----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# inpute file for test25
#
# Photoinization of SiF4 in a D2d geometry
#
 LMax   25         # maximum l
 LMaxA  12         # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
 RMax   14.0       # maximum R
 EMax   50.0       # maximum E
 OrbOccInit
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
 OrbOcc
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  3
 Convert '/home/lucchese/ePolyScatE/tests/test25.g03' 'g03'
 ScatSym     'E' # Scattering symmetry of total final state
 ScatContSym 'A1' # Scattering symmetry of continuum electron
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'E'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 ScatEng 0.8 4.8  # list of scattering energies
 FegeEng 15.2  # Energy correction used in the fege potential
 LMaxK   10    # Maximum l in the K matirx
 IPot 15.2    # IPot, ionization potential
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
FileName 'MatrixElements' 'test25.idy' 'REWIND'
PhIon
GetCro
FileName 'MatrixElements' 'test25.tmt' 'REWIND'
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 14.0
+ Data Record EMax - 50.0
+ Data Record OrbOccInit - 2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
+ Data Record OrbOcc - 2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  3

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test25.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    F
Normal Mode flag =    F
Selecting orbitals
from     1  to    25  number already selected     0
Number of orbitals selected is    25
Highest orbital read in is =   25
Time Now =         0.1556  Delta time =         0.1556 End g03cnv

Atoms found    5
Z = 14 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 r =   1.5893163704   1.5893163704   1.9079052993
Z =  9 r =  -1.5893163704  -1.5893163704   1.9079052993
Z =  9 r =   1.5893163704  -1.5893163704  -1.9079052993
Z =  9 r =  -1.5893163704   1.5893163704  -1.9079052993
+ Data Record ScatSym - 'E'
+ Data Record ScatContSym - 'A1'
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'E'
+ Data Record TargSpinDeg - 2
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record ScatEng - 0.8 4.8
+ Data Record FegeEng - 15.2
+ Data Record LMaxK - 10
+ Data Record IPot - 15.2

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D2d
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.1571  Delta time =         0.0015 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.53908  0.53908  0.64714   9  2.94821
  3 -0.53908 -0.53908  0.64714   9  2.94821
  4  0.53908 -0.53908 -0.64714   9  2.94821
  5 -0.53908  0.53908 -0.64714   9  2.94821
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.84226 -0.34503 -0.41420
  3  0.84226 -0.34503  0.41420
  4  0.84226  0.34503  0.41420
  5  0.84226  0.34503 -0.41420
Determineing angular grid in GetAxMax  LmAx =   25  LMaxA =   12  LMaxAb =   50
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3  3  3
  3  3  3  3  3  3
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3  3  3
  3  3  3  3  3  3
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3  3  3
  3  3  3  3  3  3
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3  3  3
  3  3  3  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47 48 49 50
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2d
LMax = =   25
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)    E     (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     4     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         76       1  1  1
 A2        1         2         57       1 -1 -1
 B1        1         3         57       1  1  1
 B2        1         4         76       1 -1 -1
 E         1         5        133      -1 -1  1
 E         2         6        133      -1  1 -1
Time Now =         4.0007  Delta time =         3.8436 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   50
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        651       1  1  1
 B1        1         2        650       1 -1 -1
 B2        1         3        650      -1 -1  1
 B3        1         4        650      -1  1 -1
Time Now =        26.0049  Delta time =        22.0042 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    14.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.25490E+06
    2  Center at =     2.94821  Alpha Max = 0.19500E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.20878E-04     0.00067
    2    8    40    0.22270E-04     0.00085
    3    8    48    0.28209E-04     0.00107
    4    8    56    0.35731E-04     0.00136
    5    8    64    0.45259E-04     0.00172
    6    8    72    0.57329E-04     0.00218
    7    8    80    0.72616E-04     0.00276
    8    8    88    0.91981E-04     0.00350
    9    8    96    0.11651E-03     0.00443
   10    8   104    0.14758E-03     0.00561
   11    8   112    0.18693E-03     0.00710
   12    8   120    0.23678E-03     0.00900
   13    8   128    0.29992E-03     0.01140
   14    8   136    0.37990E-03     0.01444
   15    8   144    0.48121E-03     0.01829
   16    8   152    0.60953E-03     0.02316
   17    8   160    0.77207E-03     0.02934
   18    8   168    0.97796E-03     0.03716
   19    8   176    0.12387E-02     0.04707
   20    8   184    0.15691E-02     0.05962
   21    8   192    0.19875E-02     0.07552
   22    8   200    0.25175E-02     0.09566
   23    8   208    0.31888E-02     0.12118
   24    8   216    0.40392E-02     0.15349
   25    8   224    0.51163E-02     0.19442
   26    8   232    0.64807E-02     0.24626
   27    8   240    0.82088E-02     0.31194
   28    8   248    0.10398E-01     0.39512
   29   64   312    0.10990E-01     1.09846
   30   64   376    0.10990E-01     1.80181
   31   64   440    0.10990E-01     2.50515
   32    8   448    0.10990E-01     2.59307
   33    8   456    0.92921E-02     2.66741
   34    8   464    0.73471E-02     2.72618
   35    8   472    0.58092E-02     2.77266
   36    8   480    0.45933E-02     2.80940
   37    8   488    0.36318E-02     2.83846
   38    8   496    0.28716E-02     2.86143
   39    8   504    0.22706E-02     2.87960
   40    8   512    0.17953E-02     2.89396
   41    8   520    0.14195E-02     2.90532
   42    8   528    0.11224E-02     2.91429
   43    8   536    0.88745E-03     2.92139
   44    8   544    0.70169E-03     2.92701
   45    8   552    0.55482E-03     2.93145
   46    8   560    0.43869E-03     2.93496
   47    8   568    0.34686E-03     2.93773
   48    8   576    0.27426E-03     2.93992
   49    8   584    0.21685E-03     2.94166
   50    8   592    0.17146E-03     2.94303
   51    8   600    0.13557E-03     2.94412
   52    8   608    0.10719E-03     2.94497
   53    8   616    0.84757E-04     2.94565
   54   32   648    0.75485E-04     2.94807
   55    8   656    0.18225E-04     2.94821
   56   32   688    0.75485E-04     2.95063
   57    8   696    0.80517E-04     2.95127
   58    8   704    0.10199E-03     2.95209
   59    8   712    0.12919E-03     2.95312
   60    8   720    0.16364E-03     2.95443
   61    8   728    0.20727E-03     2.95609
   62    8   736    0.26254E-03     2.95819
   63    8   744    0.33256E-03     2.96085
   64    8   752    0.42124E-03     2.96422
   65    8   760    0.53357E-03     2.96849
   66    8   768    0.67585E-03     2.97389
   67    8   776    0.85608E-03     2.98074
   68    8   784    0.10844E-02     2.98942
   69    8   792    0.13735E-02     3.00041
   70    8   800    0.17398E-02     3.01432
   71    8   808    0.22038E-02     3.03195
   72    8   816    0.27914E-02     3.05429
   73    8   824    0.35358E-02     3.08257
   74    8   832    0.44787E-02     3.11840
   75    8   840    0.56730E-02     3.16379
   76    8   848    0.71858E-02     3.22127
   77    8   856    0.91020E-02     3.29409
   78    8   864    0.11529E-01     3.38632
   79   64   928    0.13657E-01     4.26035
   80   64   992    0.13657E-01     5.13437
   81   64  1056    0.13657E-01     6.00840
   82   64  1120    0.13657E-01     6.88242
   83   64  1184    0.13657E-01     7.75645
   84   64  1248    0.13657E-01     8.63047
   85   64  1312    0.13657E-01     9.50450
   86   64  1376    0.13657E-01    10.37852
   87   64  1440    0.13657E-01    11.25255
   88   64  1504    0.13657E-01    12.12657
   89   64  1568    0.13657E-01    13.00060
   90   64  1632    0.13657E-01    13.87462
   91    8  1640    0.13657E-01    13.98388
   92    8  1648    0.20154E-02    14.00000
Time Now =        26.0067  Delta time =         0.0018 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =   10
Angular regions
    1 L =    2  from (    1)         0.00002  to (    7)         0.00015
    2 L =    3  from (    8)         0.00017  to (   95)         0.00431
    3 L =    7  from (   96)         0.00443  to (  191)         0.07354
    4 L =   11  from (  192)         0.07552  to (  239)         0.30373
    5 L =   12  from (  240)         0.31194  to (  399)         2.05457
    6 L =   16  from (  400)         2.06556  to (  407)         2.14249
    7 L =   20  from (  408)         2.15348  to (  415)         2.23041
    8 L =   25  from (  416)         2.24140  to (  904)         3.93259
    9 L =   16  from (  905)         3.94624  to ( 1640)        13.98388
   10 L =   12  from ( 1641)        13.98589  to ( 1648)        14.00000

