----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test18
#
# CH4,  T2^-1 photoionization
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   8.5    # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  LMaxK    5     # Maximum l in the K matirx
  ScatEng  0.1 5.8 15.8 25.8    # list of scattering energies

 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 6  # Orbital occupation of initial state

 OrbOcc  2 2 5     # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'T2'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 IPot 14.2         # ionization potentail

Convert '/home/lucchese/ePolyScatE/tests/test18.g03' 'g03'
GetBlms
ExpOrb

 FileName 'MatrixElements' 'test18T2T1.idy' 'REWIND'
 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'T1'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro 'test18T2T1.idy'
#

 FileName 'MatrixElements' 'test18T2T2.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'T2'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1
PhIonN 5.8 10.0 3
GetCro 'test18T2T2.idy'
#

 FileName 'MatrixElements' 'test18T2E.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'E'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1 5.8 15.8 25.8
GetCro 'test18T2E.idy'
#
 FileName 'MatrixElements' 'test18T2A1.idy' 'REWIND'

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'A1'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon 0.1 5.8 15.8 25.8
GetCro 'test18T2A1.idy'
#
#
GetCro 'test18T2A1.idy' 'test18T2E.idy' 'test18T2T2.idy'  'test18T2T1.idy'
#
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 8.5
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record LMaxK - 5
+ Data Record ScatEng - 0.1 5.8 15.8 25.8
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 6
+ Data Record OrbOcc - 2 2 5
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'T2'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 14.2

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test18.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     5  number already selected     0
Number of orbitals selected is     5
Highest orbital read in is =    5
Time Now =         0.0969  Delta time =         0.0969 End g03cnv

Atoms found    5
Z =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 r =   1.1819670050   1.1819670050   1.1819670050
Z =  1 r =  -1.1819670050  -1.1819670050   1.1819670050
Z =  1 r =   1.1819670050  -1.1819670050  -1.1819670050
Z =  1 r =  -1.1819670050   1.1819670050  -1.1819670050

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.1298  Delta time =         0.0329 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735  0.57735  0.57735   1  2.04723
  3 -0.57735 -0.57735  0.57735   1  2.04723
  4  0.57735 -0.57735 -0.57735   1  2.04723
  5 -0.57735  0.57735 -0.57735   1  2.04723
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650 -0.40825 -0.40825
  3  0.81650 -0.40825  0.40825
  4  0.81650  0.40825  0.40825
  5  0.81650  0.40825 -0.40825
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 -1 -1 -1
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  1  1
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     4  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     5  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax = =   15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         14       1  1  1
 A2        1         2          4       1  1  1
 E         1         3         18       1  1  1
 E         2         4         18       1  1  1
 T1        1         5         22      -1 -1  1
 T1        2         6         22      -1  1 -1
 T1        3         7         22       1 -1 -1
 T2        1         8         31      -1 -1  1
 T2        2         9         31      -1  1 -1
 T2        3        10         31       1 -1 -1
Time Now =         2.2378  Delta time =         2.1080 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax = =   30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1 -1  1
 B3        1         4        240      -1  1 -1
Time Now =         5.3908  Delta time =         3.1530 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.33980E+05
    2  Center at =     2.04723  Alpha Max = 0.82640E+02

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.57183E-04     0.00183
    2    8    40    0.60995E-04     0.00232
    3    8    48    0.77261E-04     0.00294
    4    8    56    0.97863E-04     0.00372
    5    8    64    0.12396E-03     0.00471
    6    8    72    0.15702E-03     0.00597
    7    8    80    0.19889E-03     0.00756
    8    8    88    0.25192E-03     0.00957
    9    8    96    0.31910E-03     0.01213
   10    8   104    0.40420E-03     0.01536
   11    8   112    0.51198E-03     0.01946
   12    8   120    0.64851E-03     0.02464
   13    8   128    0.82145E-03     0.03122
   14    8   136    0.10405E-02     0.03954
   15    8   144    0.13180E-02     0.05008
   16    8   152    0.16694E-02     0.06344
   17    8   160    0.21146E-02     0.08036
   18    8   168    0.26785E-02     0.10178
   19    8   176    0.33928E-02     0.12893
   20    8   184    0.42975E-02     0.16331
   21    8   192    0.54435E-02     0.20685
   22    8   200    0.68951E-02     0.26202
   23    8   208    0.87338E-02     0.33189
   24   64   272    0.10990E-01     1.03523
   25   56   328    0.10990E-01     1.65066
   26    8   336    0.10378E-01     1.73368
   27    8   344    0.82038E-02     1.79931
   28    8   352    0.64866E-02     1.85120
   29    8   360    0.51289E-02     1.89223
   30    8   368    0.40553E-02     1.92468
   31    8   376    0.32065E-02     1.95033
   32    8   384    0.25353E-02     1.97061
   33    8   392    0.20046E-02     1.98665
   34    8   400    0.15850E-02     1.99933
   35    8   408    0.12533E-02     2.00935
   36   32   440    0.11595E-02     2.04646
   37    8   448    0.96003E-04     2.04723
   38   32   480    0.11595E-02     2.08433
   39    8   488    0.12368E-02     2.09423
   40    8   496    0.15667E-02     2.10676
   41    8   504    0.19844E-02     2.12264
   42    8   512    0.25136E-02     2.14274
   43    8   520    0.31839E-02     2.16822
   44    8   528    0.40330E-02     2.20048
   45    8   536    0.51084E-02     2.24135
   46    8   544    0.64707E-02     2.29311
   47    8   552    0.81962E-02     2.35868
   48    8   560    0.10382E-01     2.44174
   49    8   568    0.13150E-01     2.54694
   50   64   632    0.13657E-01     3.42096
   51   64   696    0.13657E-01     4.29499
   52   64   760    0.13657E-01     5.16901
   53   64   824    0.13657E-01     6.04304
   54   64   888    0.13657E-01     6.91706
   55   64   952    0.13657E-01     7.79109
   56   48  1000    0.13657E-01     8.44661
   57    8  1008    0.66740E-02     8.50000
Time Now =         5.3916  Delta time =         0.0008 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    6
Angular regions
    1 L =    2  from (    1)         0.00006  to (    7)         0.00040
    2 L =    3  from (    8)         0.00046  to (   95)         0.01181
    3 L =    7  from (   96)         0.01213  to (  191)         0.20141
    4 L =   11  from (  192)         0.20685  to (  239)         0.67257
    5 L =   15  from (  240)         0.68356  to ( 1000)         8.44661
    6 L =   12  from ( 1001)         8.45328  to ( 1008)         8.50000

