----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test21
#
# electron scattering from C6F3H3
#
 LMax   25     # maximum l to be used for wave functions
 LMaxA  15     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
 RMax  10.5    # maximum R in inner grid
 EMax  60.0    # EMax, maximum asymptotic energy in eV
 EngForm       # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
 ScatEng 30.   # list of scattering energies
 FegeEng 9.5    # Energy correction used in the fege potential
 ScatContSym 'A1PP'  # Scattering symmetry
 LMaxK   10      # Maximum l in the K matirx

Convert '/home/lucchese/ePolyScatE/tests/test21.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat

+ End of input reached
+ Data Record LMax - 25
+ Data Record LMaxA - 15
+ Data Record MMax - 3
+ Data Record RMax - 10.5
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record ScatEng - 30.
+ Data Record FegeEng - 9.5
+ Data Record ScatContSym - 'A1PP'
+ Data Record LMaxK - 10

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test21.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    33  number already selected     0
Number of orbitals selected is    33
Highest orbital read in is =   33
Time Now =         0.0559  Delta time =         0.0559 End g03cnv

Atoms found   12
Z =  6 r =   0.0000000000   1.6272998657   0.0000000000
Z =  9 r =   0.0000000000   2.9467066524   0.0000000000
Z =  6 r =   1.4092821616   0.8136499329   0.0000000000
Z =  1 r =   2.3697090130   1.3681522723   0.0000000000
Z =  6 r =   1.4092821616  -0.8136499329   0.0000000000
Z =  9 r =   2.5519220760  -1.4733533262   0.0000000000
Z =  6 r =   0.0000000000  -1.6272998657   0.0000000000
Z =  1 r =   0.0000000000  -2.7363045447   0.0000000000
Z =  6 r =  -1.4092821616  -0.8136499329   0.0000000000
Z =  9 r =  -2.5519220760  -1.4733533262   0.0000000000
Z =  6 r =  -1.4092821616   0.8136499329   0.0000000000
Z =  1 r =  -2.3697090130   1.3681522723   0.0000000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D3h
Reduce angular grid using nthd =  2  nphid =  1
Found point group for abelian subgroup C2v
Time Now =         0.0602  Delta time =         0.0042 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.00000  1.00000  0.00000   6  1.62730   9  2.94671   6  1.62730   1  2.73630
  3  0.86603  0.50000  0.00000   6  1.62730   1  2.73630   6  1.62730   9  2.94671
  4  0.86603 -0.50000  0.00000   6  1.62730   9  2.94671   6  1.62730   1  2.73630
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  0.50000 -0.86603  0.00000
  4  0.50000  0.86603  0.00000
Determineing angular grid in GetAxMax  LmAx =   25  LMaxA =   15  LMaxAb =   50
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47 48 49 50
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D3h
LMax = =   25
 The dimension of each irreducable representation is
    A1P   (  1)    A2P   (  1)    EP    (  2)    A1PP  (  1)    A2PP  (  1)
    EPP   (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1P       1         1         47       1  1  1
 A2P       1         2         39       1 -1 -1
 EP        1         3         85       1 -1 -1
 EP        2         4         85       1  1  1
 A1PP      1         5         26      -1 -1  1
 A2PP      1         6         44      -1  1 -1
 EPP       1         7         70      -1 -1  1
 EPP       2         8         70      -1  1 -1
Time Now =         4.7392  Delta time =         4.6791 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is C2v
LMax = =   50
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    B1    (  1)    B2    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1        676       1  1  1
 A2        1         2        625      -1 -1  1
 B1        1         3        650       1 -1 -1
 B2        1         4        650      -1  1 -1
Time Now =        31.0639  Delta time =        26.3246 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    10.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  60.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     1.62730  Alpha Max = 0.30475E+04
    3  Center at =     2.73630  Alpha Max = 0.18731E+02
    4  Center at =     2.94671  Alpha Max = 0.70017E+04

