----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test27
#
# Photoionization of NO2
#
 LMax   15
 LMaxI  40       # maximum l value used to determine numerical angular grids
 LMaxA  10         # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
 RMax   14.0
 EMax   50.0
 FegeEng 16.3  # Energy correction used in the fege potential
 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 2     # Initial state spin degeneracy
 OrbOccInit 2 2 2 2 2 2 2 2 2 2 2 1  # Orbital occupation of initial state
 LMaxK    10        # Maximum l in the K matirx
 OrbOcc  2 2 2 2 2 2 2 2 2 2 1 1     # occupation of the orbital groups of target
 SpinDeg 2         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'A2'      # Symmetry of the target state
 TargSpinDeg 3     # Target spin degeneracy
 ScatSym     'B2'  # Scattering symmetry of total final state
 ScatContSym 'B1'  # Scattering symmetry of continuum electron
 IPot 13.592        # ionization potentail

Convert '/home/lucchese/ePolyScatE/tests/test27.g03' 'g03'
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
PhIon 5.0 10.0
GetCro

+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record LMaxA - 10
+ Data Record MMax - 3
+ Data Record RMax - 14.0
+ Data Record EMax - 50.0
+ Data Record FegeEng - 16.3
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 2
+ Data Record OrbOccInit - 2 2 2 2 2 2 2 2 2 2 2 1
+ Data Record LMaxK - 10
+ Data Record OrbOcc - 2 2 2 2 2 2 2 2 2 2 1 1
+ Data Record SpinDeg - 2
+ Data Record TargSym - 'A2'
+ Data Record TargSpinDeg - 3
+ Data Record ScatSym - 'B2'
+ Data Record ScatContSym - 'B1'
+ Data Record IPot - 13.592

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test27.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    12  number already selected     0
Number of orbitals selected is    12
Highest orbital read in is =   12
Time Now =         0.0393  Delta time =         0.0393 End g03cnv

Atoms found    3
Z =  7 r =   0.0000000000   0.0000000000   0.6154630148
Z =  8 r =   0.0000000000   2.0767731164  -0.2692651871
Z =  8 r =   0.0000000000  -2.0767731164  -0.2692651871