For analytic integrations ntheta =     56  nphi =     28
For numerical integrations ntheti =    104 nphii =     52
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     328
Proc id =    1  Last grid point =     448
Proc id =    2  Last grid point =     512
Proc id =    3  Last grid point =     576
Proc id =    4  Last grid point =     640
Proc id =    5  Last grid point =     704
Proc id =    6  Last grid point =     768
Proc id =    7  Last grid point =     832
Proc id =    8  Last grid point =     896
Proc id =    9  Last grid point =    1000
Proc id =   10  Last grid point =    1112
Proc id =   11  Last grid point =    1224
Proc id =   12  Last grid point =    1336
Proc id =   13  Last grid point =    1440
Proc id =   14  Last grid point =    1544
Proc id =   15  Last grid point =    1648
Time Now =        28.0691  Delta time =         2.0624 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   24  r =   0.07552
     2  E     1 at max irg =   84  r =   2.94942
     3  E     2 at max irg =   84  r =   2.94942
     4  B2    1 at max irg =   84  r =   2.94942
     5  A1    1 at max irg =   84  r =   2.94942
     6  A1    1 at max irg =   32  r =   0.48304
     7  E     1 at max irg =   31  r =   0.39512
     8  E     2 at max irg =   31  r =   0.39512
     9  B2    1 at max irg =   31  r =   0.39512
    10  A1    1 at max irg =   82  r =   2.94821
    11  B2    1 at max irg =   84  r =   2.94942
    12  E     1 at max irg =   85  r =   2.95002
    13  E     2 at max irg =   85  r =   2.95002
    14  A1    1 at max irg =  109  r =   3.49558
    15  B2    1 at max irg =  108  r =   3.38632
    16  E     1 at max irg =  108  r =   3.38632
    17  E     2 at max irg =  108  r =   3.38632
    18  A1    1 at max irg =   98  r =   2.98942
    19  B1    1 at max irg =   98  r =   2.98942
    20  B2    1 at max irg =  104  r =   3.11840
    21  E     1 at max irg =  105  r =   3.16379
    22  E     2 at max irg =  105  r =   3.16379
    23  A2    1 at max irg =   99  r =   3.00041
    24  E     1 at max irg =   99  r =   3.00041
    25  E     2 at max irg =   99  r =   3.00041

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 E     1
     2  1.0000000000    3  0.0000000000

Rotation coefficients for orbital     3  grp =    2 E     2
     2  0.0000000000    3  1.0000000000

Rotation coefficients for orbital     4  grp =    3 B2    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    4 A1    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    5 A1    1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    6 E     1
     7  0.0000000000    8  1.0000000000

Rotation coefficients for orbital     8  grp =    6 E     2
     7  1.0000000000    8  0.0000000000

Rotation coefficients for orbital     9  grp =    7 B2    1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =    8 A1    1
    10  1.0000000000

Rotation coefficients for orbital    11  grp =    9 B2    1
    11  1.0000000000

Rotation coefficients for orbital    12  grp =   10 E     1
    12  1.0000000000   13  0.0000000000

Rotation coefficients for orbital    13  grp =   10 E     2
    12  0.0000000000   13  1.0000000000

Rotation coefficients for orbital    14  grp =   11 A1    1
    14  1.0000000000

Rotation coefficients for orbital    15  grp =   12 B2    1
    15  1.0000000000

Rotation coefficients for orbital    16  grp =   13 E     1
    16  0.0000000000   17 -1.0000000000

Rotation coefficients for orbital    17  grp =   13 E     2
    16 -1.0000000000   17  0.0000000000