For analytic integrations ntheta =     32  nphi =     16
For numerical integrations ntheti =     64 nphii =     32
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     216
Proc id =    1  Last grid point =     280
Proc id =    2  Last grid point =     336
Proc id =    3  Last grid point =     392
Proc id =    4  Last grid point =     448
Proc id =    5  Last grid point =     504
Proc id =    6  Last grid point =     560
Proc id =    7  Last grid point =     616
Proc id =    8  Last grid point =     672
Proc id =    9  Last grid point =     720
Proc id =   10  Last grid point =     768
Proc id =   11  Last grid point =     816
Proc id =   12  Last grid point =     864
Proc id =   13  Last grid point =     912
Proc id =   14  Last grid point =     960
Proc id =   15  Last grid point =    1008
Time Now =         5.7652  Delta time =         0.3736 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1    1 at max irg =   23  r =   0.16331
     2  A1    1 at max irg =   39  r =   1.47482
     3  T2    1 at max irg =   46  r =   1.92468
     4  T2    2 at max irg =   46  r =   1.92468
     5  T2    3 at max irg =   46  r =   1.92468

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     3  0.0000000000    4  1.0000000000    5  0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     3  1.0000000000    4  0.0000000000    5  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     3  0.0000000000    4  0.0000000000    5  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         6.7913  Delta time =         1.0261 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999993
Orbital     2 of  A1    1 symmetry normalization integral =  0.99997831
Orbital     3 of  T2    1 symmetry normalization integral =  0.99996694
Time Now =        10.5192  Delta time =         3.7279 End ExpOrb

+ Command FileName
+ 'MatrixElements' 'test18T2T1.idy' 'REWIND'
Opening file test18T2T1.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'T1'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is T1
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  T1     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   11
    2:   0.50000   0.00000    1    2    3    4    6   12
    3:   0.50000   0.00000    1    2    4    5    6    8
    4:  -0.50000   0.00000    1    3    4    5    6    9

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   10
    2:   0.50000   0.00000    1    2    3    5    6   12
    3:   0.50000   0.00000    1    2    4    5    6    7
    4:  -0.50000   0.00000    2    3    4    5    6    9

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    6   10
    2:   0.50000   0.00000    1    2    3    5    6   11
    3:   0.50000   0.00000    1    3    4    5    6    7
    4:  -0.50000   0.00000    2    3    4    5    6    8
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Closed shell target
Time Now =        10.5768  Delta time =         0.0576 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   12
    4:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   13
Configuration     2
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.50000   0.00000    1    2    3    4    5    6    7    9   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   11
    4:  -0.50000   0.00000    1    2    3    4    6    7    8    9   10   13
Configuration     3
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8   10   14
    2:   0.50000   0.00000    1    2    3    4    5    6    7    9   10   15
    3:   0.50000   0.00000    1    2    3    4    5    7    8    9   10   11
    4:  -0.50000   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    4
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.00000000E+00
   2   0.00000000E+00  0.00000000E+00  0.70710678E+00
   3   0.00000000E+00  0.70710678E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.70710678E+00
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
   3  -0.70710678E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00 -0.70710678E+00  0.00000000E+00
   2  -0.70710678E+00  0.00000000E+00  0.00000000E+00
   3   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.000000000    0.000000000  <    6|   13>
    2:   -1.000000000    0.000000000  <    7|   12>

Reduced formula list
    3    3    2 -0.1000000000E+01
    2    3    3 -0.1000000000E+01
Time Now =        10.5786  Delta time =         0.0018 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     4 or T1
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  3  Orb  4  Coef =  -1.0000000000
  2  Cont comp  2  Orb  5  Coef =  -1.0000000000
Symmetry type to write out (SymTyp) =T1
Time Now =        34.8054  Delta time =        24.2268 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =        42.4884  Delta time =         7.6830 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =        42.5182  Delta time =         0.0298 Electronic part
Time Now =        42.5260  Delta time =         0.0078 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =        42.5817  Delta time =         0.0557 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    22
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        42.6991  Delta time =         0.1174 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.75174329E-02
 i =  2  lval =   3  stpote = -0.63896060E-15
 i =  3  lval =   3  stpote =  0.25107346E-14
 i =  4  lval =   4  stpote = -0.92472288E+01
Number of asymptotic regions =       8
Final point in integration =   0.19614622E+03
Iter =   1 c.s. =      0.10097778 (a.u)  rmsk=     0.12972906
Iter =   2 c.s. =      0.10344832 (a.u)  rmsk=     0.00407356
Iter =   3 c.s. =      0.10327840 (a.u)  rmsk=     0.00014123
Iter =   4 c.s. =      0.10327835 (a.u)  rmsk=     0.00000004
Iter =   5 c.s. =      0.10327835 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.28934228E+00,-0.91742714E-02) ( 0.21182879E-01,-0.55885320E-02)
  (-0.74250655E-04,-0.55771417E-04)
     ROW  2
  ( 0.13734265E+00,-0.43596024E-02) ( 0.10306531E-01,-0.26530875E-02)
  (-0.31440217E-04,-0.25986298E-04)
Iter =   5 c.s. =      0.10327835 (a.u)  rmsk=     0.00000000
Time Now =        69.2873  Delta time =        26.5883 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =        69.3441  Delta time =         0.0568 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    22
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        69.3742  Delta time =         0.0301 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.52384346E-02
 i =  2  lval =   3  stpote = -0.63798507E-15
 i =  3  lval =   3  stpote =  0.11825044E-14
 i =  4  lval =   4  stpote = -0.92461906E+01
Number of asymptotic regions =      17
Final point in integration =   0.73924672E+02
Iter =   1 c.s. =      0.44552502 (a.u)  rmsk=     0.27249618
Iter =   2 c.s. =      0.41987484 (a.u)  rmsk=     0.01335673
Iter =   3 c.s. =      0.41957843 (a.u)  rmsk=     0.00010849
Iter =   4 c.s. =      0.41957858 (a.u)  rmsk=     0.00000008
Iter =   5 c.s. =      0.41957858 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.54037771E+00,-0.52474190E-01) ( 0.76434458E-01,-0.32422798E-01)
  (-0.11858137E-02, 0.13076056E-02)
     ROW  2
  ( 0.33765848E+00,-0.32868455E-01) ( 0.49135241E-01,-0.20282041E-01)
  (-0.65788183E-03, 0.86567895E-03)
Iter =   5 c.s. =      0.41957858 (a.u)  rmsk=     0.00000000
Time Now =        96.1777  Delta time =        26.8035 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =        96.2328  Delta time =         0.0551 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    22
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        96.2614  Delta time =         0.0286 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.34196501E-02
 i =  2  lval =   3  stpote = -0.45232039E-15
 i =  3  lval =   3  stpote =  0.17387976E-14
 i =  4  lval =   4  stpote = -0.92453620E+01
Number of asymptotic regions =      20
Final point in integration =   0.55140549E+02
Iter =   1 c.s. =      0.46673705 (a.u)  rmsk=     0.27890771
Iter =   2 c.s. =      0.43963416 (a.u)  rmsk=     0.01405424
Iter =   3 c.s. =      0.43941401 (a.u)  rmsk=     0.00007807
Iter =   4 c.s. =      0.43941406 (a.u)  rmsk=     0.00000003
Iter =   5 c.s. =      0.43941406 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.45979466E+00,-0.94593141E-01) ( 0.98649960E-01,-0.43242734E-01)
  (-0.30856743E-05, 0.22319574E-02)
     ROW  2
  ( 0.43393847E+00,-0.89615354E-01) ( 0.97107325E-01,-0.40986140E-01)
  (-0.37081715E-05, 0.22657569E-02)
Iter =   5 c.s. =      0.43941406 (a.u)  rmsk=     0.00000000
Time Now =       123.7784  Delta time =        27.5170 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       123.8336  Delta time =         0.0552 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    22
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   18
Number of orthogonality constraints (NOrthUse) =    0
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       123.8615  Delta time =         0.0280 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.25383388E-02
 i =  2  lval =   3  stpote = -0.78631283E-15
 i =  3  lval =   3  stpote =  0.71992964E-15
 i =  4  lval =   4  stpote = -0.92449605E+01
Number of asymptotic regions =      22
Final point in integration =   0.48650248E+02
Iter =   1 c.s. =      0.33241147 (a.u)  rmsk=     0.23537611
Iter =   2 c.s. =      0.32314206 (a.u)  rmsk=     0.01083163
Iter =   3 c.s. =      0.32303844 (a.u)  rmsk=     0.00004392
Iter =   4 c.s. =      0.32303844 (a.u)  rmsk=     0.00000001
Iter =   5 c.s. =      0.32303844 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.33092571E+00,-0.94963653E-01) ( 0.89386970E-01,-0.41646575E-01)
  ( 0.10348921E-02, 0.21796868E-02)
     ROW  2
  ( 0.40571790E+00,-0.11723283E+00) ( 0.11726300E+00,-0.51645057E-01)
  ( 0.85482279E-03, 0.30219828E-02)
Iter =   5 c.s. =      0.32303844 (a.u)  rmsk=     0.00000000
Time Now =       150.9798  Delta time =        27.1183 End ScatStab