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  C2v
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup C2v
Time Now =         0.0400  Delta time =         0.0007 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  0.61546
  2  0.00000  0.99170 -0.12858   8  2.09416
  3  0.00000 -0.99170 -0.12858   8  2.09416
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  1.00000  0.00000  0.00000
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   10  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10  3  3  3  3  3
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3  3
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         66       1  1  1
 A2        1         2         45      -1 -1  1
 B1        1         3         55      -1  1 -1
 B2        1         4         60       1 -1 -1
Time Now =         0.8438  Delta time =         0.8038 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   30
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        256       1  1  1
 A2        1         2        225      -1 -1  1
 B1        1         3        240      -1  1 -1
 B2        1         4        240       1 -1 -1
Time Now =         3.9771  Delta time =         3.1333 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    14.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     0.61546  Alpha Max = 0.11420E+05
    3  Center at =     2.09416  Alpha Max = 0.15330E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   24    24    0.10541E-01     0.25298
    2    8    32    0.94840E-02     0.32885
    3    8    40    0.74990E-02     0.38885
    4    8    48    0.59293E-02     0.43628
    5    8    56    0.46882E-02     0.47379
    6    8    64    0.37069E-02     0.50344
    7    8    72    0.29310E-02     0.52689
    8    8    80    0.23175E-02     0.54543
    9    8    88    0.18324E-02     0.56009
   10    8    96    0.14488E-02     0.57168
   11    8   104    0.11456E-02     0.58084
   12    8   112    0.90579E-03     0.58809
   13    8   120    0.71620E-03     0.59382
   14    8   128    0.56629E-03     0.59835
   15    8   136    0.44775E-03     0.60193
   16    8   144    0.35403E-03     0.60476
   17    8   152    0.27993E-03     0.60700
   18    8   160    0.22133E-03     0.60877
   19    8   168    0.17501E-03     0.61017
   20    8   176    0.13837E-03     0.61128
   21    8   184    0.10941E-03     0.61216
   22   32   216    0.98638E-04     0.61531
   23    8   224    0.18739E-04     0.61546
   24   32   256    0.98638E-04     0.61862
   25    8   264    0.10521E-03     0.61946
   26    8   272    0.13327E-03     0.62053
   27    8   280    0.16881E-03     0.62188
   28    8   288    0.21383E-03     0.62359
   29    8   296    0.27085E-03     0.62576
   30    8   304    0.34307E-03     0.62850
   31    8   312    0.43456E-03     0.63198
   32    8   320    0.55044E-03     0.63638
   33    8   328    0.69723E-03     0.64196
   34    8   336    0.88315E-03     0.64902
   35    8   344    0.11187E-02     0.65797
   36    8   352    0.14170E-02     0.66931
   37    8   360    0.17948E-02     0.68367
   38    8   368    0.22734E-02     0.70185
   39    8   376    0.28797E-02     0.72489
   40    8   384    0.36476E-02     0.75407
   41    8   392    0.46203E-02     0.79104
   42    8   400    0.58524E-02     0.83785
   43    8   408    0.74130E-02     0.89716
   44    8   416    0.93899E-02     0.97228
   45   64   480    0.10990E-01     1.67562
   46    8   488    0.10990E-01     1.76354
   47    8   496    0.86504E-02     1.83274
   48    8   504    0.68397E-02     1.88746
   49    8   512    0.54081E-02     1.93073
   50    8   520    0.42761E-02     1.96493
   51    8   528    0.33810E-02     1.99198
   52    8   536    0.26733E-02     2.01337
   53    8   544    0.21138E-02     2.03028
   54    8   552    0.16713E-02     2.04365
   55    8   560    0.13215E-02     2.05422
   56    8   568    0.10449E-02     2.06258
   57    8   576    0.82616E-03     2.06919
   58    8   584    0.65323E-03     2.07442
   59    8   592    0.51650E-03     2.07855
   60    8   600    0.40839E-03     2.08181
   61    8   608    0.32291E-03     2.08440
   62    8   616    0.25532E-03     2.08644
   63    8   624    0.20188E-03     2.08806
   64    8   632    0.15962E-03     2.08933
   65    8   640    0.12621E-03     2.09034
   66    8   648    0.99791E-04     2.09114
   67    8   656    0.85794E-04     2.09183
   68   24   680    0.85135E-04     2.09387
   69    8   688    0.35761E-04     2.09416
   70   32   720    0.85135E-04     2.09688
   71    8   728    0.90811E-04     2.09761
   72    8   736    0.11503E-03     2.09853
   73    8   744    0.14570E-03     2.09969
   74    8   752    0.18455E-03     2.10117
   75    8   760    0.23377E-03     2.10304
   76    8   768    0.29611E-03     2.10541
   77    8   776    0.37507E-03     2.10841
   78    8   784    0.47509E-03     2.11221
   79    8   792    0.60178E-03     2.11702
   80    8   800    0.76225E-03     2.12312
   81    8   808    0.96552E-03     2.13085
   82    8   816    0.12230E-02     2.14063
   83    8   824    0.15491E-02     2.15302
   84    8   832    0.19622E-02     2.16872
   85    8   840    0.24855E-02     2.18860
   86    8   848    0.31483E-02     2.21379
   87    8   856    0.39878E-02     2.24569
   88    8   864    0.50512E-02     2.28610
   89    8   872    0.63982E-02     2.33729
   90    8   880    0.81044E-02     2.40212
   91    8   888    0.10266E-01     2.48425
   92    8   896    0.13003E-01     2.58827
   93   64   960    0.13657E-01     3.46230
   94   64  1024    0.13657E-01     4.33632
   95   64  1088    0.13657E-01     5.21035
   96   64  1152    0.13657E-01     6.08437
   97   64  1216    0.13657E-01     6.95840
   98   64  1280    0.13657E-01     7.83242
   99   64  1344    0.13657E-01     8.70645
  100   64  1408    0.13657E-01     9.58047
  101   64  1472    0.13657E-01    10.45450
  102   64  1536    0.13657E-01    11.32852
  103   64  1600    0.13657E-01    12.20255
  104   64  1664    0.13657E-01    13.07657
  105   64  1728    0.13657E-01    13.95060
  106    8  1736    0.61751E-02    14.00000
Time Now =         3.9788  Delta time =         0.0017 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   10
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   10
 Actual value of lmasym found =     10
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.01054  to (    7)         0.07379
    2 L =    3  from (    8)         0.08433  to (   15)         0.15811
    3 L =    7  from (   16)         0.16865  to (   23)         0.24244
    4 L =   10  from (   24)         0.25298  to (   39)         0.38135
    5 L =   15  from (   40)         0.38885  to ( 1728)        13.95060
    6 L =   10  from ( 1729)        13.95677  to ( 1736)        14.00000

