----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# inpute file for test20
#
# electron scattering from C6H6
#

 LMax   25     # maximum l to be used for wave functions
 LMaxA  15     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
 RMax  10.5    # maximum R in inner grid
 EMax  60.0    # EMax, maximum asymptotic energy in eV
 EngForm       # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  AsyPol
 0.25  # SwitchD, distance where switching function is down to 0.1
 6     # nterm, number of terms needed to define asymptotic potential
 1     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 2     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 3     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 4     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 5     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 6     # center for polarization term 1 is for C atom
 1     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 11.85 # value of the spherical polarizability
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function
 ScatEng 30.   # list of scattering energies
 FegeEng 9.25    # Energy correction used in the fege potential
 ScatContSym 'A1G'  # Scattering symmetry
 LMaxK   10      # Maximum l in the K matirx
Convert '/home/lucchese/ePolyScatE/tests/test20.g03' 'g03'
GetBlms
ExpOrb
GetPot
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record LMaxA - 15
+ Data Record MMax - 3
+ Data Record RMax - 10.5
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.25 / 6 / 1 / 1 / 11.85 / 2 / 1 / 11.85 / 3 / 1 / 11.85 / 4 / 1 / 11.85 / 5 / 1 / 11.85 / 6 / 1 / 11.85 / 3 / 0
+ Data Record ScatEng - 30.
+ Data Record FegeEng - 9.25
+ Data Record ScatContSym - 'A1G'
+ Data Record LMaxK - 10

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test20.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    21  number already selected     0
Number of orbitals selected is    21
Highest orbital read in is =   21
Time Now =         0.0834  Delta time =         0.0834 End g03cnv

Atoms found   12
Z =  6 r =   0.0000000000   2.6399474091   0.0000000000
Z =  6 r =   2.2862605967   1.3199737045   0.0000000000
Z =  6 r =   2.2862605967  -1.3199737045   0.0000000000
Z =  6 r =   0.0000000000  -2.6399474091   0.0000000000
Z =  6 r =  -2.2862605967  -1.3199737045   0.0000000000
Z =  6 r =  -2.2862605967   1.3199737045   0.0000000000
Z =  1 r =   0.0000000000   4.6884105383   0.0000000000
Z =  1 r =   4.0602825789   2.3442052691   0.0000000000
Z =  1 r =   4.0602825789  -2.3442052691   0.0000000000
Z =  1 r =   0.0000000000  -4.6884105383   0.0000000000
Z =  1 r =  -4.0602825789  -2.3442052691   0.0000000000
Z =  1 r =  -4.0602825789   2.3442052691   0.0000000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  D6h
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.1009  Delta time =         0.0175 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.00000  1.00000  0.00000   6  2.63995   6  2.63995   1  4.68841   1  4.68841
  3  0.86603  0.50000  0.00000   6  2.63995   6  2.63995   1  4.68841   1  4.68841
  4  0.86603 -0.50000  0.00000   6  2.63995   6  2.63995   1  4.68841   1  4.68841
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  0.50000 -0.86603  0.00000
  4  0.50000  0.86603  0.00000
Determineing angular grid in GetAxMax  LmAx =   25  LMaxA =   15  LMaxAb =   50
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3
  3  3  3  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47 48 49 50
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D6h
LMax = =   25
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    E1G   (  2)
    E2G   (  2)    A1U   (  1)    A2U   (  1)    B1U   (  1)    B2U   (  1)
    E1U   (  2)    E2U   (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    15    16     2     3     9     6
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1         25       1  1  1  1  1  1  1
 A2G       1         2         17       1 -1 -1  1  1 -1 -1
 B1G       1         3         14      -1 -1  1  1 -1 -1  1
 B2G       1         4         19      -1  1 -1  1 -1  1 -1
 E1G       1         5         34      -1 -1  1  1 -1 -1  1
 E1G       2         6         34      -1  1 -1  1 -1  1 -1
 E2G       1         7         41       1 -1 -1  1  1 -1 -1
 E2G       2         8         41       1  1  1  1  1  1  1
 A1U       1         9         12       1  1  1 -1 -1 -1 -1
 A2U       1        10         25       1 -1 -1 -1 -1  1  1
 B1U       1        11         22      -1 -1  1 -1  1  1 -1
 B2U       1        12         22      -1  1 -1 -1  1 -1  1
 E1U       1        13         44      -1 -1  1 -1  1  1 -1
 E1U       2        14         44      -1  1 -1 -1  1 -1  1
 E2U       1        15         36       1 -1 -1 -1 -1  1  1
 E2U       2        16         36       1  1  1 -1 -1 -1 -1
Time Now =         8.5253  Delta time =         8.4244 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   50
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        351       1  1  1  1  1  1  1
 B1G       1         2        325       1 -1 -1  1  1 -1 -1
 B2G       1         3        325      -1 -1  1  1 -1 -1  1
 B3G       1         4        325      -1  1 -1  1 -1  1 -1
 AU        1         5        300       1  1  1 -1 -1 -1 -1
 B1U       1         6        325       1 -1 -1 -1 -1  1  1
 B2U       1         7        325      -1 -1  1 -1  1  1 -1
 B3U       1         8        325      -1  1 -1 -1  1 -1  1
Time Now =        48.3900  Delta time =        39.8647 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    10.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  60.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     2.63995  Alpha Max = 0.45632E+04
    3  Center at =     4.68841  Alpha Max = 0.33865E+02