+ Command GetCro
+ 'test18T2T1.idy'
Taking dipole matrix from file test18T2T1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       150.9924  Delta time =         0.0126 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym T1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       150.9925  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.85731355E-01
Photoelectron Energy in eV    0.10000000E+00
Photoelectron Energy a.u.    0.36749326E-02
Photon Energy (eV)    0.14300000E+02
Kinetic Energy (a.u.)    0.65291055E+00
Photoelectron Energy in eV    0.58000000E+01
Photoelectron Energy a.u.    0.21314609E+00
Photon Energy (eV)    0.20000000E+02
Kinetic Energy (a.u.)    0.10776264E+01
Photoelectron Energy in eV    0.15800000E+02
Photoelectron Energy a.u.    0.58063935E+00
Photon Energy (eV)    0.30000000E+02
Kinetic Energy (a.u.)    0.13770495E+01
Photoelectron Energy in eV    0.25800000E+02
Photoelectron Energy a.u.    0.94813261E+00
Photon Energy (eV)    0.40000000E+02

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.22747478E+00
    20.0000  0.11386806E+01
    30.0000  0.13134148E+01
    40.0000  0.96829740E+00

     Sigma MIXED    at all energies
      Eng
    14.3000  0.20549426E+00
    20.0000  0.96862581E+00
    30.0000  0.11265701E+01
    40.0000  0.81163717E+00

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.18563831E+00
    20.0000  0.82398064E+00
    30.0000  0.96637742E+00
    40.0000  0.68051625E+00

     Beta LENGTH   at all energies
      Eng
    14.3000  0.49999993E+00
    20.0000  0.49999285E+00
    30.0000  0.49998513E+00
    40.0000  0.49996857E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.49999993E+00
    20.0000  0.49999298E+00
    30.0000  0.49998404E+00
    40.0000  0.49996727E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.49999994E+00
    20.0000  0.49999306E+00
    30.0000  0.49998287E+00
    40.0000  0.49996494E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000     0.2275     0.2055     0.1856     0.5000     0.5000     0.5000
EPhi     20.0000     1.1387     0.9686     0.8240     0.5000     0.5000     0.5000
EPhi     30.0000     1.3134     1.1266     0.9664     0.5000     0.5000     0.5000
EPhi     40.0000     0.9683     0.8116     0.6805     0.5000     0.5000     0.5000
Time Now =       151.0341  Delta time =         0.0416 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test18T2T2.idy' 'REWIND'
Opening file test18T2T2.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'T2'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is T2
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  T2     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   11
    2:   0.50000   0.00000    1    2    3    4    6   12
    3:   0.50000   0.00000    1    2    4    5    6    8
    4:  -0.50000   0.00000    1    3    4    5    6    9

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.50000   0.00000    1    2    3    4    5   10
    2:  -0.50000   0.00000    1    2    3    5    6   12
    3:   0.50000   0.00000    1    2    4    5    6    7
    4:   0.50000   0.00000    2    3    4    5    6    9

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:   0.50000   0.00000    1    2    3    4    6   10
    2:  -0.50000   0.00000    1    2    3    5    6   11
    3:  -0.50000   0.00000    1    3    4    5    6    7
    4:   0.50000   0.00000    2    3    4    5    6    8
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Closed shell target
Time Now =       151.0657  Delta time =         0.0316 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   12
    4:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   13
Configuration     2
    1:  -0.50000   0.00000    1    2    3    4    5    6    7    8    9   14
    2:  -0.50000   0.00000    1    2    3    4    5    6    7    9   10   16
    3:   0.50000   0.00000    1    2    3    4    5    6    8    9   10   11
    4:   0.50000   0.00000    1    2    3    4    6    7    8    9   10   13
Configuration     3
    1:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.50000   0.00000    1    2    3    4    5    6    7    9   10   15
    3:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   11
    4:   0.50000   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    5
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.00000000E+00
   2   0.00000000E+00  0.00000000E+00  0.70710678E+00
   3   0.00000000E+00  0.70710678E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.70710678E+00
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
   3   0.70710678E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.70710678E+00  0.00000000E+00
   2   0.70710678E+00  0.00000000E+00  0.00000000E+00
   3   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.000000000    0.000000000  <    6|   13>
    2:   -1.000000000    0.000000000  <    7|   12>

