----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test17
#
# script for SF6 photoionization test run using G03 output for orbitals
#
 Label 'SF6 core ionization'
 LMax   15     # maximum l to be used for wave functions
 LMaxI  40     # maximum l value used to determine numerical angular grids
 LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
 RMax   14.0   # maximum R in inner grid
 EMax  50.0    # EMax, maximum asymptotic energy in eV
 OrbOcc        # occupation of the orbital groups of target
 1 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
 ScatSym     'T1U' # Scattering symmetry of total final state
 ScatContSym 'T1U' # Scattering symmetry of continuum electron
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'A1G'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 InitSym 'A1G'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit        # Orbital occupation of initial state
 2 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
 ScatEng 60.0 90.0  # list of scattering energies
 FegeEng 2490.  # Energy correction used in the fege potential
 LMaxK   10    # Maximum l in the K matirx
 IPot 2490.    # IPot, ionization potential
Convert '/home/lucchese/ePolyScatE/tests/test17.g03' 'g03'
FileName 'MatrixElements' 'test17.idy' 'REWIND'
FileName 'PlotData' 'test17.dat' 'REWIND'
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
+ End of input reached
+ Data Record Label - 'SF6 core ionization'
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 14.0
+ Data Record EMax - 50.0
+ Data Record OrbOcc - 1 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
+ Data Record ScatSym - 'T1U'
+ Data Record ScatContSym - 'T1U'
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'A1G'
+ Data Record TargSpinDeg - 2
+ Data Record InitSym - 'A1G'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
+ Data Record ScatEng - 60.0 90.0
+ Data Record FegeEng - 2490.
+ Data Record LMaxK - 10
+ Data Record IPot - 2490.

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test17.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to    35  number already selected     0
Number of orbitals selected is    35
Highest orbital read in is =   35
Time Now =         0.0640  Delta time =         0.0640 End g03cnv

Atoms found    7
Z = 16 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 r =   0.0000000000   0.0000000000   2.9483998470
Z =  9 r =   0.0000000000   2.9483998470   0.0000000000
Z =  9 r =  -2.9483998470   0.0000000000   0.0000000000
Z =  9 r =   2.9483998470   0.0000000000   0.0000000000
Z =  9 r =   0.0000000000  -2.9483998470   0.0000000000
Z =  9 r =   0.0000000000   0.0000000000  -2.9483998470

+ Command FileName
+ 'MatrixElements' 'test17.idy' 'REWIND'
Opening file test17.idy at position REWIND

+ Command FileName
+ 'PlotData' 'test17.dat' 'REWIND'
Opening file test17.dat at position REWIND