Generated Grid

  irg  nin  ntot      step          R end
    1   64    64    0.10341E-01     0.66179
    2   56   120    0.10341E-01     1.24086
    3    8   128    0.10124E-01     1.32185
    4    8   136    0.79919E-02     1.38579
    5    8   144    0.63190E-02     1.43634
    6    8   152    0.49964E-02     1.47631
    7    8   160    0.39505E-02     1.50792
    8    8   168    0.31236E-02     1.53290
    9    8   176    0.24698E-02     1.55266
   10    8   184    0.19528E-02     1.56829
   11    8   192    0.15441E-02     1.58064
   12    8   200    0.12209E-02     1.59041
   13    8   208    0.96533E-03     1.59813
   14    8   216    0.76327E-03     1.60423
   15    8   224    0.60351E-03     1.60906
   16    8   232    0.47718E-03     1.61288
   17    8   240    0.37730E-03     1.61590
   18    8   248    0.29833E-03     1.61828
   19    8   256    0.23588E-03     1.62017
   20    8   264    0.19163E-03     1.62170
   21   24   288    0.19094E-03     1.62629
   22    8   296    0.12657E-03     1.62730
   23   32   328    0.19094E-03     1.63341
   24    8   336    0.20367E-03     1.63504
   25    8   344    0.25799E-03     1.63710
   26    8   352    0.32678E-03     1.63972
   27    8   360    0.41392E-03     1.64303
   28    8   368    0.52430E-03     1.64722
   29    8   376    0.66412E-03     1.65254
   30    8   384    0.84122E-03     1.65927
   31    8   392    0.10655E-02     1.66779
   32    8   400    0.13497E-02     1.67859
   33    8   408    0.17096E-02     1.69226
   34    8   416    0.21655E-02     1.70959
   35    8   424    0.27430E-02     1.73153
   36    8   432    0.34744E-02     1.75933
   37    8   440    0.44009E-02     1.79454
   38    8   448    0.55745E-02     1.83913
   39    8   456    0.70610E-02     1.89562
   40    8   464    0.89440E-02     1.96717
   41   40   504    0.10341E-01     2.38079
   42    8   512    0.93016E-02     2.45521
   43    8   520    0.73548E-02     2.51404
   44    8   528    0.58153E-02     2.56057
   45    8   536    0.45981E-02     2.59735
   46    8   544    0.36356E-02     2.62644
   47    8   552    0.28746E-02     2.64943
   48   32   584    0.24355E-02     2.72737
   49    8   592    0.11167E-02     2.73630
   50   32   624    0.24355E-02     2.81424
   51    8   632    0.25979E-02     2.83503
   52    8   640    0.29221E-02     2.85840
   53    8   648    0.23104E-02     2.87689
   54    8   656    0.18268E-02     2.89150
   55    8   664    0.14444E-02     2.90306
   56    8   672    0.11421E-02     2.91219
   57    8   680    0.90304E-03     2.91942
   58    8   688    0.71402E-03     2.92513
   59    8   696    0.56456E-03     2.92965
   60    8   704    0.44639E-03     2.93322
   61    8   712    0.35296E-03     2.93604
   62    8   720    0.27908E-03     2.93827
   63    8   728    0.22066E-03     2.94004
   64    8   736    0.17447E-03     2.94143
   65    8   744    0.13795E-03     2.94254
   66   32   776    0.12597E-03     2.94657
   67    8   784    0.17223E-04     2.94671
   68   32   816    0.12597E-03     2.95074
   69    8   824    0.13437E-03     2.95181
   70    8   832    0.17020E-03     2.95317
   71    8   840    0.21559E-03     2.95490
   72    8   848    0.27308E-03     2.95708
   73    8   856    0.34590E-03     2.95985
   74    8   864    0.43814E-03     2.96336
   75    8   872    0.55498E-03     2.96780
   76    8   880    0.70298E-03     2.97342
   77    8   888    0.89044E-03     2.98054
   78    8   896    0.11279E-02     2.98957
   79    8   904    0.14287E-02     3.00100
   80    8   912    0.18096E-02     3.01547
   81    8   920    0.22922E-02     3.03381
   82    8   928    0.29035E-02     3.05704
   83    8   936    0.36777E-02     3.08646
   84    8   944    0.46584E-02     3.12373
   85    8   952    0.59007E-02     3.17093
   86    8   960    0.74742E-02     3.23073
   87    8   968    0.94673E-02     3.30647
   88    8   976    0.11992E-01     3.40240
   89   64  1040    0.12467E-01     4.20027
   90   64  1104    0.12467E-01     4.99814
   91   64  1168    0.12467E-01     5.79602
   92   64  1232    0.12467E-01     6.59389
   93   64  1296    0.12467E-01     7.39176
   94   64  1360    0.12467E-01     8.18963
   95   64  1424    0.12467E-01     8.98751
   96   64  1488    0.12467E-01     9.78538
   97   56  1544    0.12467E-01    10.48352
   98    8  1552    0.20605E-02    10.50000
Time Now =        31.0663  Delta time =         0.0025 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   15
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       60.00000
Print flag (iprnfg) =    0
lmasymtyts =   15
 Actual value of lmasym found =     15
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.01034  to (    7)         0.07238
    2 L =    3  from (    8)         0.08272  to (   15)         0.15511
    3 L =    7  from (   16)         0.16545  to (   23)         0.23783
    4 L =   11  from (   24)         0.24817  to (   39)         0.40328
    5 L =   15  from (   40)         0.41362  to (  103)         1.06507
    6 L =   19  from (  104)         1.07541  to (  111)         1.14780
    7 L =   25  from (  112)         1.15814  to ( 1016)         3.90107
    8 L =   19  from ( 1017)         3.91354  to ( 1544)        10.48352
    9 L =   15  from ( 1545)        10.48558  to ( 1552)        10.50000