For analytic integrations ntheta =     32  nphi =     16
For numerical integrations ntheti =     88 nphii =     44
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     136
Proc id =    1  Last grid point =     248
Proc id =    2  Last grid point =     360
Proc id =    3  Last grid point =     472
Proc id =    4  Last grid point =     584
Proc id =    5  Last grid point =     696
Proc id =    6  Last grid point =     800
Proc id =    7  Last grid point =     904
Proc id =    8  Last grid point =    1008
Proc id =    9  Last grid point =    1112
Proc id =   10  Last grid point =    1216
Proc id =   11  Last grid point =    1320
Proc id =   12  Last grid point =    1424
Proc id =   13  Last grid point =    1528
Proc id =   14  Last grid point =    1632
Proc id =   15  Last grid point =    1736
Time Now =         4.5044  Delta time =         0.5256 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  B2    1 at max irg =   90  r =   2.09688
     2  A1    1 at max irg =   90  r =   2.09688
     3  A1    1 at max irg =   37  r =   0.62576
     4  A1    1 at max irg =   58  r =   1.49979
     5  B2    1 at max irg =   60  r =   1.67562
     6  A1    1 at max irg =  112  r =   2.58827
     7  B2    1 at max irg =  113  r =   2.69753
     8  A1    1 at max irg =   97  r =   2.10841
     9  B1    1 at max irg =   91  r =   2.09761
    10  B2    1 at max irg =  106  r =   2.21379
    11  A2    1 at max irg =  105  r =   2.18860
    12  A1    1 at max irg =  102  r =   2.14063

Rotation coefficients for orbital     1  grp =    1 B2    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 A1    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 A1    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 B2    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    7 B2    1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    8 A1    1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    9 B1    1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =   10 B2    1
    10  1.0000000000

Rotation coefficients for orbital    11  grp =   11 A2    1
    11  1.0000000000

Rotation coefficients for orbital    12  grp =   12 A1    1
    12  1.0000000000
Number of orbital groups and degeneracis are        12
  1  1  1  1  1  1  1  1  1  1  1  1
Number of orbital groups and number of electrons when fully occupied
        12
  2  2  2  2  2  2  2  2  2  2  2  2
Time Now =         6.0784  Delta time =         1.5740 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   12
Orbital     1 of  B2    1 symmetry normalization integral =  0.81931452
Orbital     2 of  A1    1 symmetry normalization integral =  0.82973383
Orbital     3 of  A1    1 symmetry normalization integral =  0.99890519
Orbital     4 of  A1    1 symmetry normalization integral =  0.99280778
Orbital     5 of  B2    1 symmetry normalization integral =  0.98811005
Orbital     6 of  A1    1 symmetry normalization integral =  0.99392140
Orbital     7 of  B2    1 symmetry normalization integral =  0.99718137
Orbital     8 of  A1    1 symmetry normalization integral =  0.99896974
Orbital     9 of  B1    1 symmetry normalization integral =  0.99908638
Orbital    10 of  B2    1 symmetry normalization integral =  0.99839596
Orbital    11 of  A2    1 symmetry normalization integral =  0.99816656
Orbital    12 of  A1    1 symmetry normalization integral =  0.99848891
Time Now =        12.3896  Delta time =         6.3112 End ExpOrb