Generated Grid

  irg  nin  ntot      step          R end
    1   64    64    0.10341E-01     0.66179
    2   64   128    0.10341E-01     1.32359
    3   64   192    0.10341E-01     1.98538
    4   32   224    0.10341E-01     2.31628
    5    8   232    0.84687E-02     2.38403
    6    8   240    0.66961E-02     2.43759
    7    8   248    0.52945E-02     2.47995
    8    8   256    0.41862E-02     2.51344
    9    8   264    0.33100E-02     2.53992
   10    8   272    0.26172E-02     2.56086
   11    8   280    0.20694E-02     2.57741
   12    8   288    0.16362E-02     2.59050
   13    8   296    0.12937E-02     2.60085
   14    8   304    0.10229E-02     2.60903
   15    8   312    0.80881E-03     2.61551
   16    8   320    0.63951E-03     2.62062
   17    8   328    0.50565E-03     2.62467
   18    8   336    0.39981E-03     2.62787
   19    8   344    0.31612E-03     2.63039
   20    8   352    0.24995E-03     2.63239
   21    8   360    0.19764E-03     2.63397
   22    8   368    0.15627E-03     2.63523
   23   24   392    0.15604E-03     2.63897
   24    8   400    0.12217E-03     2.63995
   25   32   432    0.15604E-03     2.64494
   26    8   440    0.16645E-03     2.64627
   27    8   448    0.21083E-03     2.64796
   28    8   456    0.26705E-03     2.65010
   29    8   464    0.33827E-03     2.65280
   30    8   472    0.42847E-03     2.65623
   31    8   480    0.54273E-03     2.66057
   32    8   488    0.68746E-03     2.66607
   33    8   496    0.87078E-03     2.67304
   34    8   504    0.11030E-02     2.68186
   35    8   512    0.13971E-02     2.69304
   36    8   520    0.17697E-02     2.70720
   37    8   528    0.22416E-02     2.72513
   38    8   536    0.28393E-02     2.74784
   39    8   544    0.35965E-02     2.77661
   40    8   552    0.45556E-02     2.81306
   41    8   560    0.57704E-02     2.85922
   42    8   568    0.73092E-02     2.91770
   43    8   576    0.92583E-02     2.99176
   44   64   640    0.10341E-01     3.65356
   45   64   704    0.10341E-01     4.31535
   46    8   712    0.97627E-02     4.39345
   47    8   720    0.77175E-02     4.45519
   48    8   728    0.61021E-02     4.50401
   49    8   736    0.48248E-02     4.54261
   50    8   744    0.38149E-02     4.57312
   51    8   752    0.30164E-02     4.59726
   52    8   760    0.23850E-02     4.61634
   53    8   768    0.18858E-02     4.63142
   54   24   792    0.18114E-02     4.67489
   55    8   800    0.16895E-02     4.68841
   56   32   832    0.18114E-02     4.74637
   57    8   840    0.19321E-02     4.76183
   58    8   848    0.24473E-02     4.78141
   59    8   856    0.31000E-02     4.80621
   60    8   864    0.39266E-02     4.83762
   61    8   872    0.49737E-02     4.87741
   62    8   880    0.63000E-02     4.92781
   63    8   888    0.79801E-02     4.99165
   64    8   896    0.10108E-01     5.07252
   65   64   960    0.12467E-01     5.87039
   66   64  1024    0.12467E-01     6.66826
   67   64  1088    0.12467E-01     7.46613
   68   64  1152    0.12467E-01     8.26401
   69   64  1216    0.12467E-01     9.06188
   70   64  1280    0.12467E-01     9.85975
   71   48  1328    0.12467E-01    10.45815
   72    8  1336    0.52307E-02    10.50000
Time Now =        48.3935  Delta time =         0.0035 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   25
Maximum scattering m (mmaxs) =   25
Maximum numerical integration l (lmaxi) =   50
Maximum numerical integration m (mmaxi) =   50
Maximum l to include in the asymptotic region (lmasym) =   15
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       60.00000
Print flag (iprnfg) =    0
lmasymtyts =   14
 Actual value of lmasym found =     15
Number of regions of the same l expansion (NAngReg) =    9
Angular regions
    1 L =    2  from (    1)         0.01034  to (    7)         0.07238
    2 L =    3  from (    8)         0.08272  to (   15)         0.15511
    3 L =    8  from (   16)         0.16545  to (   39)         0.40328
    4 L =   12  from (   40)         0.41362  to (   63)         0.65145
    5 L =   15  from (   64)         0.66179  to (  167)         1.72687
    6 L =   20  from (  168)         1.73721  to (  183)         1.89232
    7 L =   25  from (  184)         1.90266  to ( 1016)         6.56853
    8 L =   20  from ( 1017)         6.58099  to ( 1328)        10.45815
    9 L =   15  from ( 1329)        10.46338  to ( 1336)        10.50000