Reduced formula list
    3    3    2 -0.1000000000E+01
    2    3    3 -0.1000000000E+01
Time Now =       151.0671  Delta time =         0.0013 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     5 or T2
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  3  Orb  4  Coef =  -1.0000000000
  2  Cont comp  2  Orb  5  Coef =  -1.0000000000
Symmetry type to write out (SymTyp) =T2
Time Now =       175.2519  Delta time =        24.1848 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       182.9723  Delta time =         7.7204 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       182.9792  Delta time =         0.0069 Electronic part
Time Now =       182.9867  Delta time =         0.0075 End StPot

+ Command PhIon
+ 0.1

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       183.0424  Delta time =         0.0558 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    31
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   24
Number of orthogonality constraints (NOrthUse) =    1
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       183.0639  Delta time =         0.0215 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.75174329E-02
 i =  2  lval =   3  stpote = -0.63896060E-15
 i =  3  lval =   3  stpote =  0.25107346E-14
 i =  4  lval =   4  stpote = -0.92472288E+01
Number of asymptotic regions =       8
Final point in integration =   0.19614622E+03
Iter =   1 c.s. =     26.19711036 (a.u)  rmsk=     1.47752920
Iter =   2 c.s. =     19.47086619 (a.u)  rmsk=     1.14764607
Iter =   3 c.s. =     18.80636626 (a.u)  rmsk=     0.05181823
Iter =   4 c.s. =     18.87850415 (a.u)  rmsk=     0.00372618
Iter =   5 c.s. =     18.87824580 (a.u)  rmsk=     0.00002480
Iter =   6 c.s. =     18.87824546 (a.u)  rmsk=     0.00000008
Iter =   7 c.s. =     18.87824545 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.92734704E+00,-0.19428816E+00) (-0.34959346E+01, 0.15559960E+01)
  (-0.15447271E+00, 0.38316574E+00) (-0.53916831E-02,-0.33341155E-01)
  (-0.51908504E-03,-0.23023791E-03) (-0.49477684E-03, 0.17431432E-02)
     ROW  2
  (-0.43232643E+00,-0.13167732E+00) (-0.15590171E+01, 0.70471477E+00)
  (-0.68625066E-01, 0.17227875E+00) (-0.19702577E-02,-0.14989124E-01)
  (-0.25043976E-03,-0.10534400E-03) (-0.33648401E-03, 0.78431531E-03)
Iter =   7 c.s. =     18.87824545 (a.u)  rmsk=     0.00000000
Time Now =       240.4330  Delta time =        57.3691 End ScatStab

+ Command PhIonN
+ 5.8 10.0 3

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       240.4882  Delta time =         0.0552 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    31
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   24
Number of orthogonality constraints (NOrthUse) =    1
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       240.5130  Delta time =         0.0247 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.52384346E-02
 i =  2  lval =   3  stpote = -0.63798507E-15
 i =  3  lval =   3  stpote =  0.11825044E-14
 i =  4  lval =   4  stpote = -0.92461906E+01
Number of asymptotic regions =      17
Final point in integration =   0.73924672E+02
Iter =   1 c.s. =      4.06131283 (a.u)  rmsk=     0.58175831
Iter =   2 c.s. =      8.92804324 (a.u)  rmsk=     0.48314273
Iter =   3 c.s. =      8.86902209 (a.u)  rmsk=     0.00844218
Iter =   4 c.s. =      8.91197777 (a.u)  rmsk=     0.00248903
Iter =   5 c.s. =      8.91195471 (a.u)  rmsk=     0.00000191
Iter =   6 c.s. =      8.91195472 (a.u)  rmsk=     0.00000000
Iter =   7 c.s. =      8.91195472 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.49017352E+00, 0.99813855E-01) (-0.17647304E+01, 0.17355533E+01)
  (-0.92830023E-01, 0.42725940E+00) (-0.42560695E-01,-0.60407965E-01)
  (-0.50320163E-02, 0.17836048E-02) ( 0.43241083E-03, 0.12284848E-01)
     ROW  2
  (-0.29707205E+00, 0.26528126E-01) (-0.10489663E+01, 0.10390820E+01)
  (-0.47122549E-01, 0.25557331E+00) (-0.24174864E-01,-0.36469874E-01)
  (-0.30384256E-02, 0.10119517E-02) (-0.76824937E-03, 0.73683310E-02)
Iter =   7 c.s. =      8.91195472 (a.u)  rmsk=     0.00000000
Time Now =       296.7568  Delta time =        56.2438 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       296.8125  Delta time =         0.0558 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    31
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   24
Number of orthogonality constraints (NOrthUse) =    1
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       296.8375  Delta time =         0.0250 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.34196501E-02
 i =  2  lval =   3  stpote = -0.45232039E-15
 i =  3  lval =   3  stpote =  0.17387976E-14
 i =  4  lval =   4  stpote = -0.92453620E+01
Number of asymptotic regions =      20
Final point in integration =   0.55140549E+02
Iter =   1 c.s. =      0.68509221 (a.u)  rmsk=     0.23893727
Iter =   2 c.s. =      1.48076179 (a.u)  rmsk=     0.14064204
Iter =   3 c.s. =      1.47744370 (a.u)  rmsk=     0.00091450
Iter =   4 c.s. =      1.47768120 (a.u)  rmsk=     0.00004196
Iter =   5 c.s. =      1.47768113 (a.u)  rmsk=     0.00000015
Iter =   6 c.s. =      1.47768113 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.20686558E+00, 0.14914776E+00) (-0.56979453E+00, 0.66350773E+00)
  ( 0.15731638E-01, 0.19744673E+00) (-0.75452297E-01,-0.44332840E-01)
  (-0.15644190E-01, 0.11407487E-03) (-0.12116879E-01, 0.10699437E-01)
     ROW  2
  (-0.17020678E+00, 0.12602011E+00) (-0.47355594E+00, 0.54614078E+00)
  ( 0.23281484E-01, 0.16187348E+00) (-0.67575063E-01,-0.35678437E-01)
  (-0.13596615E-01, 0.12551090E-03) (-0.10973854E-01, 0.84319137E-02)
Iter =   6 c.s. =      1.47768113 (a.u)  rmsk=     0.00000000
Time Now =       343.3915  Delta time =        46.5540 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       343.4473  Delta time =         0.0558 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T2
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    31
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   24
Number of orthogonality constraints (NOrthUse) =    1
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       343.4701  Delta time =         0.0228 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.25383388E-02
 i =  2  lval =   3  stpote = -0.78631283E-15
 i =  3  lval =   3  stpote =  0.71992964E-15
 i =  4  lval =   4  stpote = -0.92449605E+01
Number of asymptotic regions =      22
Final point in integration =   0.48650248E+02
Iter =   1 c.s. =      0.27863037 (a.u)  rmsk=     0.15237847
Iter =   2 c.s. =      0.45125342 (a.u)  rmsk=     0.06030176
Iter =   3 c.s. =      0.45025993 (a.u)  rmsk=     0.00033072
Iter =   4 c.s. =      0.45027714 (a.u)  rmsk=     0.00000734
Iter =   5 c.s. =      0.45027728 (a.u)  rmsk=     0.00000005
Iter =   6 c.s. =      0.45027728 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.10132683E+00, 0.14165943E+00) (-0.30794702E+00, 0.25788767E+00)
  ( 0.23184243E-01, 0.76511641E-01) (-0.78384766E-01,-0.88510686E-02)
  (-0.21869157E-01, 0.22871948E-02) (-0.20649218E-01, 0.31514457E-02)
     ROW  2
  (-0.10815836E+00, 0.17216213E+00) (-0.33671015E+00, 0.27022720E+00)
  ( 0.37872903E-01, 0.77390701E-01) (-0.92832365E-01,-0.51277569E-02)
  (-0.25417765E-01, 0.29811664E-02) (-0.24685513E-01, 0.21998678E-02)
Iter =   6 c.s. =      0.45027728 (a.u)  rmsk=     0.00000000
Time Now =       391.1276  Delta time =        47.6576 End ScatStab