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =   12
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   4  name - B2    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - A1    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =   1  name - A1    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   4  name - B2    1
Set    6  has degeneracy     1
Orbital     1  is num     6  type =   1  name - A1    1
Set    7  has degeneracy     1
Orbital     1  is num     7  type =   4  name - B2    1
Set    8  has degeneracy     1
Orbital     1  is num     8  type =   1  name - A1    1
Set    9  has degeneracy     1
Orbital     1  is num     9  type =   3  name - B1    1
Set   10  has degeneracy     1
Orbital     1  is num    10  type =   4  name - B2    1
Set   11  has degeneracy     1
Orbital     1  is num    11  type =   2  name - A2    1
Set   12  has degeneracy     1
Orbital     1  is num    12  type =   1  name - A1    1
Orbital occupations by degenerate group
    1  B2       occ = 2
    2  A1       occ = 2
    3  A1       occ = 2
    4  A1       occ = 2
    5  B2       occ = 2
    6  A1       occ = 2
    7  B2       occ = 2
    8  A1       occ = 2
    9  B1       occ = 2
   10  B2       occ = 2
   11  A2       occ = 1
   12  A1       occ = 1
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
Symmetry of the continuum orbital is B1
Symmetry of the total state is B2
Spin degeneracy of the total state is =    2
Symmetry of the target state is A2
Spin degeneracy of the target state is =    3
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    2
Orbital occupations of initial state by degenerate group
    1  B2       occ = 2
    2  A1       occ = 2
    3  A1       occ = 2
    4  A1       occ = 2
    5  B2       occ = 2
    6  A1       occ = 2
    7  B2       occ = 2
    8  A1       occ = 2
    9  B1       occ = 2
   10  B2       occ = 2
   11  A2       occ = 2
   12  A1       occ = 1
Open shell symmetry types
    1  A2     iele =    1
    2  A1     iele =    1
Use only configuration of type A2
MS2 =    2  SDGN =    3
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    3
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    3
 Each irreducable representation is present the number of times indicated
    A2    (  1)

 representation A2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    3
Open shell symmetry types
    1  A2     iele =    1
    2  A1     iele =    1
    3  B1     iele =    1
Use only configuration of type B2
 Each irreducable representation is present the number of times indicated
    B2    (  1)

 representation B2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.81650   0.00000    1    3    6
    2:   0.40825   0.00000    1    4    5
    3:   0.40825   0.00000    2    3    5
Open shell symmetry types
    1  A2     iele =    1
    2  A1     iele =    1
Use only configuration of type A2
MS2 =    2  SDGN =    3
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    3
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    3
 Each irreducable representation is present the number of times indicated
    A2    (  1)

 representation A2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    3
Direct product basis set
Direct product basis function
    1:  -0.81650   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   23   26
    2:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   24   25
    3:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             22   23   25
Open shell symmetry types
    1  A1     iele =    1
Use only configuration of type A1
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    A1    (  1)

 representation A1     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Time Now =        12.3922  Delta time =         0.0026 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.81650   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   23   26
    2:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   24   25
    3:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             22   23   25
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.81650   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   23   26
    2:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   24   25
    3:   0.40825   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             22   23   25
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    3
Symmetry of target =    2
Symmetry of total states =    4

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23
One electron matrix elements between initial and final states
    1:    1.224744871    0.000000000  <   21|   25>

Reduced formula list
    1   11    1  0.1224744871E+01
Time Now =        12.3930  Delta time =         0.0008 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     3 or B1
Symmetry of total final state (iTotalSym) =     4 or B2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     2 or A2
List of unique symmetry types
In the product of the symmetry types A1    A1
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types A1    A1
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types A1    A2
 Each irreducable representation is present the number of times indicated
    A2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =A1
     Final state symmetry type = A1     Target sym =A2
     Continuum type =A2
In the product of the symmetry types A1    B1
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types A1    B2
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B1    A1
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B1    A1
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B1    A2
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B1    B1
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types B1    B2
 Each irreducable representation is present the number of times indicated
    A2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =B1
     Final state symmetry type = B1     Target sym =A2
     Continuum type =B2
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A2
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B2    B1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =B2
     Final state symmetry type = B2     Target sym =A2
     Continuum type =B1
In the product of the symmetry types B2    B2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types A1    A1
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types B1    A1
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
Irreducible representation containing the dipole operator is B2
Number of different dipole operators in this representation is     1
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb 11  Coef =   1.2247448710
Symmetry type to write out (SymTyp) =B1
Time Now =        33.0589  Delta time =        20.6660 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     22.00000000
Time Now =        34.7222  Delta time =         1.6633 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.22000000E+02 facnorm =  0.10000000E+01
Time Now =        34.7308  Delta time =         0.0086 Electronic part
Time Now =        34.7386  Delta time =         0.0078 End StPot