For analytic integrations ntheta =     28  nphi =     28
For numerical integrations ntheti =     52 nphii =     52
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     184
Proc id =    1  Last grid point =     256
Proc id =    2  Last grid point =     328
Proc id =    3  Last grid point =     400
Proc id =    4  Last grid point =     472
Proc id =    5  Last grid point =     544
Proc id =    6  Last grid point =     616
Proc id =    7  Last grid point =     688
Proc id =    8  Last grid point =     760
Proc id =    9  Last grid point =     832
Proc id =   10  Last grid point =     904
Proc id =   11  Last grid point =     976
Proc id =   12  Last grid point =    1056
Proc id =   13  Last grid point =    1152
Proc id =   14  Last grid point =    1248
Proc id =   15  Last grid point =    1336
Time Now =        49.7888  Delta time =         1.3953 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1G   1 at max irg =   53  r =   2.64369
     2  E1U   1 at max irg =   53  r =   2.64369
     3  E1U   2 at max irg =   53  r =   2.64369
     4  E2G   1 at max irg =   53  r =   2.64369
     5  E2G   2 at max irg =   53  r =   2.64369
     6  B1U   1 at max irg =   53  r =   2.64369
     7  A1G   1 at max irg =   48  r =   2.63772
     8  E1U   1 at max irg =   57  r =   2.65010
     9  E1U   2 at max irg =   57  r =   2.65010
    10  E2G   1 at max irg =   75  r =   3.23993
    11  E2G   2 at max irg =   75  r =   3.23993
    12  A1G   1 at max irg =   87  r =   4.23262
    13  B1U   1 at max irg =   86  r =   4.14990
    14  B2U   1 at max irg =   68  r =   2.77661
    15  E1U   1 at max irg =   25  r =   2.06810
    16  E1U   2 at max irg =   25  r =   2.06810
    17  A2U   1 at max irg =   68  r =   2.77661
    18  E2G   1 at max irg =   31  r =   2.47995
    19  E2G   2 at max irg =   31  r =   2.47995
    20  E1G   1 at max irg =   69  r =   2.81306
    21  E1G   2 at max irg =   69  r =   2.81306

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 E1U   1
     2  1.0000000000    3  0.0000000000

Rotation coefficients for orbital     3  grp =    2 E1U   2
     2  0.0000000000    3  1.0000000000

Rotation coefficients for orbital     4  grp =    3 E2G   1
     4  0.0000000000    5  1.0000000000

Rotation coefficients for orbital     5  grp =    3 E2G   2
     4 -1.0000000000    5  0.0000000000

Rotation coefficients for orbital     6  grp =    4 B1U   1
     6  1.0000000000

Rotation coefficients for orbital     7  grp =    5 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    6 E1U   1
     8  0.0000000000    9  1.0000000000

Rotation coefficients for orbital     9  grp =    6 E1U   2
     8  1.0000000000    9  0.0000000000