Rotation coefficients for orbital    18  grp =   14 A1    1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   15 B1    1
    19  1.0000000000

Rotation coefficients for orbital    20  grp =   16 B2    1
    20  1.0000000000

Rotation coefficients for orbital    21  grp =   17 E     1
    21 -1.0000000000   22  0.0000000000

Rotation coefficients for orbital    22  grp =   17 E     2
    21  0.0000000000   22 -1.0000000000

Rotation coefficients for orbital    23  grp =   18 A2    1
    23  1.0000000000

Rotation coefficients for orbital    24  grp =   19 E     1
    24  0.0000000000   25 -1.0000000000

Rotation coefficients for orbital    25  grp =   19 E     2
    24 -1.0000000000   25  0.0000000000
Number of orbital groups and degeneracis are        19
  1  2  1  1  1  2  1  1  1  2  1  1  2  1  1  1  2  1  2
Number of orbital groups and number of electrons when fully occupied
        19
  2  4  2  2  2  4  2  2  2  4  2  2  4  2  2  2  4  2  4
Time Now =        34.0063  Delta time =         5.9372 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   19
Orbital     1 of  A1    1 symmetry normalization integral =  1.00000550
Orbital     2 of  E     1 symmetry normalization integral =  0.83436731
Orbital     3 of  B2    1 symmetry normalization integral =  0.83263193
Orbital     4 of  A1    1 symmetry normalization integral =  0.83782078
Orbital     5 of  A1    1 symmetry normalization integral =  1.00000102
Orbital     6 of  E     1 symmetry normalization integral =  1.00001362
Orbital     7 of  B2    1 symmetry normalization integral =  0.99999962
Orbital     8 of  A1    1 symmetry normalization integral =  0.98781103
Orbital     9 of  B2    1 symmetry normalization integral =  0.98650275
Orbital    10 of  E     1 symmetry normalization integral =  0.98642228
Orbital    11 of  A1    1 symmetry normalization integral =  0.99875464
Orbital    12 of  B2    1 symmetry normalization integral =  0.99885635
Orbital    13 of  E     1 symmetry normalization integral =  0.99887714
Orbital    14 of  A1    1 symmetry normalization integral =  0.99824717
Orbital    15 of  B1    1 symmetry normalization integral =  0.99811142
Orbital    16 of  B2    1 symmetry normalization integral =  0.99860632
Orbital    17 of  E     1 symmetry normalization integral =  0.99860173
Orbital    18 of  A2    1 symmetry normalization integral =  0.99808116
Orbital    19 of  E     1 symmetry normalization integral =  0.99810718
Time Now =        49.5358  Delta time =        15.5295 End ExpOrb

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =   19
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     2
Orbital     1  is num     2  type =   5  name - E     1
Orbital     2  is num     3  type =   6  name - E     2
Set    3  has degeneracy     1
Orbital     1  is num     4  type =   4  name - B2    1
Set    4  has degeneracy     1
Orbital     1  is num     5  type =   1  name - A1    1
Set    5  has degeneracy     1
Orbital     1  is num     6  type =   1  name - A1    1
Set    6  has degeneracy     2
Orbital     1  is num     7  type =   5  name - E     1
Orbital     2  is num     8  type =   6  name - E     2
Set    7  has degeneracy     1
Orbital     1  is num     9  type =   4  name - B2    1
Set    8  has degeneracy     1
Orbital     1  is num    10  type =   1  name - A1    1
Set    9  has degeneracy     1
Orbital     1  is num    11  type =   4  name - B2    1
Set   10  has degeneracy     2
Orbital     1  is num    12  type =   5  name - E     1
Orbital     2  is num    13  type =   6  name - E     2
Set   11  has degeneracy     1
Orbital     1  is num    14  type =   1  name - A1    1
Set   12  has degeneracy     1
Orbital     1  is num    15  type =   4  name - B2    1
Set   13  has degeneracy     2
Orbital     1  is num    16  type =   5  name - E     1
Orbital     2  is num    17  type =   6  name - E     2
Set   14  has degeneracy     1
Orbital     1  is num    18  type =   1  name - A1    1
Set   15  has degeneracy     1
Orbital     1  is num    19  type =   3  name - B1    1
Set   16  has degeneracy     1
Orbital     1  is num    20  type =   4  name - B2    1
Set   17  has degeneracy     2
Orbital     1  is num    21  type =   5  name - E     1
Orbital     2  is num    22  type =   6  name - E     2
Set   18  has degeneracy     1
Orbital     1  is num    23  type =   2  name - A2    1
Set   19  has degeneracy     2
Orbital     1  is num    24  type =   5  name - E     1
Orbital     2  is num    25  type =   6  name - E     2
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  E        occ = 4
    3  B2       occ = 2
    4  A1       occ = 2
    5  A1       occ = 2
    6  E        occ = 4
    7  B2       occ = 2
    8  A1       occ = 2
    9  B2       occ = 2
   10  E        occ = 4
   11  A1       occ = 2
   12  B2       occ = 2
   13  E        occ = 4
   14  A1       occ = 2
   15  B1       occ = 2
   16  B2       occ = 2
   17  E        occ = 4
   18  A2       occ = 2
   19  E        occ = 3
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)    E     (  2)
Symmetry of the continuum orbital is A1
Symmetry of the total state is E
Spin degeneracy of the total state is =    1
Symmetry of the target state is E
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  E        occ = 4
    3  B2       occ = 2
    4  A1       occ = 2
    5  A1       occ = 2
    6  E        occ = 4
    7  B2       occ = 2
    8  A1       occ = 2
    9  B2       occ = 2
   10  E        occ = 4
   11  A1       occ = 2
   12  B2       occ = 2
   13  E        occ = 4
   14  A1       occ = 2
   15  B1       occ = 2
   16  B2       occ = 2
   17  E        occ = 4
   18  A2       occ = 2
   19  E        occ = 4
Open shell symmetry types
    1  E      iele =    3
Use only configuration of type E
MS2 =    1  SDGN =    2
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    2    3
    2:   1.00000   0.00000    1    2    4
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3
Configuration    2
    1:   1.00000   0.00000    1    2    4
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    4