+ Command PhIon
+ 5.0 10.0

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.16300000E+02  eV
 Do E =  0.50000000E+01 eV (  0.18374663E+00 AU)
Time Now =        34.9787  Delta time =         0.2400 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    53
Number of partial waves (np) =    55
Number of asymptotic solutions on the right (NAsymR) =    30
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =   30
Number of orthogonality constraints (NOrthUse) =    1
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Time Now =        34.9976  Delta time =         0.0189 Energy independent setup

Compute solution for E =    5.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.85300655E-11
 i =  2  lval =   2  stpote = -0.90144408E-01
 i =  3  lval =   3  stpote =  0.16474928E+01
 i =  4  lval =   3  stpote =  0.27171120E+01
Number of asymptotic regions =      66
Final point in integration =   0.47002450E+03
Iter =   1 c.s. =      1.22793229 (a.u)  rmsk=     0.14305781
Iter =   2 c.s. =      1.38195239 (a.u)  rmsk=     0.08230142
Iter =   3 c.s. =      1.38111733 (a.u)  rmsk=     0.00617002
Iter =   4 c.s. =      1.38098953 (a.u)  rmsk=     0.00004262
Iter =   5 c.s. =      1.38098841 (a.u)  rmsk=     0.00000020
Iter =   6 c.s. =      1.38098841 (a.u)  rmsk=     0.00000000
Iter =   7 c.s. =      1.38098841 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.11401252E+00,-0.19877511E+00) ( 0.90141918E+00,-0.91071748E-01)
  (-0.17837459E+00, 0.26878949E+00) (-0.17965825E-01, 0.34023113E-01)
  ( 0.32961034E-02, 0.79686266E-02) ( 0.12009114E-01, 0.12846222E-02)
  ( 0.49921104E-01,-0.15844004E-01) ( 0.19792517E-01,-0.63045462E-02)
  ( 0.58884132E-02,-0.18523533E-02) (-0.22491258E-02,-0.12892693E-04)
  (-0.16743313E-02, 0.16050191E-03) (-0.56428178E-03, 0.99111018E-04)
  (-0.13222483E-02, 0.38566308E-03) (-0.53950756E-03, 0.20805365E-03)
  (-0.24075252E-03, 0.10965181E-03) (-0.68538178E-04, 0.34421628E-04)
  ( 0.47163379E-04,-0.84459705E-05) ( 0.35928090E-04,-0.10405294E-04)
  ( 0.21024497E-04,-0.78909431E-05) ( 0.68686822E-05,-0.28343050E-05)
  ( 0.14543961E-04,-0.42349454E-05) ( 0.57272746E-05,-0.24759285E-05)
  ( 0.26577080E-05,-0.14287637E-05) ( 0.11886882E-05,-0.70817401E-06)
  ( 0.34150782E-06,-0.20850279E-06) (-0.41263729E-06, 0.13600622E-06)
  (-0.30137779E-06, 0.15790716E-06) (-0.18742199E-06, 0.13413522E-06)
  (-0.99141385E-07, 0.86790648E-07) (-0.30706835E-07, 0.29822113E-07)
     ROW  2
  (-0.89868216E-01,-0.82715074E-01) ( 0.54990642E+00,-0.88147209E-01)
  (-0.22747823E+00, 0.13638301E+00) (-0.33339052E-01, 0.12962239E-01)
  ( 0.77543332E-02, 0.73701210E-02) ( 0.10467624E-01, 0.12081613E-02)
  ( 0.36941003E-01,-0.93562936E-02) ( 0.14379051E-01,-0.41050770E-02)
  ( 0.43423999E-02,-0.12717747E-02) (-0.16078707E-02,-0.98389739E-05)
  (-0.11827053E-02, 0.12936600E-03) (-0.39153333E-03, 0.77132635E-04)
  (-0.92038120E-03, 0.24263881E-03) (-0.37505910E-03, 0.13903200E-03)