+ Command GetCro
+ 'test18T2T2.idy'
Taking dipole matrix from file test18T2T2.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       391.1339  Delta time =         0.0063 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym T2     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       391.1340  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.85731355E-01
Photoelectron Energy in eV    0.10000000E+00
Photoelectron Energy a.u.    0.36749326E-02
Photon Energy (eV)    0.14300000E+02
Kinetic Energy (a.u.)    0.65291055E+00
Photoelectron Energy in eV    0.58000000E+01
Photoelectron Energy a.u.    0.21314609E+00
Photon Energy (eV)    0.20000000E+02
Kinetic Energy (a.u.)    0.10776264E+01
Photoelectron Energy in eV    0.15800000E+02
Photoelectron Energy a.u.    0.58063935E+00
Photon Energy (eV)    0.30000000E+02
Kinetic Energy (a.u.)    0.13770495E+01
Photoelectron Energy in eV    0.25800000E+02
Photoelectron Energy a.u.    0.94813261E+00
Photon Energy (eV)    0.40000000E+02

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.42406315E+02
    20.0000  0.24813088E+02
    30.0000  0.49676153E+01
    40.0000  0.15491963E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.36209283E+02
    20.0000  0.20130762E+02
    30.0000  0.37267760E+01
    40.0000  0.11500354E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.30941107E+02
    20.0000  0.16340470E+02
    30.0000  0.27966110E+01
    40.0000  0.85623080E+00

     Beta LENGTH   at all energies
      Eng
    14.3000  0.66235874E+00
    20.0000  0.59845021E+00
    30.0000  0.52086041E+00
    40.0000  0.51280386E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.65854675E+00
    20.0000  0.59901412E+00
    30.0000  0.52209949E+00
    40.0000  0.51094207E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.65440779E+00
    20.0000  0.59954578E+00
    30.0000  0.52312234E+00
    40.0000  0.50757503E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    42.4063    36.2093    30.9411     0.6624     0.6585     0.6544
EPhi     20.0000    24.8131    20.1308    16.3405     0.5985     0.5990     0.5995
EPhi     30.0000     4.9676     3.7268     2.7966     0.5209     0.5221     0.5231
EPhi     40.0000     1.5492     1.1500     0.8562     0.5128     0.5109     0.5076
Time Now =       391.1554  Delta time =         0.0215 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test18T2E.idy' 'REWIND'
Opening file test18T2E.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'E'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is E
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  E      iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.35355   0.00000    1    2    3    5    6    9
    2:  -0.61237   0.00000    1    2    3    5    6   10
    3:   0.35355   0.00000    2    3    4    5    6    7
    4:   0.61237   0.00000    2    3    4    5    6    8

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.35355   0.00000    1    2    3    4    6    9
    2:  -0.61237   0.00000    1    2    3    4    6   10
    3:  -0.35355   0.00000    1    3    4    5    6    7
    4:   0.61237   0.00000    1    3    4    5    6    8

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    4    5    9
    2:  -0.70711   0.00000    1    2    4    5    6    7
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   13
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   13
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Closed shell target
Time Now =       391.2056  Delta time =         0.0502 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.35355   0.00000    1    2    3    4    5    6    7    9   10   13
    2:  -0.61237   0.00000    1    2    3    4    5    6    7    9   10   14
    3:   0.35355   0.00000    1    2    3    4    6    7    8    9   10   11
    4:   0.61237   0.00000    1    2    3    4    6    7    8    9   10   12
Configuration     2
    1:   0.35355   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.61237   0.00000    1    2    3    4    5    6    7    8   10   14
    3:  -0.35355   0.00000    1    2    3    4    5    7    8    9   10   11
    4:   0.61237   0.00000    1    2    3    4    5    7    8    9   10   12
Configuration     3
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   13
    2:  -0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   13
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   13
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   13
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    3
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.50000000E+00  0.00000000E+00  0.00000000E+00
   2   0.86602540E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.50000000E+00  0.00000000E+00
   2   0.00000000E+00 -0.86602540E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00 -0.10000000E+01
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -0.707106781    0.000000000  <    5|   11>
    2:   -1.224744871    0.000000000  <    5|   12>

Reduced formula list
    1    3    1 -0.7071067812E+00
    2    3    1 -0.1224744871E+01
Time Now =       391.2068  Delta time =         0.0012 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     3 or E
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  3  Coef =  -0.7071067812
  2  Cont comp  2  Orb  3  Coef =  -1.2247448710
Symmetry type to write out (SymTyp) =E
Time Now =       415.4332  Delta time =        24.2264 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       423.0683  Delta time =         7.6351 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       423.0793  Delta time =         0.0110 Electronic part
Time Now =       423.0869  Delta time =         0.0076 End StPot