 representation E      component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3
Open shell symmetry types
    1  E      iele =    3
    2  A1     iele =    1
Use only configuration of type E
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    4    6
    2:  -0.70711   0.00000    2    3    4    5

 representation E      component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    6
    2:   0.70711   0.00000    1    3    4    5
Open shell symmetry types
    1  E      iele =    3
Use only configuration of type E
MS2 =    1  SDGN =    2
NumAlpha =    2
List of determinants found
    1:   1.00000   0.00000    1    2    3
    2:   1.00000   0.00000    1    2    4
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3
Configuration    2
    1:   1.00000   0.00000    1    2    4
 Each irreducable representation is present the number of times indicated
    E     (  1)

 representation E      component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    4

 representation E      component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Closed shell target
Time Now =        49.5895  Delta time =         0.0537 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Configuration     2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   50   52
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   48   49   50   51
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   52
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   49   50   51
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    1
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2
   1   0.10000000E+01  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2
   1   0.00000000E+00  0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   50
One electron matrix elements between initial and final states
    1:    1.414213562    0.000000000  <   47|   51>

Reduced formula list
    1   19    1  0.1414213562E+01
Time Now =        49.5916  Delta time =         0.0021 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     1 or A1
Symmetry of total final state (iTotalSym) =     5 or E
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or E
List of unique symmetry types
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types B2    A2
 Each irreducable representation is present the number of times indicated
    B1    (  1)
In the product of the symmetry types B2    B1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
In the product of the symmetry types B2    B2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
In the product of the symmetry types B2    E
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     1 Dipole symmetry type =B2
     Final state symmetry type = B2     Target sym =E
     Continuum type =E
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     2 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =A1
In the product of the symmetry types E     A2
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     3 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =A2
In the product of the symmetry types E     B1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     4 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =B1
In the product of the symmetry types E     B2
 Each irreducable representation is present the number of times indicated
    E     (  1)
Unique dipole matrix type     5 Dipole symmetry type =E
     Final state symmetry type = E      Target sym =E
     Continuum type =B2
In the product of the symmetry types E     E
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    A2    (  1)
    B1    (  1)
    B2    (  1)
In the product of the symmetry types B2    A1
 Each irreducable representation is present the number of times indicated
    B2    (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Irreducible representation containing the dipole operator is E
Number of different dipole operators in this representation is     1
In the product of the symmetry types E     A1
 Each irreducable representation is present the number of times indicated
    E     (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb 24  Coef =   1.4142135620
Symmetry type to write out (SymTyp) =A1
Time Now =        82.9808  Delta time =        33.3892 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     49.00000000
Time Now =        97.3210  Delta time =        14.3402 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.49000000E+02 facnorm =  0.10000000E+01
Time Now =        97.3368  Delta time =         0.0158 Electronic part
Time Now =        97.3497  Delta time =         0.0129 End StPot

+ Command FileName
+ 'MatrixElements' 'test25.idy' 'REWIND'
Opening file test25.idy at position REWIND

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.80000000E+00 eV (  0.29399461E-01 AU)
Time Now =        97.5125  Delta time =         0.1627 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    54
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   25
Number of orthogonality constraints (NOrthUse) =    6
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        97.6307  Delta time =         0.1182 Energy independent setup

Compute solution for E =    0.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.44260333E-04
 i =  2  lval =   3  stpote =  0.16229833E-13
 i =  3  lval =   3  stpote =  0.59048051E+00
 i =  4  lval =   4  stpote =  0.59771291E+01
Number of asymptotic regions =      10
Final point in integration =   0.18670480E+03
Iter =   1 c.s. =      0.16301120 (a.u)  rmsk=     0.06729108
Iter =   2 c.s. =      0.18385193 (a.u)  rmsk=     0.03318503
Iter =   3 c.s. =      0.17519918 (a.u)  rmsk=     0.00552744
Iter =   4 c.s. =      0.17541102 (a.u)  rmsk=     0.00015860
Iter =   5 c.s. =      0.17541121 (a.u)  rmsk=     0.00000027
Iter =   6 c.s. =      0.17541121 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.13137542E+00, 0.18939054E+00) ( 0.51608875E-01, 0.56160661E-01)
  (-0.13348256E+00,-0.39692162E-02) ( 0.17347489E+00, 0.19976680E-02)
  (-0.13309866E+00, 0.99428880E-02) ( 0.33882861E-01,-0.13694167E-02)
  ( 0.93774817E-03, 0.27735544E-03) (-0.21277659E-02,-0.19591328E-04)
  ( 0.25393187E-03, 0.10436053E-04) (-0.10178379E-03, 0.18622261E-04)
  (-0.58540131E-05,-0.75023286E-07) (-0.18928609E-04, 0.57408238E-06)
  ( 0.14784568E-04,-0.85237132E-06) ( 0.24117151E-06, 0.11149394E-06)
  (-0.11819871E-05,-0.51071655E-08) (-0.39839452E-07,-0.33808601E-08)
  ( 0.24915261E-08,-0.32579010E-08) ( 0.18050934E-07, 0.15804078E-08)
     ROW  2
  (-0.10461614E+00, 0.14190311E+00) ( 0.39311339E-01, 0.45429966E-01)
  (-0.45297771E-01, 0.66445704E-02) ( 0.87490256E-01, 0.13107881E-02)
  (-0.69181149E-01, 0.72399913E-02) ( 0.16765473E-01,-0.12047920E-02)
  ( 0.47803071E-03, 0.21605198E-03) (-0.10490955E-02, 0.46867403E-05)
  ( 0.12054319E-03, 0.81550497E-05) (-0.40086316E-04, 0.14057353E-04)
  (-0.27260760E-05,-0.77062567E-07) (-0.88025874E-05, 0.58628323E-06)
  ( 0.65428227E-05,-0.70534148E-06) ( 0.13377973E-06, 0.80516215E-07)
  (-0.55300100E-06, 0.10368162E-07) (-0.19417763E-07,-0.22599405E-08)
  (-0.28369202E-09,-0.23954111E-08) ( 0.92579443E-08, 0.84084333E-09)
Iter =   6 c.s. =      0.17541121 (a.u)  rmsk=     0.00000000
Time Now =       552.6510  Delta time =       455.0203 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.48000000E+01 eV (  0.17639676E+00 AU)
Time Now =       552.8122  Delta time =         0.1612 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    54
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   25
Number of orthogonality constraints (NOrthUse) =    6
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       552.9196  Delta time =         0.1074 Energy independent setup

