ Data Record MMax - 3

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test28.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    T
Selecting orbitals
from     1  to    25  number already selected     0
Number of orbitals selected is    25
Highest orbital read in is =   25
Normal modes read in
Normal mode     1
Freq =  276.6532  Reduced Mass =   18.9984  Force constant =    0.8567
    1   0.00000   0.00000   0.00000
    2  -0.32998  -0.04318   0.37316
    3   0.32998   0.04318   0.37316
    4   0.32998  -0.04318  -0.37316
    5  -0.32998   0.04318  -0.37316
Normal mode     2
Freq =  276.6532  Reduced Mass =   18.9984  Force constant =    0.8567
    1   0.00000   0.00000   0.00000
    2  -0.24038   0.40596  -0.16558
    3   0.24038  -0.40596  -0.16558
    4   0.24038   0.40596   0.16558
    5  -0.24038  -0.40596   0.16558
Normal mode     3
Freq =  409.3729  Reduced Mass =   20.4576  Force constant =    2.0200
    1   0.23326   0.23202   0.23297
    2   0.26714   0.26855   0.26747
    3  -0.08660  -0.08519  -0.43901
    4  -0.08515  -0.43938  -0.08482
    5  -0.43889  -0.08564  -0.08671
Normal mode     4
Freq =  409.3729  Reduced Mass =   20.4576  Force constant =    2.0200
    1  -0.29982   0.26734   0.03396
    2   0.33912  -0.30027  -0.03716
    3   0.28756  -0.35183   0.01216
    4  -0.06680   0.10343  -0.44309
    5  -0.11836   0.15499   0.41809
Normal mode     5
Freq =  409.3729  Reduced Mass =   20.4576  Force constant =    2.0200
    1  -0.13495  -0.19291   0.32724
    2   0.15167   0.21701  -0.36939
    3  -0.34522  -0.27988   0.12844
    4   0.44459  -0.07497  -0.07647
    5  -0.05230   0.42192  -0.16448
Normal mode     6
Freq =  850.0192  Reduced Mass =   18.9984  Force constant =    8.0877
    1   0.00000   0.00000   0.00000
    2  -0.28868  -0.28868  -0.28868
    3   0.28868   0.28868  -0.28868
    4   0.28868  -0.28868   0.28868
    5  -0.28868   0.28868   0.28868
Normal mode     7
Freq = 1093.0994  Reduced Mass =   22.7048  Force constant =   15.9841
    1  -0.44692  -0.01446   0.46137
    2   0.01628   0.00053  -0.01681
    3   0.32238   0.30662  -0.32290
    4   0.00669   0.01012  -0.02640
    5   0.31278  -0.29597  -0.31331
Normal mode     8
Freq = 1093.0994  Reduced Mass =   22.7048  Force constant =   15.9841
    1  -0.27648   0.52264  -0.25143
    2   0.01182  -0.01729   0.01091
    3  -0.15499  -0.18410   0.17422
    4   0.35856  -0.36753   0.35765
    5   0.19175  -0.20072  -0.17252
Normal mode     9
Freq = 1093.0994  Reduced Mass =   22.7048  Force constant =   15.9841
    1   0.36964   0.37343   0.36976
    2  -0.38261  -0.38275  -0.38262
    3  -0.13730  -0.13744   0.11036
    4  -0.13487   0.10779  -0.13487
    5   0.11045  -0.13752  -0.13739
Time Now =         0.0935  Delta time =         0.0935 End g03cnv

Atoms found    5
Z = 14 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 r =   1.6864199478   1.6864199478   1.6864199478
Z =  9 r =  -1.6864199478  -1.6864199478   1.6864199478
Z =  9 r =  -1.6864199478   1.6864199478  -1.6864199478
Z =  9 r =   1.6864199478  -1.6864199478  -1.6864199478