  (-0.16822590E-03, 0.74759877E-04) (-0.47694096E-04, 0.23742136E-04)
  ( 0.31558065E-04,-0.60369112E-05) ( 0.23848193E-04,-0.76589897E-05)
  ( 0.13844771E-04,-0.58590794E-05) ( 0.45204112E-05,-0.21077872E-05)
  ( 0.98507472E-05,-0.27229138E-05) ( 0.39053319E-05,-0.16533639E-05)
  ( 0.18328418E-05,-0.96513207E-06) ( 0.82985805E-06,-0.48132795E-06)
  ( 0.24111027E-06,-0.14166610E-06) (-0.26961445E-06, 0.94470697E-07)
  (-0.19570823E-06, 0.11113587E-06) (-0.12063313E-06, 0.94844672E-07)
  (-0.63247207E-07, 0.61475658E-07) (-0.19453038E-07, 0.21156210E-07)
Iter =   7 c.s. =      1.38098841 (a.u)  rmsk=     0.00000000
Time Now =       279.4273  Delta time =       244.4297 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.16300000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =       279.6660  Delta time =         0.2387 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =B1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    53
Number of partial waves (np) =    55
Number of asymptotic solutions on the right (NAsymR) =    30
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   10
Number of partial waves in the asymptotic region (npasym) =   30
Number of orthogonality constraints (NOrthUse) =    1
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   10
Higest l used in the asymptotic potential (lpzb) =   20
Time Now =       279.6884  Delta time =         0.0224 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.85300655E-11
 i =  2  lval =   2  stpote = -0.90144408E-01
 i =  3  lval =   3  stpote =  0.16474928E+01
 i =  4  lval =   3  stpote =  0.27171120E+01
Number of asymptotic regions =      64
Final point in integration =   0.32669168E+03
Iter =   1 c.s. =      1.26740780 (a.u)  rmsk=     0.14533913
Iter =   2 c.s. =      1.02531645 (a.u)  rmsk=     0.05463787
Iter =   3 c.s. =      1.02391340 (a.u)  rmsk=     0.00175242
Iter =   4 c.s. =      1.02386091 (a.u)  rmsk=     0.00001817
Iter =   5 c.s. =      1.02386073 (a.u)  rmsk=     0.00000012
Iter =   6 c.s. =      1.02386073 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.19377921E+00,-0.13392006E+00) ( 0.62125747E+00,-0.24021809E+00)
  (-0.27181233E+00, 0.18117477E+00) (-0.47346047E-01,-0.54907243E-03)
  ( 0.35424601E-01, 0.20692460E-01) ( 0.22765025E-01, 0.58503036E-03)
  ( 0.12172076E+00,-0.29249999E-01) ( 0.47672713E-01,-0.12676060E-01)
  ( 0.13976223E-01,-0.41521407E-02) (-0.90321577E-02, 0.18188683E-03)
  (-0.61011054E-02, 0.66445718E-03) (-0.20341805E-02, 0.30375894E-03)
  (-0.62738737E-02, 0.15131843E-02) (-0.25832676E-02, 0.81808659E-03)
  (-0.11817127E-02, 0.43181138E-03) (-0.34448304E-03, 0.13352723E-03)
  ( 0.34704816E-03,-0.62596073E-04) ( 0.25540943E-03,-0.70533763E-04)
  ( 0.14812589E-03,-0.50902279E-04) ( 0.48250858E-04,-0.18206703E-04)
  ( 0.13576359E-03,-0.33741106E-04) ( 0.54675569E-04,-0.19083158E-04)
  ( 0.26495866E-04,-0.10950268E-04) ( 0.12419541E-04,-0.54928994E-05)
  ( 0.36752421E-05,-0.16498009E-05) (-0.59382079E-05, 0.17792317E-05)