Compute solution for E =    4.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.35408276E-04
 i =  2  lval =   3  stpote =  0.16348761E-13
 i =  3  lval =   3  stpote =  0.59048049E+00
 i =  4  lval =   4  stpote =  0.59771285E+01
Number of asymptotic regions =      13
Final point in integration =   0.10567585E+03
Iter =   1 c.s. =      0.87925726 (a.u)  rmsk=     0.15628120
Iter =   2 c.s. =      0.76084835 (a.u)  rmsk=     0.03779669
Iter =   3 c.s. =      0.76188071 (a.u)  rmsk=     0.00038912
Iter =   4 c.s. =      0.76185081 (a.u)  rmsk=     0.00001413
Iter =   5 c.s. =      0.76185075 (a.u)  rmsk=     0.00000008
Iter =   6 c.s. =      0.76185075 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.16047166E-01, 0.16273220E+00) (-0.13363746E+00,-0.12523178E+00)
  (-0.15645624E+00,-0.14434540E+00) ( 0.51896704E+00,-0.20547782E-01)
  (-0.32749436E+00, 0.56415514E-01) ( 0.20179198E+00,-0.18198229E-01)
  ( 0.17040459E-01, 0.17814389E-02) (-0.28866427E-01, 0.11442779E-02)
  ( 0.71406627E-02,-0.19507690E-03) (-0.12202507E-02, 0.43129444E-03)
  (-0.37561371E-03, 0.20714772E-04) (-0.10905656E-02, 0.71944975E-04)
  ( 0.74879105E-03,-0.67544971E-04) ( 0.49410934E-04, 0.61029427E-05)
  (-0.16016507E-03, 0.75533087E-05) (-0.13608537E-04, 0.34270384E-06)
  (-0.17025692E-05,-0.52104187E-06) ( 0.70154843E-05,-0.68570161E-07)
     ROW  2
  (-0.21485557E-02, 0.10630266E+00) (-0.77239046E-01,-0.65369328E-01)
  (-0.90403498E-01,-0.90647699E-01) ( 0.35572893E+00,-0.13344634E-01)
  (-0.22234484E+00, 0.36339091E-01) ( 0.13324237E+00,-0.11362095E-01)
  ( 0.12204201E-01, 0.12186839E-02) (-0.19189515E-01, 0.67942355E-03)
  ( 0.46641264E-02,-0.11638653E-03) (-0.44533395E-03, 0.29511220E-03)
  (-0.24013331E-03, 0.13467393E-04) (-0.67882701E-03, 0.46986295E-04)
  ( 0.43977362E-03,-0.45404703E-04) ( 0.36852530E-04, 0.42944043E-05)
  (-0.10063826E-03, 0.49833898E-05) (-0.89559945E-05, 0.22132839E-06)
  (-0.17564888E-05,-0.38070161E-06) ( 0.47459957E-05,-0.32404708E-07)
Iter =   6 c.s. =      0.76185075 (a.u)  rmsk=     0.00000000
Time Now =      1007.7678  Delta time =       454.8482 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =      1007.7930  Delta time =         0.0252 End CnvIdy
Found     2 energies :
     0.80000     4.80000
List of matrix element types found   Number =    1
    1  Cont Sym A1     Targ Sym E      Total Sym E
Keeping     2 energies :
     0.80000     4.80000
Time Now =      1007.7930  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.24248489E+00
Photoelectron Energy in eV    0.80000000E+00
Photoelectron Energy a.u.    0.29399461E-01
Photon Energy (eV)    0.16000000E+02
Kinetic Energy (a.u.)    0.59396425E+00
Photoelectron Energy in eV    0.48000000E+01
Photoelectron Energy a.u.    0.17639676E+00
Photon Energy (eV)    0.20000000E+02

     Sigma LENGTH   at all energies
      Eng
    16.0000  0.25335286E+00
    20.0000  0.13287421E+01

     Sigma MIXED    at all energies
      Eng
    16.0000  0.26107542E+00
    20.0000  0.12008067E+01

     Sigma VELOCITY at all energies
      Eng
    16.0000  0.28861683E+00
    20.0000  0.10893070E+01

     Beta LENGTH   at all energies
      Eng
    16.0000  0.47666570E-01
    20.0000  0.11980194E+00

     Beta MIXED    at all energies
      Eng
    16.0000  0.47171339E-01
    20.0000  0.12821836E+00

     Beta VELOCITY at all energies
      Eng
    16.0000  0.49392265E-01
    20.0000  0.13467162E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     16.0000     0.2534     0.2611     0.2886     0.0477     0.0472     0.0494
EPhi     20.0000     1.3287     1.2008     1.0893     0.1198     0.1282     0.1347
Time Now =      1007.9065  Delta time =         0.1134 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test25.tmt' 'REWIND'
Opening file test25.tmt at position REWIND

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.80000000E+00 eV (  0.29399461E-01 AU)
Time Now =      1008.0965  Delta time =         0.1900 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    54
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   25
Number of orthogonality constraints (NOrthUse) =    6
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =      1008.2328  Delta time =         0.1363 Energy independent setup