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0993  Delta time =         0.0058 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   9  2.92097
  3 -0.57735 -0.57735  0.57735   9  2.92097
  4 -0.57735  0.57735 -0.57735   9  2.92097
  5  0.57735 -0.57735 -0.57735   9  2.92097
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825 -0.40825
  5  0.81650  0.40825  0.40825
Determineing angular grid in GetAxMax  LmAx =   25  LMaxA =   15  LMaxAb =   50
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47 48 49 50
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   25
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         34       1  1  1
 A2        1         2         17       1  1  1
 E         1         3         41       1  1  1
 E         2         4         41       1  1  1
 T1        1         5         58      -1 -1  1
 T1        2         6         58      -1  1 -1
 T1        3         7         58       1 -1 -1
 T2        1         8         76      -1 -1  1
 T2        2         9         76      -1  1 -1
 T2        3        10         76       1 -1 -1
Time Now =         8.8569  Delta time =         8.7576 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   50
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        651       1  1  1
 B1        1         2        650       1 -1 -1
 B2        1         3        650      -1  1 -1
 B3        1         4        650      -1 -1  1
Time Now =        34.9738  Delta time =        26.1170 End SymGen

+ Command SymNormMode
+

----------------------------------------------------------------------
SymNormMode - generate symmetry normal coordinates
----------------------------------------------------------------------

Tolerence for frequencies (FreqToler) =   0.1000E-03
Point group is Td
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
AMass =
      27.976927      27.976927      27.976927      18.998403      18.998403
      18.998403      18.998403      18.998403      18.998403      18.998403
      18.998403      18.998403      18.998403      18.998403      18.998403
Groups of degenerate frequencies
    1    276.6532   1   2
    2    409.3729   3   4   5
    3    850.0192   6
    4   1093.0994   7   8   9
Normal modes after symmeterization
Normal mode     1  Sym =E     1
Freq (cm-1) =  276.6532  Reduced Mass (u) =   18.9984  Force constant (mDyne/angs)=    0.8567  XCT =    0.080092 angs
    1   0.00000   0.00000   0.00000
    2  -0.20412  -0.20412   0.40825
    3   0.20412   0.20412   0.40825
    4   0.20412  -0.20412  -0.40825
    5  -0.20412   0.20412  -0.40825
Normal mode     2  Sym =E     2
Freq (cm-1) =  276.6532  Reduced Mass (u) =   18.9984  Force constant (mDyne/angs)=    0.8567  XCT =    0.080092 angs
    1   0.00000   0.00000   0.00000
    2   0.35355  -0.35355   0.00000
    3  -0.35355   0.35355   0.00000
    4  -0.35355  -0.35355   0.00000
    5   0.35355   0.35355   0.00000
Normal mode     3  Sym =T2    1
Freq (cm-1) =  409.3729  Reduced Mass (u) =   20.4576  Force constant (mDyne/angs)=    2.0200  XCT =    0.063449 angs
    1  -0.40313   0.00000   0.00000
    2   0.14841  -0.30606  -0.30606
    3   0.14841  -0.30606   0.30606
    4   0.14841   0.30606  -0.30606
    5   0.14842   0.30606   0.30606
Normal mode     4  Sym =T2    2
Freq (cm-1) =  409.3729  Reduced Mass (u) =   20.4576  Force constant (mDyne/angs)=    2.0200  XCT =    0.063449 angs
    1   0.00000  -0.40314   0.00000
    2  -0.30605   0.14841  -0.30606
    3  -0.30606   0.14841   0.30606
    4   0.30606   0.14841   0.30606
    5   0.30606   0.14841  -0.30606
Normal mode     5  Sym =T2    3
Freq (cm-1) =  409.3729  Reduced Mass (u) =   20.4575  Force constant (mDyne/angs)=    2.0200  XCT =    0.063449 angs
    1   0.00000   0.00000  -0.40313
    2  -0.30606  -0.30606   0.14841
    3   0.30606   0.30606   0.14841
    4  -0.30606   0.30606   0.14841
    5   0.30606  -0.30606   0.14841
Normal mode     6  Sym =A1    1
Freq (cm-1) =  850.0192  Reduced Mass (u) =   18.9984  Force constant (mDyne/angs)=    8.0877  XCT =    0.045692 angs
    1   0.00000   0.00000   0.00000
    2  -0.28868  -0.28868  -0.28868
    3   0.28868   0.28868  -0.28867
    4   0.28868  -0.28867   0.28868
    5  -0.28867   0.28868   0.28868
Normal mode     7  Sym =T2    1
Freq (cm-1) = 1093.0994  Reduced Mass (u) =   22.7048  Force constant (mDyne/angs)=   15.9841  XCT =    0.036857 angs
    1  -0.64250   0.00000   0.00000
    2   0.23654   0.21313   0.21313
    3   0.23654   0.21313  -0.21313
    4   0.23653  -0.21313   0.21313
    5   0.23654  -0.21313  -0.21313
Normal mode     8  Sym =T2    2
Freq (cm-1) = 1093.0994  Reduced Mass (u) =   22.7048  Force constant (mDyne/angs)=   15.9841  XCT =    0.036857 angs
    1   0.00000  -0.64250   0.00000
    2   0.21313   0.23654   0.21313
    3   0.21313   0.23654  -0.21313
    4  -0.21313   0.23654  -0.21313
    5  -0.21313   0.23654   0.21313
Normal mode     9  Sym =T2    3
Freq (cm-1) = 1093.0994  Reduced Mass (u) =   22.7048  Force constant (mDyne/angs)=   15.9841  XCT =    0.036857 angs
    1   0.00000   0.00000  -0.64250
    2   0.21313   0.21313   0.23654
    3  -0.21313  -0.21313   0.23654
    4   0.21313  -0.21313   0.23654
    5  -0.21313   0.21313   0.23654
Time Now =        34.9764  Delta time =         0.0026 End SymNormMode