+ Command PhIon
+ 0.1 5.8 15.8 25.8

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       423.1426  Delta time =         0.0557 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       423.1652  Delta time =         0.0227 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.75174329E-02
 i =  2  lval =   3  stpote = -0.63896060E-15
 i =  3  lval =   3  stpote =  0.25107346E-14
 i =  4  lval =   4  stpote = -0.92472288E+01
Number of asymptotic regions =       8
Final point in integration =   0.19614622E+03
Iter =   1 c.s. =      9.29893206 (a.u)  rmsk=     1.24491847
Iter =   2 c.s. =      6.99750555 (a.u)  rmsk=     0.22155668
Iter =   3 c.s. =      6.98690197 (a.u)  rmsk=     0.00084007
Iter =   4 c.s. =      6.98685268 (a.u)  rmsk=     0.00000397
Iter =   5 c.s. =      6.98685267 (a.u)  rmsk=     0.00000000
Iter =   6 c.s. =      6.98685267 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.23676405E+01,-0.31350720E+00) ( 0.15145019E-01, 0.40988225E-02)
  ( 0.71653260E-03,-0.16799612E-03)
     ROW  2
  ( 0.11226952E+01,-0.14866008E+00) ( 0.70363517E-02, 0.19434457E-02)
  ( 0.40473486E-03,-0.79515024E-04)
Iter =   6 c.s. =      6.98685267 (a.u)  rmsk=     0.00000000
Time Now =       450.6940  Delta time =        27.5288 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       450.7502  Delta time =         0.0562 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       450.7724  Delta time =         0.0223 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.52384346E-02
 i =  2  lval =   3  stpote = -0.63798507E-15
 i =  3  lval =   3  stpote =  0.11825044E-14
 i =  4  lval =   4  stpote = -0.92461906E+01
Number of asymptotic regions =      17
Final point in integration =   0.73924672E+02
Iter =   1 c.s. =      5.63432198 (a.u)  rmsk=     0.96904781
Iter =   2 c.s. =      5.30978134 (a.u)  rmsk=     0.18351787
Iter =   3 c.s. =      5.30788093 (a.u)  rmsk=     0.00048997
Iter =   4 c.s. =      5.30787052 (a.u)  rmsk=     0.00000120
Iter =   5 c.s. =      5.30787052 (a.u)  rmsk=     0.00000000
Iter =   6 c.s. =      5.30787052 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.18706414E+01,-0.49086293E+00) ( 0.61991453E-01,-0.23877276E-01)
  ( 0.12195861E-01,-0.64042894E-02)
     ROW  2
  ( 0.12086069E+01,-0.31711162E+00) ( 0.37599115E-01,-0.15429720E-01)
  ( 0.79313132E-02,-0.41263463E-02)
Iter =   6 c.s. =      5.30787052 (a.u)  rmsk=     0.00000000
Time Now =       478.6611  Delta time =        27.8886 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       478.7162  Delta time =         0.0551 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       478.7393  Delta time =         0.0232 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.34196501E-02
 i =  2  lval =   3  stpote = -0.45232039E-15
 i =  3  lval =   3  stpote =  0.17387976E-14
 i =  4  lval =   4  stpote = -0.92453620E+01
Number of asymptotic regions =      20
Final point in integration =   0.55140549E+02
Iter =   1 c.s. =      1.88818813 (a.u)  rmsk=     0.56097952
Iter =   2 c.s. =      2.06050872 (a.u)  rmsk=     0.08897136
Iter =   3 c.s. =      2.06091279 (a.u)  rmsk=     0.00018326
Iter =   4 c.s. =      2.06091230 (a.u)  rmsk=     0.00000019
Iter =   5 c.s. =      2.06091230 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.97180688E+00,-0.36661785E+00) ( 0.59516045E-01,-0.30945826E-01)
  ( 0.30824712E-01,-0.10189143E-01)
     ROW  2
  ( 0.92250439E+00,-0.34789973E+00) ( 0.53487720E-01,-0.29266288E-01)
  ( 0.26143863E-01,-0.95780437E-02)
Iter =   5 c.s. =      2.06091230 (a.u)  rmsk=     0.00000000
Time Now =       501.4367  Delta time =        22.6974 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       501.4918  Delta time =         0.0551 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =E
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   14
Number of orthogonality constraints (NOrthUse) =    0
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    5
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       501.5149  Delta time =         0.0231 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.25383388E-02
 i =  2  lval =   3  stpote = -0.78631283E-15
 i =  3  lval =   3  stpote =  0.71992964E-15
 i =  4  lval =   4  stpote = -0.92449605E+01
Number of asymptotic regions =      22
Final point in integration =   0.48650248E+02
Iter =   1 c.s. =      0.82261204 (a.u)  rmsk=     0.37027288
Iter =   2 c.s. =      0.92124642 (a.u)  rmsk=     0.04773952
Iter =   3 c.s. =      0.92140010 (a.u)  rmsk=     0.00008714
Iter =   4 c.s. =      0.92140003 (a.u)  rmsk=     0.00000005
Iter =   5 c.s. =      0.92140003 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.55047682E+00,-0.22990298E+00) ( 0.50053443E-01,-0.22269408E-01)
  ( 0.39820430E-01,-0.76351528E-02)
     ROW  2
  ( 0.68717361E+00,-0.28685211E+00) ( 0.59583716E-01,-0.27508592E-01)
  ( 0.44612378E-01,-0.92611402E-02)
Iter =   5 c.s. =      0.92140003 (a.u)  rmsk=     0.00000000
Time Now =       524.9385  Delta time =        23.4236 End ScatStab

+ Command GetCro
+ 'test18T2E.idy'
Taking dipole matrix from file test18T2E.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       524.9427  Delta time =         0.0042 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym E      Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       524.9428  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.85731355E-01
Photoelectron Energy in eV    0.10000000E+00
Photoelectron Energy a.u.    0.36749326E-02
Photon Energy (eV)    0.14300000E+02
Kinetic Energy (a.u.)    0.65291055E+00
Photoelectron Energy in eV    0.58000000E+01
Photoelectron Energy a.u.    0.21314609E+00
Photon Energy (eV)    0.20000000E+02
Kinetic Energy (a.u.)    0.10776264E+01
Photoelectron Energy in eV    0.15800000E+02
Photoelectron Energy a.u.    0.58063935E+00
Photon Energy (eV)    0.30000000E+02
Kinetic Energy (a.u.)    0.13770495E+01
Photoelectron Energy in eV    0.25800000E+02
Photoelectron Energy a.u.    0.94813261E+00
Photon Energy (eV)    0.40000000E+02

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.15395429E+02
    20.0000  0.14135822E+02
    30.0000  0.61398250E+01
    40.0000  0.27217775E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.13891596E+02
    20.0000  0.12425283E+02
    30.0000  0.52849093E+01
    40.0000  0.23093781E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.12534659E+02
    20.0000  0.10921774E+02
    30.0000  0.45491202E+01
    40.0000  0.19595841E+01

     Beta LENGTH   at all energies
      Eng
    14.3000  0.56500544E+00
    20.0000  0.59587466E+00
    30.0000  0.62628212E+00
    40.0000  0.64658206E+00

     Beta MIXED    at all energies
      Eng
    14.3000  0.56506320E+00
    20.0000  0.59548136E+00
    30.0000  0.62547258E+00
    40.0000  0.64558267E+00

     Beta VELOCITY at all energies
      Eng
    14.3000  0.56512094E+00
    20.0000  0.59508486E+00
    30.0000  0.62465147E+00
    40.0000  0.64455278E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    15.3954    13.8916    12.5347     0.5650     0.5651     0.5651
EPhi     20.0000    14.1358    12.4253    10.9218     0.5959     0.5955     0.5951
EPhi     30.0000     6.1398     5.2849     4.5491     0.6263     0.6255     0.6247
EPhi     40.0000     2.7218     2.3094     1.9596     0.6466     0.6456     0.6446
Time Now =       524.9642  Delta time =         0.0215 End CrossSection