Compute solution for E =    0.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.44260333E-04
 i =  2  lval =   3  stpote =  0.16229833E-13
 i =  3  lval =   3  stpote =  0.59048051E+00
 i =  4  lval =   4  stpote =  0.59771291E+01
Number of asymptotic regions =      10
Final point in integration =   0.18670480E+03
Iter =   1 c.s. =     77.83867962 angs^2  rmsk=     1.76103745
Iter =   2 c.s. =     54.69322148 angs^2  rmsk=     1.82791996
Iter =   3 c.s. =     61.26274608 angs^2  rmsk=     0.00947640
Iter =   4 c.s. =     61.24425156 angs^2  rmsk=     0.00006716
Iter =   5 c.s. =     61.24535514 angs^2  rmsk=     0.00000165
Iter =   6 c.s. =     61.24534216 angs^2  rmsk=     0.00000004
     REAL PART -  Final k matrix
     ROW  1
  0.13316231E+01 0.17049072E+00 0.11665427E+00 0.10623969E-01 0.67731573E-01
 -0.14440880E-01 0.19276790E-02 0.40425130E-03 0.66378536E-04 0.11785460E-03
 -0.84517161E-06 0.74701266E-05-0.68718490E-05 0.59991832E-06 0.28698214E-06
 -0.14534346E-07-0.17555085E-07 0.20034854E-08
     ROW  2
  0.17049153E+00-0.71234476E+00-0.49029608E-01-0.98463970E-02 0.12595200E-01
 -0.46827611E-02 0.80061975E-04 0.20998366E-03-0.71915553E-05 0.41608358E-05
  0.15635473E-06 0.13107780E-05-0.69681399E-06 0.16085341E-07 0.58891311E-07
  0.79725621E-09-0.10892389E-09-0.77269847E-09
     ROW  3
  0.11666475E+00-0.49029479E-01-0.15897854E+00 0.10648181E-01 0.96017197E-02
  0.98562481E-03-0.12040338E-03-0.88930970E-04-0.10106522E-04-0.12522488E-04
  0.26380396E-06-0.92508008E-06 0.83922562E-06-0.85302699E-07-0.37717353E-07
  0.23639001E-08 0.28266771E-08-0.37854450E-09
     ROW  4
  0.10622518E-01-0.98464211E-02 0.10648185E-01 0.77036809E-02-0.16142378E-03
 -0.88615811E-03-0.10292208E-03-0.12635562E-04-0.17459954E-04 0.53519866E-05
 -0.29287877E-06 0.80776998E-07 0.23161625E-06 0.45156022E-07-0.12247143E-07
 -0.19985833E-08-0.93272053E-09 0.57178792E-09
     ROW  5
  0.67729016E-01 0.12595157E-01 0.96015378E-02-0.16139584E-03 0.28429843E-02
 -0.19411246E-03 0.26629668E-03-0.18359530E-03 0.46551381E-05-0.87805713E-05
 -0.67922688E-08 0.98015343E-06-0.28741034E-06 0.10157097E-06 0.21299994E-07
 -0.16904213E-08-0.28967256E-08 0.89088203E-09
     ROW  6
 -0.14440397E-01-0.46827580E-02 0.98564728E-03-0.88616118E-03-0.19410929E-03
 -0.75044962E-03 0.25819948E-03 0.74339905E-03 0.30902613E-04-0.19180833E-03
 -0.30926101E-06 0.13516393E-04-0.82695052E-05-0.32867349E-06-0.17712596E-07
 -0.51144210E-08 0.35266754E-08 0.72081565E-08
     ROW  7
  0.19275543E-02 0.80060578E-04-0.12040146E-03-0.10292229E-03 0.26629429E-03
  0.25819988E-03 0.15214908E-03-0.77471214E-04-0.31438163E-03-0.26273454E-03
  0.83054507E-05-0.11924784E-03 0.37381829E-05-0.11799843E-04 0.21258950E-05
 -0.30661166E-06 0.78885006E-07 0.53320889E-07
     ROW  8
  0.40424439E-03 0.20998403E-03-0.88931677E-04-0.12635475E-04-0.18359525E-03
  0.74339903E-03-0.77471205E-04-0.12491492E-02-0.10461317E-05 0.20763410E-03
 -0.83593302E-08 0.19805039E-04-0.15366410E-03-0.26512844E-07-0.10094971E-04
  0.20098635E-08 0.14723180E-07 0.14691008E-06
     ROW  9
  0.66371663E-04-0.71916445E-05-0.10106159E-04-0.17459964E-04 0.46549205E-05
  0.30902646E-04-0.31438163E-03-0.10461324E-05 0.79951075E-03-0.12173902E-04
  0.19614266E-03 0.10591155E-03 0.16354042E-06-0.70171396E-04 0.47048313E-06
  0.86856513E-05-0.68925656E-06-0.76579938E-08
     ROW 10
  0.11784520E-03 0.41607263E-05-0.12522192E-04 0.53519419E-05-0.87808644E-05
 -0.19180829E-03-0.26273454E-03 0.20763410E-03-0.12173902E-04-0.64646264E-03
  0.11155373E-06 0.20477955E-04 0.21990825E-03 0.78032270E-05-0.12830443E-03
 -0.13707092E-07 0.71159972E-05-0.47955125E-05
     ROW 11
 -0.84503671E-06 0.15635668E-06 0.26379360E-06-0.29287763E-06-0.67870812E-08
 -0.30926182E-06 0.83054509E-05-0.83593151E-08 0.19614266E-03 0.11155374E-06
  0.10477675E-02-0.24215587E-05 0.99592486E-09-0.33545014E-04-0.13160190E-07
 -0.32975767E-04 0.77010781E-07-0.44845948E-10
     ROW 12
  0.74695288E-05 0.13107780E-05-0.92505169E-06 0.80773363E-07 0.98013461E-06
  0.13516396E-04-0.11924784E-03 0.19805039E-04 0.10591155E-03 0.20477955E-04
 -0.24215587E-05-0.21215162E-03-0.18725155E-04-0.70367991E-04-0.10174543E-03
  0.39307980E-05-0.92610771E-04 0.17620628E-05
     ROW 13
 -0.68712112E-05-0.69681055E-06 0.83919309E-06 0.23162081E-06-0.28738984E-06
 -0.82695081E-05 0.37381832E-05-0.15366410E-03 0.16354043E-06 0.21990825E-03
  0.99592496E-09-0.18725155E-04-0.61581901E-03-0.52886976E-07 0.84864521E-04
 -0.11585403E-08 0.50019689E-05-0.11037288E-03
     ROW 14
  0.59983044E-06 0.16084718E-07-0.85296171E-07 0.45155339E-07 0.10156763E-06
 -0.32867305E-06-0.11799843E-04-0.26512857E-07-0.70171396E-04 0.78032270E-05
 -0.33545014E-04-0.70367991E-04-0.52886976E-07 0.88790428E-04-0.51213755E-05
  0.72309969E-04 0.57667912E-04 0.20620023E-07
     ROW 15
  0.28695405E-06 0.58891644E-07-0.37717815E-07-0.12247428E-07 0.21299382E-07
 -0.17712241E-07 0.21258949E-05-0.10094971E-04 0.47048313E-06-0.12830443E-03
 -0.13160190E-07-0.10174543E-03 0.84864521E-04-0.51213755E-05-0.39276632E-03
  0.16197681E-07-0.67619941E-05 0.88557294E-04
     ROW 16
 -0.14530736E-07 0.79729041E-09 0.23635743E-08-0.19985626E-08-0.16902725E-08
 -0.51144427E-08-0.30661169E-06 0.20098639E-08 0.86856513E-05-0.13707091E-07
 -0.32975767E-04 0.39307980E-05-0.11585403E-08 0.72309969E-04 0.16197681E-07
  0.26603232E-03-0.18964543E-05 0.25438427E-09
     ROW 17
 -0.17551398E-07-0.10888900E-09 0.28263829E-08-0.93267684E-09-0.28965956E-08
  0.35265198E-08 0.78885063E-07 0.14723177E-07-0.68925656E-06 0.71159972E-05
  0.77010781E-07-0.92610772E-04 0.50019689E-05 0.57667912E-04-0.67619941E-05
 -0.18964543E-05-0.20301813E-03-0.61557082E-05
     ROW 18
  0.20027531E-08-0.77272494E-09-0.37848008E-09 0.57177793E-09 0.89085807E-09
  0.72082492E-08 0.53320891E-07 0.14691018E-06-0.76579940E-08-0.47955125E-05
 -0.44845944E-10 0.17620628E-05-0.11037288E-03 0.20620023E-07 0.88557294E-04
  0.25438426E-09-0.61557082E-05-0.35718427E-03
 eigenphases
 -0.6323458E+00 -0.1607129E+00 -0.2080031E-02 -0.9407140E-03 -0.6196949E-03
 -0.5078437E-03 -0.4276517E-03 -0.3175822E-03 -0.2630333E-03 -0.2131882E-03
 -0.1116097E-03  0.8643880E-04  0.2900873E-03  0.3085998E-03  0.8366208E-03
  0.1191520E-02  0.8527084E-02  0.9360146E+00
 eigenphase sum 0.148715E+00  scattering length=  -0.61786
 eps+pi 0.329031E+01  eps+2*pi 0.643190E+01