+ Command GeomNormMode
+ 7 0.
Generated geometry (in angs) for mode     7  with factor times X_CT =    0.000000
   14     0.000000     0.000000     0.000000
    9     0.892415     0.892415     0.892415
    9    -0.892415    -0.892415     0.892415
    9    -0.892415     0.892415    -0.892415
    9     0.892415    -0.892415    -0.892415

+ Command GeomNormMode
+ 7 -1. 1.
Generated geometry (in angs) for mode     7  with factor times X_CT =   -1.000000
   14     0.023681     0.000000     0.000000
    9     0.883697     0.884560     0.884560
    9    -0.901133    -0.900270     0.900270
    9    -0.901133     0.900270    -0.900270
    9     0.883697    -0.884560    -0.884560
Generated geometry (in angs) for mode     7  with factor times X_CT =    1.000000
   14    -0.023681     0.000000     0.000000
    9     0.901133     0.900270     0.900270
    9    -0.883697    -0.884560     0.884560
    9    -0.883697     0.884560    -0.884560
    9     0.901133    -0.900270    -0.900270

+ Command GeomNormMode
+ 8 -1. 1.
Generated geometry (in angs) for mode     8  with factor times X_CT =   -1.000000
   14     0.000000     0.023681     0.000000
    9     0.884560     0.883697     0.884560
    9    -0.900270    -0.901133     0.900270
    9    -0.884560     0.883697    -0.884560
    9     0.900270    -0.901133    -0.900270
Generated geometry (in angs) for mode     8  with factor times X_CT =    1.000000
   14     0.000000    -0.023681     0.000000
    9     0.900270     0.901133     0.900270
    9    -0.884560    -0.883697     0.884560
    9    -0.900270     0.901133    -0.900270
    9     0.884560    -0.883697    -0.884560

+ Command GeomNormMode
+ 9 -1. 1.
Generated geometry (in angs) for mode     9  with factor times X_CT =   -1.000000
   14     0.000000     0.000000     0.023681
    9     0.884560     0.884560     0.883697
    9    -0.884560    -0.884560     0.883697
    9    -0.900270     0.900270    -0.901133
    9     0.900270    -0.900270    -0.901133
Generated geometry (in angs) for mode     9  with factor times X_CT =    1.000000
   14     0.000000     0.000000    -0.023681
    9     0.900270     0.900270     0.901133
    9    -0.900270    -0.900270     0.901133
    9    -0.884560     0.884560    -0.883697
    9     0.884560    -0.884560    -0.883697
Time Now =        34.9844  Delta time =         0.0080 Finalize