+ Command FileName
+ 'MatrixElements' 'test18T2A1.idy' 'REWIND'
Opening file test18T2A1.idy at position REWIND
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'A1'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is A1
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  A1     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    3    5    6    8
    2:   0.70711   0.00000    2    3    4    5    6    7

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    4    6    8
    2:  -0.70711   0.00000    1    3    4    5    6    7

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    3    4    5    8
    2:   0.70711   0.00000    1    2    4    5    6    7
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Closed shell target
Time Now =       524.9800  Delta time =         0.0157 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Configuration     2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Configuration     3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   12
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   12
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   12
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    1
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.10000000E+01  0.00000000E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.10000000E+01  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    5|   11>

Reduced formula list
    1    3    1 -0.1414213562E+01
Time Now =       524.9806  Delta time =         0.0006 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     1 or A1
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  3  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =A1
Time Now =       537.1325  Delta time =        12.1520 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =       540.9304  Delta time =         3.7978 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =       540.9814  Delta time =         0.0511 Electronic part
Time Now =       540.9890  Delta time =         0.0076 End StPot

+ Command PhIon
+ 0.1 5.8 15.8 25.8

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+00 eV (  0.36749326E-02 AU)
Time Now =       541.0448  Delta time =         0.0558 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    2
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       541.0919  Delta time =         0.0472 Energy independent setup

Compute solution for E =    0.1000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.75174329E-02
 i =  2  lval =   3  stpote = -0.63896060E-15
 i =  3  lval =   3  stpote =  0.25107346E-14
 i =  4  lval =   4  stpote = -0.92472288E+01
Number of asymptotic regions =       8
Final point in integration =   0.19614622E+03
Iter =   1 c.s. =      2.77173435 (a.u)  rmsk=     0.67967325
Iter =   2 c.s. =      2.70390830 (a.u)  rmsk=     0.13630401
Iter =   3 c.s. =      2.70404688 (a.u)  rmsk=     0.00083939
Iter =   4 c.s. =      2.70404725 (a.u)  rmsk=     0.00000231
Iter =   5 c.s. =      2.70404723 (a.u)  rmsk=     0.00000001
Iter =   6 c.s. =      2.70404723 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.14476507E+01,-0.17830106E+00) (-0.22797869E+00, 0.85143001E-01)
  ( 0.12757435E-01,-0.66162977E-02)
     ROW  2
  ( 0.70389990E+00,-0.86717792E-01) (-0.11122286E+00, 0.41411267E-01)
  ( 0.65129540E-02,-0.32201355E-02)
Iter =   6 c.s. =      2.70404723 (a.u)  rmsk=     0.00000000
Time Now =       563.6426  Delta time =        22.5506 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.58000000E+01 eV (  0.21314609E+00 AU)
Time Now =       563.6983  Delta time =         0.0557 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    2
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       563.7210  Delta time =         0.0228 Energy independent setup

Compute solution for E =    5.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.52384346E-02
 i =  2  lval =   3  stpote = -0.63798507E-15
 i =  3  lval =   3  stpote =  0.11825044E-14
 i =  4  lval =   4  stpote = -0.92461906E+01
Number of asymptotic regions =      17
Final point in integration =   0.73924672E+02
Iter =   1 c.s. =      1.32225512 (a.u)  rmsk=     0.46944207
Iter =   2 c.s. =      1.36471726 (a.u)  rmsk=     0.10318199
Iter =   3 c.s. =      1.36512334 (a.u)  rmsk=     0.00046174
Iter =   4 c.s. =      1.36512809 (a.u)  rmsk=     0.00000170
Iter =   5 c.s. =      1.36512810 (a.u)  rmsk=     0.00000000
Iter =   6 c.s. =      1.36512810 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.82693657E+00,-0.13206559E+00) (-0.38885744E+00, 0.27292338E+00)
  ( 0.55594358E-01,-0.47650544E-01)
     ROW  2
  ( 0.57359897E+00,-0.86193494E-01) (-0.24559037E+00, 0.18372660E+00)
  ( 0.35783417E-01,-0.31756191E-01)
Iter =   6 c.s. =      1.36512810 (a.u)  rmsk=     0.00000000
Time Now =       586.2916  Delta time =        22.5706 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =       586.3474  Delta time =         0.0557 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    2
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       586.3739  Delta time =         0.0266 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.34196501E-02
 i =  2  lval =   3  stpote = -0.45232039E-15
 i =  3  lval =   3  stpote =  0.17387976E-14
 i =  4  lval =   4  stpote = -0.92453620E+01
Number of asymptotic regions =      20
Final point in integration =   0.55140549E+02
Iter =   1 c.s. =      0.28585626 (a.u)  rmsk=     0.21827210
Iter =   2 c.s. =      0.35871116 (a.u)  rmsk=     0.04846868
Iter =   3 c.s. =      0.35881777 (a.u)  rmsk=     0.00013520
Iter =   4 c.s. =      0.35881661 (a.u)  rmsk=     0.00000092
Iter =   5 c.s. =      0.35881661 (a.u)  rmsk=     0.00000000
Iter =   6 c.s. =      0.35881661 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.31285907E+00,-0.60979595E-01) (-0.95646972E-01, 0.25676262E+00)
  ( 0.24466261E-01,-0.59637338E-01)
     ROW  2
  ( 0.31781142E+00,-0.55291232E-01) (-0.85688263E-01, 0.25051219E+00)
  ( 0.21692471E-01,-0.57931702E-01)
Iter =   6 c.s. =      0.35881661 (a.u)  rmsk=     0.00000000
Time Now =       608.8752  Delta time =        22.5013 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.25800000E+02 eV (  0.94813261E+00 AU)
Time Now =       608.9320  Delta time =         0.0568 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =A1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =    5
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    49
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     3
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   11
Number of orthogonality constraints (NOrthUse) =    2
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    4
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       608.9609  Delta time =         0.0289 Energy independent setup

Compute solution for E =   25.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.25383388E-02
 i =  2  lval =   3  stpote = -0.78631283E-15
 i =  3  lval =   3  stpote =  0.71992964E-15
 i =  4  lval =   4  stpote = -0.92449605E+01
Number of asymptotic regions =      22
Final point in integration =   0.48650248E+02
Iter =   1 c.s. =      0.07021516 (a.u)  rmsk=     0.10817822
Iter =   2 c.s. =      0.08795311 (a.u)  rmsk=     0.01914297
Iter =   3 c.s. =      0.08796569 (a.u)  rmsk=     0.00004251
Iter =   4 c.s. =      0.08796571 (a.u)  rmsk=     0.00000006
Iter =   5 c.s. =      0.08796571 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.14007370E+00, 0.80816084E-02) (-0.23293437E-02, 0.10257030E+00)
  ( 0.11139910E-01,-0.28138260E-01)
     ROW  2
  ( 0.19163707E+00, 0.13655557E-01) (-0.27262662E-03, 0.13568552E+00)
  ( 0.12003035E-01,-0.37038501E-01)
Iter =   5 c.s. =      0.08796571 (a.u)  rmsk=     0.00000000
Time Now =       627.9675  Delta time =        19.0066 End ScatStab