Iter =   6 c.s. =     61.24534216 angs^2  rmsk=     0.00000004
Time Now =      1229.9709  Delta time =       221.7381 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.15200000E+02  eV
 Do E =  0.48000000E+01 eV (  0.17639676E+00 AU)
Time Now =      1230.1305  Delta time =         0.1596 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    54
Number of partial waves (np) =    76
Number of asymptotic solutions on the right (NAsymR) =    18
Number of asymptotic solutions on the left (NAsymL) =    18
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   25
Number of orthogonality constraints (NOrthUse) =    6
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =      1230.2389  Delta time =         0.1084 Energy independent setup

Compute solution for E =    4.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.35408276E-04
 i =  2  lval =   3  stpote =  0.16348761E-13
 i =  3  lval =   3  stpote =  0.59048049E+00
 i =  4  lval =   4  stpote =  0.59771285E+01
Number of asymptotic regions =      13
Final point in integration =   0.10567585E+03
Iter =   1 c.s. =     14.79271285 angs^2  rmsk=     0.18066035
Iter =   2 c.s. =     16.33538119 angs^2  rmsk=     0.04413276
Iter =   3 c.s. =     16.21485706 angs^2  rmsk=     0.00970912
Iter =   4 c.s. =     16.21613778 angs^2  rmsk=     0.00002108
Iter =   5 c.s. =     16.21620126 angs^2  rmsk=     0.00000562
Iter =   6 c.s. =     16.21620124 angs^2  rmsk=     0.00000000
Iter =   7 c.s. =     16.21620124 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.26116022E+01 0.38349777E+00 0.14673333E+01-0.23995896E+00-0.53124791E+00
  0.13667613E+00-0.52278710E-01-0.21675902E-02-0.41010572E-02-0.67229975E-02
  0.11841927E-03-0.64420633E-03 0.72759361E-03-0.14587544E-03-0.49579521E-04
  0.87009669E-05 0.10644574E-04-0.23969960E-05
     ROW  2
  0.38349744E+00-0.14199370E+01-0.24697349E+00-0.78835124E-01 0.11897597E+00
 -0.84014316E-01 0.41873260E-02 0.85807786E-02-0.53980784E-03 0.44511385E-03
  0.32986562E-04 0.28010810E-03-0.15825106E-03 0.10677891E-04 0.31583227E-04
  0.64629170E-06-0.20066157E-06-0.12014220E-05
     ROW  3
  0.14673337E+01-0.24697366E+00-0.11181229E+01 0.16218697E+00 0.33708606E+00
 -0.70711433E-01 0.26426345E-01 0.56648311E-03 0.18947913E-02 0.33026278E-02
 -0.50753969E-04 0.29159606E-03-0.34677990E-03 0.63560015E-04 0.23595701E-04
 -0.37189634E-05-0.46323380E-05 0.97329113E-06
     ROW  4
 -0.23995912E+00-0.78835159E-01 0.16218702E+00 0.15848562E-01-0.61472111E-01
  0.15901204E-01-0.36837484E-02-0.11770739E-02-0.63365390E-04-0.51253054E-03
 -0.25339204E-04-0.92532738E-04 0.84674011E-04-0.46010496E-05-0.10114204E-04
 -0.58395187E-06 0.51464953E-06 0.12881478E-06
     ROW  5
 -0.53124839E+00 0.11897608E+00 0.33708620E+00-0.61472112E-01-0.90666798E-01
  0.29951276E-01-0.99832698E-02-0.13333195E-02-0.90174139E-03-0.11273538E-02
  0.29674729E-04-0.11762203E-03 0.98717997E-04-0.25954469E-04-0.72626480E-05
  0.17626717E-05 0.11713652E-05-0.10544831E-06
     ROW  6
  0.13667635E+00-0.84014419E-01-0.70711509E-01 0.15901210E-01 0.29951292E-01
 -0.18733729E-02 0.35488935E-02 0.98649829E-03 0.48288339E-03-0.18114765E-03
 -0.19372332E-04 0.91190822E-04-0.95021065E-04-0.14383413E-05-0.63810229E-05
 -0.89682913E-06-0.70210842E-06 0.10620255E-05
     ROW  7
 -0.52278796E-01 0.41873348E-02 0.26426380E-01-0.36837519E-02-0.99832794E-02
  0.35488947E-02-0.48059331E-03-0.46626552E-03-0.95285354E-03-0.85818917E-03
  0.33573713E-04-0.38478827E-03 0.13445764E-04-0.94736581E-04 0.16731047E-04
 -0.74036220E-05 0.15272119E-05 0.17207604E-05
     ROW  8
 -0.21676016E-02 0.85807964E-02 0.56648665E-03-0.11770743E-02-0.13333208E-02