  (-0.43592765E-05, 0.19581643E-05) (-0.27709331E-05, 0.16182812E-05)
  (-0.15028114E-05, 0.10354025E-05) (-0.47296836E-06, 0.35377713E-06)
     ROW  2
  (-0.16465261E+00,-0.87538415E-01) ( 0.46875008E+00,-0.20341831E+00)
  (-0.26916547E+00, 0.11219174E+00) (-0.42854516E-01,-0.76740646E-02)
  ( 0.27974096E-01, 0.18520366E-01) ( 0.19394272E-01, 0.93758416E-03)
  ( 0.93092200E-01,-0.21111780E-01) ( 0.36422840E-01,-0.95259431E-02)
  ( 0.10946903E-01,-0.31900660E-02) (-0.66500711E-02, 0.65083102E-04)
  (-0.45465950E-02, 0.48856184E-03) (-0.14976175E-02, 0.23227577E-03)
  (-0.46050862E-02, 0.11279544E-02) (-0.19157140E-02, 0.61977028E-03)
  (-0.88464808E-03, 0.32961088E-03) (-0.25717375E-03, 0.10281493E-03)
  ( 0.24912591E-03,-0.45780358E-04) ( 0.18558760E-03,-0.52693567E-04)
  ( 0.10841247E-03,-0.38436852E-04) ( 0.35573060E-04,-0.13763202E-04)
  ( 0.97362181E-04,-0.25345139E-04) ( 0.39742324E-04,-0.14403957E-04)
  ( 0.19476906E-04,-0.83131959E-05) ( 0.91988147E-05,-0.41961063E-05)
  ( 0.27390346E-05,-0.12612028E-05) (-0.42179384E-05, 0.13053141E-05)
  (-0.31503809E-05, 0.14456938E-05) (-0.20321018E-05, 0.12019380E-05)
  (-0.11145570E-05, 0.77225264E-06) (-0.35265770E-06, 0.26469625E-06)
Iter =   6 c.s. =      1.02386073 (a.u)  rmsk=     0.00000000
Time Now =       483.2323  Delta time =       203.5439 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       483.2366  Delta time =         0.0042 End CnvIdy
Found     2 energies :
     5.00000    10.00000
List of matrix element types found   Number =    1
    1  Cont Sym B1     Targ Sym A2     Total Sym B2
Keeping     2 energies :
     5.00000    10.00000
Time Now =       483.2366  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.60621222E+00
Photoelectron Energy in eV    0.50000000E+01
Photoelectron Energy a.u.    0.18374663E+00
Photon Energy (eV)    0.18592000E+02
Kinetic Energy (a.u.)    0.85731355E+00
Photoelectron Energy in eV    0.10000000E+02
Photoelectron Energy a.u.    0.36749326E+00
Photon Energy (eV)    0.23592000E+02

     Sigma LENGTH   at all energies
      Eng
    18.5920  0.11490211E+01
    23.5920  0.93327054E+00

     Sigma MIXED    at all energies
      Eng
    18.5920  0.10463939E+01
    23.5920  0.84765882E+00

     Sigma VELOCITY at all energies
      Eng
    18.5920  0.99882567E+00
    23.5920  0.78008938E+00

     Beta LENGTH   at all energies
      Eng
    18.5920 -0.39999337E+00
    23.5920 -0.27425189E+00

     Beta MIXED    at all energies
      Eng
    18.5920 -0.35773595E+00
    23.5920 -0.25336224E+00

     Beta VELOCITY at all energies
      Eng
    18.5920 -0.30777540E+00
    23.5920 -0.22948390E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     18.5920     1.1490     1.0464     0.9988    -0.4000    -0.3577    -0.3078
EPhi     23.5920     0.9333     0.8477     0.7801    -0.2743    -0.2534    -0.2295
Time Now =       483.2600  Delta time =         0.0234 End CrossSection
Time Now =       483.2627  Delta time =         0.0027 Finalize