+ Command GetCro
+ 'test18T2A1.idy'
Taking dipole matrix from file test18T2A1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       627.9710  Delta time =         0.0036 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    1
    1  Cont Sym A1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       627.9711  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.85731355E-01
Photoelectron Energy in eV    0.10000000E+00
Photoelectron Energy a.u.    0.36749326E-02
Photon Energy (eV)    0.14300000E+02
Kinetic Energy (a.u.)    0.65291055E+00
Photoelectron Energy in eV    0.58000000E+01
Photoelectron Energy a.u.    0.21314609E+00
Photon Energy (eV)    0.20000000E+02
Kinetic Energy (a.u.)    0.10776264E+01
Photoelectron Energy in eV    0.15800000E+02
Photoelectron Energy a.u.    0.58063935E+00
Photon Energy (eV)    0.30000000E+02
Kinetic Energy (a.u.)    0.13770495E+01
Photoelectron Energy in eV    0.25800000E+02
Photoelectron Energy a.u.    0.94813261E+00
Photon Energy (eV)    0.40000000E+02

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.59023446E+01
    20.0000  0.35192789E+01
    30.0000  0.10238783E+01
    40.0000  0.23499939E+00

     Sigma MIXED    at all energies
      Eng
    14.3000  0.54616572E+01
    20.0000  0.32605021E+01
    30.0000  0.92087548E+00
    40.0000  0.21594735E+00

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.50538750E+01
    20.0000  0.30242622E+01
    30.0000  0.82913333E+00
    40.0000  0.19857992E+00

     Beta LENGTH   at all energies
      Eng
    14.3000  0.57340253E-20
    20.0000  0.14346738E-18
    30.0000 -0.73969006E-18
    40.0000  0.21485236E-17

     Beta MIXED    at all energies
      Eng
    14.3000  0.00000000E+00
    20.0000  0.10534477E-18
    30.0000 -0.74597895E-18
    40.0000  0.19881979E-17

     Beta VELOCITY at all energies
      Eng
    14.3000  0.20207268E-20
    20.0000  0.15452497E-18
    30.0000 -0.75150604E-18
    40.0000  0.58833242E-18

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000     5.9023     5.4617     5.0539     0.0000     0.0000     0.0000
EPhi     20.0000     3.5193     3.2605     3.0243     0.0000     0.0000     0.0000
EPhi     30.0000     1.0239     0.9209     0.8291     0.0000     0.0000     0.0000
EPhi     40.0000     0.2350     0.2159     0.1986     0.0000     0.0000     0.0000
Time Now =       627.9829  Delta time =         0.0118 End CrossSection

+ Command GetCro
+ 'test18T2A1.idy' 'test18T2E.idy' 'test18T2T2.idy'  'test18T2T1.idy'
Taking dipole matrix from file test18T2A1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       627.9853  Delta time =         0.0024 End CnvIdy
Taking dipole matrix from file test18T2E.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       627.9887  Delta time =         0.0034 End CnvIdy
Taking dipole matrix from file test18T2T2.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       627.9942  Delta time =         0.0055 End CnvIdy
Taking dipole matrix from file test18T2T1.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       627.9983  Delta time =         0.0041 End CnvIdy
Found     4 energies :
     0.10000     5.80000    15.80000    25.80000
List of matrix element types found   Number =    4
    1  Cont Sym A1     Targ Sym T2     Total Sym T2
    2  Cont Sym E      Targ Sym T2     Total Sym T2
    3  Cont Sym T2     Targ Sym T2     Total Sym T2
    4  Cont Sym T1     Targ Sym T2     Total Sym T2
Keeping     4 energies :
     0.10000     5.80000    15.80000    25.80000
Time Now =       627.9983  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.85731355E-01
Photoelectron Energy in eV    0.10000000E+00
Photoelectron Energy a.u.    0.36749326E-02
Photon Energy (eV)    0.14300000E+02
Kinetic Energy (a.u.)    0.65291055E+00
Photoelectron Energy in eV    0.58000000E+01
Photoelectron Energy a.u.    0.21314609E+00
Photon Energy (eV)    0.20000000E+02
Kinetic Energy (a.u.)    0.10776264E+01
Photoelectron Energy in eV    0.15800000E+02
Photoelectron Energy a.u.    0.58063935E+00
Photon Energy (eV)    0.30000000E+02
Kinetic Energy (a.u.)    0.13770495E+01
Photoelectron Energy in eV    0.25800000E+02
Photoelectron Energy a.u.    0.94813261E+00
Photon Energy (eV)    0.40000000E+02

     Sigma LENGTH   at all energies
      Eng
    14.3000  0.63931563E+02
    20.0000  0.43606870E+02
    30.0000  0.13444733E+02
    40.0000  0.54742706E+01

     Sigma MIXED    at all energies
      Eng
    14.3000  0.55768031E+02
    20.0000  0.36785173E+02
    30.0000  0.11059131E+02
    40.0000  0.44869981E+01

     Sigma VELOCITY at all energies
      Eng
    14.3000  0.48715278E+02
    20.0000  0.31110487E+02
    30.0000  0.91412420E+01
    40.0000  0.36949111E+01

     Beta LENGTH   at all energies
      Eng
    14.3000  0.18013762E+00
    20.0000  0.10072992E+01
    30.0000  0.11159951E+01
    40.0000  0.11332499E+01

     Beta MIXED    at all energies
      Eng
    14.3000  0.15480138E+00
    20.0000  0.10127137E+01
    30.0000  0.11332854E+01
    40.0000  0.11522261E+01

     Beta VELOCITY at all energies
      Eng
    14.3000  0.12973325E+00
    20.0000  0.10153358E+01
    30.0000  0.11450868E+01
    40.0000  0.11657758E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     14.3000    63.9316    55.7680    48.7153     0.1801     0.1548     0.1297
EPhi     20.0000    43.6069    36.7852    31.1105     1.0073     1.0127     1.0153
EPhi     30.0000    13.4447    11.0591     9.1412     1.1160     1.1333     1.1451
EPhi     40.0000     5.4743     4.4870     3.6949     1.1332     1.1522     1.1658
Time Now =       628.0205  Delta time =         0.0222 End CrossSection
Time Now =       628.0234  Delta time =         0.0029 Finalize