For analytic integrations ntheta =     28  nphi =    112
For numerical integrations ntheti =     52 nphii =    208
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     152
Proc id =    1  Last grid point =     240
Proc id =    2  Last grid point =     328
Proc id =    3  Last grid point =     416
Proc id =    4  Last grid point =     496
Proc id =    5  Last grid point =     576
Proc id =    6  Last grid point =     656
Proc id =    7  Last grid point =     736
Proc id =    8  Last grid point =     816
Proc id =    9  Last grid point =     896
Proc id =   10  Last grid point =     976
Proc id =   11  Last grid point =    1080
Proc id =   12  Last grid point =    1200
Proc id =   13  Last grid point =    1320
Proc id =   14  Last grid point =    1440
Proc id =   15  Last grid point =    1552
Time Now =        33.3897  Delta time =         2.3234 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  EP    1 at max irg =   99  r =   2.94771
     2  EP    2 at max irg =   99  r =   2.94771
     3  A1P   1 at max irg =   99  r =   2.94771
     4  A1P   1 at max irg =   41  r =   1.63341
     5  EP    1 at max irg =   41  r =   1.63341
     6  EP    2 at max irg =   41  r =   1.63341
     7  EP    1 at max irg =   40  r =   1.63188
     8  EP    2 at max irg =   40  r =   1.63188
     9  A1P   1 at max irg =   40  r =   1.63188
    10  A1P   1 at max irg =   66  r =   2.56057
    11  EP    1 at max irg =   66  r =   2.56057
    12  EP    2 at max irg =   66  r =   2.56057
    13  A1P   1 at max irg =   13  r =   1.07541
    14  EP    1 at max irg =   80  r =   2.85840
    15  EP    2 at max irg =   80  r =   2.85840
    16  A2P   1 at max irg =   83  r =   2.90306
    17  A2PP  1 at max irg =   84  r =   2.91219
    18  EPP   1 at max irg =  107  r =   2.95985
    19  EPP   2 at max irg =  107  r =   2.95985
    20  A1P   1 at max irg =  122  r =   3.40240
    21  EP    1 at max irg =  122  r =   3.40240
    22  EP    2 at max irg =  122  r =   3.40240
    23  EP    1 at max irg =   16  r =   1.32185
    24  EP    2 at max irg =   16  r =   1.32185
    25  A1P   1 at max irg =   68  r =   2.62644
    26  EP    1 at max irg =   78  r =   2.81424
    27  EP    2 at max irg =   78  r =   2.81424
    28  A2PP  1 at max irg =  114  r =   3.01547
    29  EP    1 at max irg =   50  r =   1.67859
    30  EP    2 at max irg =   50  r =   1.67859
    31  A2P   1 at max irg =  116  r =   3.05704
    32  EPP   1 at max irg =   57  r =   1.89562
    33  EPP   2 at max irg =   57  r =   1.89562

Rotation coefficients for orbital     1  grp =    1 EP    1
     1  0.8660254038    2 -0.5000000000

Rotation coefficients for orbital     2  grp =    1 EP    2
     1  0.5000000000    2  0.8660254038

Rotation coefficients for orbital     3  grp =    2 A1P   1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    3 A1P   1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    4 EP    1
     5  0.8660254038    6 -0.5000000000

Rotation coefficients for orbital     6  grp =    4 EP    2
     5  0.5000000000    6  0.8660254038