Rotation coefficients for orbital    10  grp =    7 E2G   1
    10  1.0000000000   11  0.0000000000

Rotation coefficients for orbital    11  grp =    7 E2G   2
    10  0.0000000000   11 -1.0000000000

Rotation coefficients for orbital    12  grp =    8 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    9 B1U   1
    13  1.0000000000

Rotation coefficients for orbital    14  grp =   10 B2U   1
    14  1.0000000000

Rotation coefficients for orbital    15  grp =   11 E1U   1
    15  0.0000000000   16 -1.0000000000

Rotation coefficients for orbital    16  grp =   11 E1U   2
    15 -1.0000000000   16  0.0000000000

Rotation coefficients for orbital    17  grp =   12 A2U   1
    17  1.0000000000

Rotation coefficients for orbital    18  grp =   13 E2G   1
    18  1.0000000000   19  0.0000000000

Rotation coefficients for orbital    19  grp =   13 E2G   2
    18  0.0000000000   19 -1.0000000000

Rotation coefficients for orbital    20  grp =   14 E1G   1
    20  1.0000000000   21  0.0000000000

Rotation coefficients for orbital    21  grp =   14 E1G   2
    20  0.0000000000   21  1.0000000000
Number of orbital groups and degeneracis are        14
  1  2  2  1  1  2  2  1  1  1  2  1  2  2
Number of orbital groups and number of electrons when fully occupied
        14
  2  4  4  2  2  4  4  2  2  2  4  2  4  4
Time Now =        54.6031  Delta time =         4.8143 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   14
Orbital     1 of  A1G   1 symmetry normalization integral =  0.96650915
Orbital     2 of  E1U   1 symmetry normalization integral =  0.97039412
Orbital     3 of  E2G   1 symmetry normalization integral =  0.96487317
Orbital     4 of  B1U   1 symmetry normalization integral =  0.96821779
Orbital     5 of  A1G   1 symmetry normalization integral =  0.99811450
Orbital     6 of  E1U   1 symmetry normalization integral =  0.99840367
Orbital     7 of  E2G   1 symmetry normalization integral =  0.99879688
Orbital     8 of  A1G   1 symmetry normalization integral =  0.99989117
Orbital     9 of  B1U   1 symmetry normalization integral =  0.99922725
Orbital    10 of  B2U   1 symmetry normalization integral =  0.99993248
Orbital    11 of  E1U   1 symmetry normalization integral =  0.99985411
Orbital    12 of  A2U   1 symmetry normalization integral =  0.99996765
Orbital    13 of  E2G   1 symmetry normalization integral =  0.99985047
Orbital    14 of  E1G   1 symmetry normalization integral =  0.99995329
Time Now =        60.3571  Delta time =         5.7540 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     42.00000000
Time Now =        60.4341  Delta time =         0.0770 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.42000000E+02 facnorm =  0.10000000E+01
Time Now =        60.4456  Delta time =         0.0115 Electronic part
Time Now =        60.5077  Delta time =         0.0621 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =        60.5988  Delta time =         0.0911 End VcpPol

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    6
Term =    1  At center =    1
Explicit coordinates =  0.00000000E+00  0.26399474E+01  0.00000000E+00
Type =    1
Term =    2  At center =    2
Explicit coordinates =  0.22862606E+01  0.13199737E+01  0.00000000E+00
Type =    1
Term =    3  At center =    3
Explicit coordinates =  0.22862606E+01 -0.13199737E+01  0.00000000E+00
Type =    1
Term =    4  At center =    4
Explicit coordinates =  0.00000000E+00 -0.26399474E+01  0.00000000E+00
Type =    1
Term =    5  At center =    5
Explicit coordinates = -0.22862606E+01 -0.13199737E+01  0.00000000E+00
Type =    1
Term =    6  At center =    6
Explicit coordinates = -0.22862606E+01  0.13199737E+01  0.00000000E+00
Type =    1
Last center is at (RCenterX) =   2.63995
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Using closest approach for matching r
 Matching point is at r =   7.8689195535
First nonzero weight at R =        7.16693
Last point of the switching region R=        8.56321
Total asymptotic potential is   0.71100000E+02
Time Now =        61.0110  Delta time =         0.4121 End AsyPol