  0.98649857E-03-0.46626555E-03-0.14160559E-02-0.48093761E-04 0.56324440E-03
  0.67764469E-06 0.14984848E-03-0.43741571E-03-0.12465690E-05-0.79783799E-04
  0.25135365E-06 0.14311451E-05 0.28572176E-05
     ROW  9
 -0.41010668E-02-0.53980904E-03 0.18947958E-02-0.63365912E-04-0.90174289E-03
  0.48288370E-03-0.95285361E-03-0.48093766E-04 0.12772136E-02-0.47272421E-04
  0.63774795E-03 0.34470281E-03 0.62400557E-05-0.21747588E-03-0.16383569E-05
  0.67502883E-04-0.63261919E-05-0.25605343E-06
     ROW 10
 -0.67230115E-02 0.44511399E-03 0.33026341E-02-0.51253129E-03-0.11273558E-02
 -0.18114729E-03-0.85818923E-03 0.56324440E-03-0.47272416E-04-0.87139580E-03
  0.34565107E-05 0.60943181E-04 0.69652096E-03 0.58141840E-04-0.37350361E-03
 -0.72727207E-06 0.53655482E-04-0.37738843E-04
     ROW 11
  0.11841969E-03 0.32986691E-04-0.50754197E-04-0.25339179E-04 0.29674812E-04
 -0.19372352E-04 0.33573718E-04 0.67764531E-06 0.63774795E-03 0.34565112E-05
  0.17938144E-02-0.60813020E-05-0.61774238E-07-0.11821654E-03-0.41532162E-06
 -0.10047697E-03-0.32382000E-06 0.39901072E-08
     ROW 12
 -0.64420842E-03 0.28010935E-03 0.29159696E-03-0.92532859E-04-0.11762236E-03
  0.91190896E-04-0.38478829E-03 0.14984848E-03 0.34470281E-03 0.60943180E-04
 -0.60813021E-05-0.37238978E-03-0.11319724E-03-0.23597198E-03-0.34283985E-03
  0.28420354E-04-0.25699774E-03 0.91540766E-05
     ROW 13
  0.72759578E-03-0.15825159E-03-0.34678090E-03 0.84674145E-04 0.98718340E-04
 -0.95021143E-04 0.13445783E-04-0.43741570E-03 0.62400562E-05 0.69652096E-03
 -0.61774196E-07-0.11319724E-03-0.99894872E-03-0.22978531E-05 0.28605817E-03
 -0.99270887E-07 0.39411268E-04-0.29449839E-03
     ROW 14
 -0.14587609E-03 0.10677954E-04 0.63560341E-04-0.46010927E-05-0.25954592E-04
 -0.14383107E-05-0.94736590E-04-0.12465697E-05-0.21747588E-03 0.58141839E-04
 -0.11821654E-03-0.23597198E-03-0.22978530E-05 0.13403550E-03-0.30013845E-04
  0.25728336E-03 0.20674958E-03 0.98371807E-06
     ROW 15
 -0.49579751E-04 0.31583448E-04 0.23595799E-04-0.10114219E-04-0.72626881E-05
 -0.63810134E-05 0.16731044E-04-0.79783799E-04-0.16383571E-05-0.37350361E-03
 -0.41532162E-06-0.34283985E-03 0.28605817E-03-0.30013845E-04-0.62758982E-03
  0.77414001E-06-0.24392314E-04 0.31400101E-03
     ROW 16
  0.87010262E-05 0.64629795E-06-0.37189959E-05-0.58394783E-06 0.17626844E-05
 -0.89683249E-06-0.74036210E-05 0.25135377E-06 0.67502883E-04-0.72727196E-06
 -0.10047697E-03 0.28420354E-04-0.99270898E-07 0.25728336E-03 0.77414001E-06
  0.46438410E-03-0.10773284E-04 0.17833362E-07
     ROW 17
  0.10644635E-04-0.20065676E-06-0.46323710E-05 0.51465420E-06 0.11713773E-05
 -0.70211183E-06 0.15272128E-05 0.14311452E-05-0.63261918E-05 0.53655482E-04
 -0.32382000E-06-0.25699774E-03 0.39411268E-04 0.20674958E-03-0.24392314E-04
 -0.10773284E-04-0.36397765E-03-0.43551695E-04
     ROW 18
 -0.23970070E-05-0.12014394E-05 0.97329837E-06 0.12881389E-06-0.10545048E-06
  0.10620263E-05 0.17207602E-05 0.28572176E-05-0.25605344E-06-0.37738843E-04
  0.39901073E-08 0.91540766E-05-0.29449839E-03 0.98371807E-06 0.31400101E-03
  0.17833362E-07-0.43551695E-04-0.62489331E-03
 eigenphases
 -0.1310065E+01 -0.9298255E+00 -0.2166709E+00 -0.2440389E-02 -0.1411240E-02
 -0.9102230E-03 -0.8366531E-03 -0.4853147E-03 -0.2468608E-03 -0.2155785E-03
  0.1577491E-03  0.4495223E-03  0.6175531E-03  0.1553855E-02  0.2460681E-02
  0.5700872E-02  0.1963387E-01  0.5604866E-01
 eigenphase sum-0.237649E+01  scattering length=  -1.61663
 eps+pi 0.765107E+00  eps+2*pi 0.390670E+01

Iter =   7 c.s. =     16.21620124 angs^2  rmsk=     0.00000000
Time Now =      1495.3692  Delta time =       265.1303 End ScatStab
Time Now =      1495.3772  Delta time =         0.0080 Finalize