Rotation coefficients for orbital     7  grp =    5 EP    1
     7 -0.8660254038    8 -0.5000000000

Rotation coefficients for orbital     8  grp =    5 EP    2
     7 -0.5000000000    8  0.8660254038

Rotation coefficients for orbital     9  grp =    6 A1P   1
     9  1.0000000000

Rotation coefficients for orbital    10  grp =    7 A1P   1
    10  1.0000000000

Rotation coefficients for orbital    11  grp =    8 EP    1
    11  0.8660254038   12  0.5000000000

Rotation coefficients for orbital    12  grp =    8 EP    2
    11  0.5000000000   12 -0.8660254038

Rotation coefficients for orbital    13  grp =    9 A1P   1
    13  1.0000000000

Rotation coefficients for orbital    14  grp =   10 EP    1
    14  0.8660254038   15  0.5000000000

Rotation coefficients for orbital    15  grp =   10 EP    2
    14  0.5000000000   15 -0.8660254038

Rotation coefficients for orbital    16  grp =   11 A2P   1
    16  1.0000000000

Rotation coefficients for orbital    17  grp =   12 A2PP  1
    17  1.0000000000

Rotation coefficients for orbital    18  grp =   13 EPP   1
    18  0.8660254038   19 -0.5000000000

Rotation coefficients for orbital    19  grp =   13 EPP   2
    18  0.5000000000   19  0.8660254038

Rotation coefficients for orbital    20  grp =   14 A1P   1
    20  1.0000000000

Rotation coefficients for orbital    21  grp =   15 EP    1
    21  0.8660254038   22 -0.5000000000

Rotation coefficients for orbital    22  grp =   15 EP    2
    21  0.5000000000   22  0.8660254038

Rotation coefficients for orbital    23  grp =   16 EP    1
    23 -0.8660254038   24 -0.5000000000

Rotation coefficients for orbital    24  grp =   16 EP    2
    23 -0.5000000000   24  0.8660254038

Rotation coefficients for orbital    25  grp =   17 A1P   1
    25  1.0000000000

Rotation coefficients for orbital    26  grp =   18 EP    1
    26 -0.5000000000   27  0.8660254038

Rotation coefficients for orbital    27  grp =   18 EP    2
    26  0.8660254038   27  0.5000000000

Rotation coefficients for orbital    28  grp =   19 A2PP  1
    28  1.0000000000

Rotation coefficients for orbital    29  grp =   20 EP    1
    29  0.8660254038   30  0.5000000000

Rotation coefficients for orbital    30  grp =   20 EP    2
    29  0.5000000000   30 -0.8660254038

Rotation coefficients for orbital    31  grp =   21 A2P   1
    31  1.0000000000

Rotation coefficients for orbital    32  grp =   22 EPP   1
    32 -0.8660254038   33 -0.5000000000