+ Command Scat
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.92500000E+01  eV
 Do E =  0.30000000E+02 eV (  0.11024798E+01 AU)
Time Now =        61.1194  Delta time =         0.1084 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1G
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.71100000E+02  au
Number of integration regions used =    56
Number of partial waves (np) =    25
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     9
Maximum in the asymptotic region (lpasym) =   15
Number of partial waves in the asymptotic region (npasym) =   15
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   25
Maximum m used in usual function (LMax) =   25
Maxamum l used in expanding static potential (lpotct) =   50
Maximum l used in exapnding the exchange potential (lmaxab) =   50
Higest l included in the expansion of the wave function (lnp) =   24
Higest l included in the K matrix (lna) =   10
Highest l used at large r (lpasym) =   15
Higest l used in the asymptotic potential (lpzb) =   30
Time Now =        61.1416  Delta time =         0.0222 Energy independent setup

Compute solution for E =   30.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.71100000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.10844392E+04
 i =  2  lval =   3  stpote =  0.14133992E-03
 i =  3  lval =   3  stpote =  0.14297011E+02
 i =  4  lval =   5  stpote =  0.15859612E-05
Number of asymptotic regions =      68
Final point in integration =   0.16393678E+03
Iter =   1 c.s. =      3.58790625 angs^2  rmsk=     0.44335181
Iter =   2 c.s. =      3.80291396 angs^2  rmsk=     0.07053003
Iter =   3 c.s. =      3.79768231 angs^2  rmsk=     0.00351724
Iter =   4 c.s. =      3.79724453 angs^2  rmsk=     0.00049814
Iter =   5 c.s. =      3.79725953 angs^2  rmsk=     0.00000722
Iter =   6 c.s. =      3.79726029 angs^2  rmsk=     0.00000045
Iter =   7 c.s. =      3.79726030 angs^2  rmsk=     0.00000000
Iter =   8 c.s. =      3.79726030 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
  0.23542961E+01-0.96285216E-01-0.39899563E+00-0.97674943E+00-0.33354269E+00
  0.24055880E+00 0.13011348E+00-0.32424662E-01-0.20350329E-01
     ROW  2
 -0.96285234E-01 0.96503513E-01-0.51602958E+00 0.55791269E+00 0.14361308E+00
 -0.46169350E-01-0.18029251E-01 0.22460931E-02 0.12079226E-02
     ROW  3
 -0.39899559E+00-0.51602960E+00 0.54441104E+00 0.74781221E+00 0.26285598E-01
 -0.99145287E-01-0.41672267E-01 0.12062332E-01 0.79006772E-02
     ROW  4
 -0.97674938E+00 0.55791250E+00 0.74781213E+00 0.26758621E+01 0.63012068E+00
 -0.54013043E+00-0.26350731E+00 0.70709112E-01 0.42927913E-01
     ROW  5
 -0.33354267E+00 0.14361303E+00 0.26285577E-01 0.63012067E+00 0.39844320E+00
 -0.17885699E+00-0.13362557E+00 0.25587846E-01 0.16740497E-01
     ROW  6
  0.24055878E+00-0.46169318E-01-0.99145273E-01-0.54013044E+00-0.17885699E+00
  0.25577693E+00 0.79542035E-01-0.41328281E-01-0.15078253E-01
     ROW  7
  0.13011347E+00-0.18029235E-01-0.41672260E-01-0.26350731E+00-0.13362557E+00
  0.79542035E-01 0.10361114E+00-0.17905274E-01-0.31952601E-01
     ROW  8
 -0.32424660E-01 0.22460892E-02 0.12062331E-01 0.70709113E-01 0.25587847E-01
 -0.41328281E-01-0.17905274E-01 0.59257070E-01 0.76048163E-02
     ROW  9
 -0.20350328E-01 0.12079201E-02 0.79006762E-02 0.42927913E-01 0.16740497E-01
 -0.15078253E-01-0.31952601E-01 0.76048163E-02 0.30365240E-01
 eigenphases
 -0.4633610E+00  0.1354292E-01  0.4721837E-01  0.6613184E-01  0.1287175E+00
  0.2617315E+00  0.7116182E+00  0.1014377E+01  0.1327204E+01
 eigenphase sum 0.310718E+01  scattering length=   0.02318
 eps+pi 0.624877E+01  eps+2*pi 0.939037E+01

Iter =   8 c.s. =      3.79726030 angs^2  rmsk=     0.00000000
Time Now =       130.5189  Delta time =        69.3773 End ScatStab
Time Now =       130.5252  Delta time =         0.0063 Finalize