Rotation coefficients for orbital    33  grp =   22 EPP   2
    32 -0.5000000000   33  0.8660254038
Number of orbital groups and degeneracis are        22
  2  1  1  2  2  1  1  2  1  2  1  1  2  1  2  2  1  2  1  2
  1  2
Number of orbital groups and number of electrons when fully occupied
        22
  4  2  2  4  4  2  2  4  2  4  2  2  4  2  4  4  2  4  2  4
  2  4
Time Now =        39.5336  Delta time =         6.1439 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   22
Orbital     1 of  EP    1 symmetry normalization integral =  0.83308927
Orbital     2 of  A1P   1 symmetry normalization integral =  0.83229645
Orbital     3 of  A1P   1 symmetry normalization integral =  0.99525536
Orbital     4 of  EP    1 symmetry normalization integral =  0.99537167
Orbital     5 of  EP    1 symmetry normalization integral =  0.99526065
Orbital     6 of  A1P   1 symmetry normalization integral =  0.99530937
Orbital     7 of  A1P   1 symmetry normalization integral =  0.98647635
Orbital     8 of  EP    1 symmetry normalization integral =  0.98643888
Orbital     9 of  A1P   1 symmetry normalization integral =  0.99929885
Orbital    10 of  EP    1 symmetry normalization integral =  0.99909639
Orbital    11 of  A2P   1 symmetry normalization integral =  0.99919717
Orbital    12 of  A2PP  1 symmetry normalization integral =  0.99927313
Orbital    13 of  EPP   1 symmetry normalization integral =  0.99877147
Orbital    14 of  A1P   1 symmetry normalization integral =  0.99709227
Orbital    15 of  EP    1 symmetry normalization integral =  0.99706198
Orbital    16 of  EP    1 symmetry normalization integral =  0.99917382
Orbital    17 of  A1P   1 symmetry normalization integral =  0.99941227
Orbital    18 of  EP    1 symmetry normalization integral =  0.99953119
Orbital    19 of  A2PP  1 symmetry normalization integral =  0.99881281
Orbital    20 of  EP    1 symmetry normalization integral =  0.99867788
Orbital    21 of  A2P   1 symmetry normalization integral =  0.99861143
Orbital    22 of  EPP   1 symmetry normalization integral =  0.99954926
Time Now =        57.3970  Delta time =        17.8634 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     66.00000000
Time Now =        58.2047  Delta time =         0.8077 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.66000000E+02 facnorm =  0.10000000E+01
Time Now =        58.2249  Delta time =         0.0202 Electronic part
Time Now =        58.3643  Delta time =         0.1393 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =        58.8734  Delta time =         0.5091 End VcpPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.95000000E+01  eV
 Do E =  0.30000000E+02 eV (  0.11024798E+01 AU)
Time Now =        59.4654  Delta time =         0.5920 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1PP
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    60
Number of partial waves (np) =    26
Number of asymptotic solutions on the right (NAsymR) =     7
Number of asymptotic solutions on the left (NAsymL) =     7
Maximum in the asymptotic region (lpasym) =   15
Number of partial waves in the asymptotic region (npasym) =   16
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   25
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   15
Higest l used in the asymptotic potential (lpzb) =   30
Time Now =        59.7282  Delta time =         0.2627 Energy independent setup

Compute solution for E =   30.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.59230716E+01
 i =  2  lval =   2  stpote = -0.55380884E-14
 i =  3  lval =   3  stpote =  0.17672786E-03
 i =  4  lval =   3  stpote = -0.40134158E+01
Number of asymptotic regions =      54
Final point in integration =   0.13235689E+03
Iter =   1 c.s. =      1.31328674 angs^2  rmsk=     0.27704944
Iter =   2 c.s. =      1.50536433 angs^2  rmsk=     0.17113406
Iter =   3 c.s. =      1.50569328 angs^2  rmsk=     0.00029737
Iter =   4 c.s. =      1.50569272 angs^2  rmsk=     0.00000061
Iter =   5 c.s. =      1.50569272 angs^2  rmsk=     0.00000000
Iter =   6 c.s. =      1.50569272 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.30648987E+01-0.41190511E+00-0.13220706E+00 0.32994102E-01 0.10102013E-01
 -0.35961298E-02-0.16016676E-02
     ROW  2
 -0.41190512E+00 0.20483804E+00 0.31115305E-01-0.11590925E-01-0.44349829E-02
  0.93671252E-03 0.29550578E-03
     ROW  3
 -0.13220707E+00 0.31115306E-01 0.10296494E+00-0.24415257E-02-0.27599380E-02
  0.13584802E-02 0.94522845E-04
     ROW  4
  0.32994105E-01-0.11590925E-01-0.24415258E-02 0.57564769E-01 0.90182158E-04
 -0.53405319E-03-0.18727398E-02
     ROW  5
  0.10102016E-01-0.44349834E-02-0.27599382E-02 0.90182192E-04 0.35412130E-01
  0.10848516E-02 0.92852052E-03
     ROW  6
 -0.35961310E-02 0.93671276E-03 0.13584803E-02-0.53405321E-03 0.10848515E-02
  0.16432831E-01 0.14276033E-03
     ROW  7
 -0.16016682E-02 0.29550590E-03 0.94522896E-04-0.18727398E-02 0.92852051E-03
  0.14276033E-03 0.23441566E-01
 eigenphases
  0.1633481E-01  0.2326298E-01  0.3535417E-01  0.5670908E-01  0.9382755E-01
  0.1490804E+00  0.1261512E+01
 eigenphase sum 0.163608E+01  scattering length=  10.30081
 eps+pi 0.477767E+01  eps+2*pi 0.791927E+01

Iter =   6 c.s. =      1.50569272 angs^2  rmsk=     0.00000000
Time Now =       275.8808  Delta time =       216.1526 End ScatStab
Time Now =       275.8897  Delta time =         0.0089 Finalize