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Oh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.1037  Delta time =         0.0397 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   9  2.94840   9  2.94840
  2  0.00000  1.00000  0.00000   9  2.94840   9  2.94840
  3 -1.00000  0.00000  0.00000   9  2.94840   9  2.94840
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  0.00000  1.00000  0.00000
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12  3  3  3
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30
For axis     2  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis     3  mvals:
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Oh
LMax = =   15
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    16    19    24     2     4     3     5
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         11       1  1  1  1  1  1  1
 EG        2         4         11       1  1  1  1  1  1  1
 T1G       1         5         11      -1 -1  1  1 -1 -1  1
 T1G       2         6         11      -1  1 -1  1 -1  1 -1
 T1G       3         7         11       1 -1 -1  1  1 -1 -1
 T2G       1         8         15      -1 -1  1  1 -1 -1  1
 T2G       2         9         15      -1  1 -1  1 -1  1 -1
 T2G       3        10         15       1 -1 -1  1  1 -1 -1
 A1U       1        11          1       1  1  1 -1 -1 -1 -1
 A2U       1        12          6       1  1  1 -1 -1 -1 -1
 EU        1        13          7       1  1  1 -1 -1 -1 -1
 EU        2        14          7       1  1  1 -1 -1 -1 -1
 T1U       1        15         18      -1 -1  1 -1  1  1 -1
 T1U       2        16         18      -1  1 -1 -1  1 -1  1
 T1U       3        17         18       1 -1 -1 -1 -1  1  1
 T2U       1        18         15      -1 -1  1 -1  1  1 -1
 T2U       2        19         15      -1  1 -1 -1  1 -1  1
 T2U       3        20         15       1 -1 -1 -1 -1  1  1
Time Now =         2.8118  Delta time =         2.7081 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120      -1 -1  1  1 -1 -1  1
 B2G       1         3        120       1 -1 -1  1  1 -1 -1
 B3G       1         4        120      -1  1 -1  1 -1  1 -1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120      -1 -1  1 -1  1  1 -1
 B2U       1         7        120       1 -1 -1 -1 -1  1  1
 B3U       1         8        120      -1  1 -1 -1  1 -1  1
Time Now =         7.7290  Delta time =         4.9171 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    14.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.93413E+05
    2  Center at =     2.94840  Alpha Max = 0.11427E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.34488E-04     0.00110
    2    8    40    0.36788E-04     0.00140
    3    8    48    0.46598E-04     0.00177
    4    8    56    0.59024E-04     0.00224
    5    8    64    0.74764E-04     0.00284
    6    8    72    0.94700E-04     0.00360
    7    8    80    0.11995E-03     0.00456
    8    8    88    0.15194E-03     0.00577
    9    8    96    0.19246E-03     0.00731
   10    8   104    0.24378E-03     0.00926
   11    8   112    0.30879E-03     0.01173
   12    8   120    0.39113E-03     0.01486
   13    8   128    0.49544E-03     0.01883
   14    8   136    0.62755E-03     0.02385
   15    8   144    0.79490E-03     0.03021
   16    8   152    0.10069E-02     0.03826
   17    8   160    0.12754E-02     0.04846
   18    8   168    0.16155E-02     0.06139
   19    8   176    0.20463E-02     0.07776
   20    8   184    0.25919E-02     0.09849
   21    8   192    0.32831E-02     0.12476
   22    8   200    0.41586E-02     0.15803
   23    8   208    0.52676E-02     0.20017
   24    8   216    0.66723E-02     0.25355
   25    8   224    0.84516E-02     0.32116
   26    8   232    0.10705E-01     0.40680
   27   64   296    0.10990E-01     1.11015
   28   64   360    0.10990E-01     1.81349
   29   64   424    0.10990E-01     2.51684
   30    8   432    0.10990E-01     2.60475
   31    8   440    0.89913E-02     2.67668
   32    8   448    0.71093E-02     2.73356
   33    8   456    0.56212E-02     2.77853
   34    8   464    0.44446E-02     2.81409
   35    8   472    0.35143E-02     2.84220
   36    8   480    0.27787E-02     2.86443
   37    8   488    0.21971E-02     2.88201
   38    8   496    0.17372E-02     2.89590
   39    8   504    0.13736E-02     2.90689
   40    8   512    0.10861E-02     2.91558
   41    8   520    0.85872E-03     2.92245
   42    8   528    0.67898E-03     2.92788
   43    8   536    0.53686E-03     2.93218
   44    8   544    0.42449E-03     2.93557
   45    8   552    0.33563E-03     2.93826
   46    8   560    0.26538E-03     2.94038
   47    8   568    0.20983E-03     2.94206
   48    8   576    0.16591E-03     2.94339
   49    8   584    0.13118E-03     2.94444
   50    8   592    0.10372E-03     2.94527
   51   24   616    0.98608E-04     2.94763
   52    8   624    0.95992E-04     2.94840
   53   32   656    0.98608E-04     2.95156
   54    8   664    0.10518E-03     2.95240
   55    8   672    0.13323E-03     2.95346
   56    8   680    0.16876E-03     2.95481
   57    8   688    0.21376E-03     2.95652
   58    8   696    0.27076E-03     2.95869
   59    8   704    0.34297E-03     2.96143
   60    8   712    0.43442E-03     2.96491
   61    8   720    0.55027E-03     2.96931
   62    8   728    0.69701E-03     2.97489
   63    8   736    0.88288E-03     2.98195
   64    8   744    0.11183E-02     2.99090
   65    8   752    0.14165E-02     3.00223
   66    8   760    0.17943E-02     3.01658
   67    8   768    0.22727E-02     3.03476
   68    8   776    0.28788E-02     3.05779
   69    8   784    0.36465E-02     3.08697
   70    8   792    0.46189E-02     3.12392
   71    8   800    0.58506E-02     3.17072
   72    8   808    0.74107E-02     3.23001
   73    8   816    0.93869E-02     3.30510
   74    8   824    0.11890E-01     3.40022
   75   64   888    0.13657E-01     4.27425
   76   64   952    0.13657E-01     5.14827
   77   64  1016    0.13657E-01     6.02230
   78   64  1080    0.13657E-01     6.89632
   79   64  1144    0.13657E-01     7.77035
   80   64  1208    0.13657E-01     8.64438
   81   64  1272    0.13657E-01     9.51840
   82   64  1336    0.13657E-01    10.39243
   83   64  1400    0.13657E-01    11.26645
   84   64  1464    0.13657E-01    12.14048
   85   64  1528    0.13657E-01    13.01450
   86   64  1592    0.13657E-01    13.88853
   87    8  1600    0.13657E-01    13.99778
   88    8  1608    0.27763E-03    14.00000
Time Now =         7.7303  Delta time =         0.0013 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    5
Angular regions
    1 L =    2  from (    1)         0.00003  to (    7)         0.00024
    2 L =    3  from (    8)         0.00028  to (   71)         0.00350
    3 L =    8  from (   72)         0.00360  to (  183)         0.09590
    4 L =   15  from (  184)         0.09849  to ( 1600)        13.99778
    5 L =   12  from ( 1601)        13.99806  to ( 1608)        14.00000

For analytic integrations ntheta =     16  nphi =     16
For numerical integrations ntheti =     44 nphii =     44
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     232
Proc id =    1  Last grid point =     328
Proc id =    2  Last grid point =     424
Proc id =    3  Last grid point =     520
Proc id =    4  Last grid point =     616
Proc id =    5  Last grid point =     712
Proc id =    6  Last grid point =     808
Proc id =    7  Last grid point =     904
Proc id =    8  Last grid point =     992
Proc id =    9  Last grid point =    1080
Proc id =   10  Last grid point =    1168
Proc id =   11  Last grid point =    1256
Proc id =   12  Last grid point =    1344
Proc id =   13  Last grid point =    1432
Proc id =   14  Last grid point =    1520
Proc id =   15  Last grid point =    1608
Time Now =         7.9670  Delta time =         0.2368 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  A1G   1 at max irg =   21  r =   0.06139
     2  EG    1 at max irg =   80  r =   2.94998
     3  EG    2 at max irg =   80  r =   2.94998
     4  T1U   1 at max irg =   80  r =   2.94998
     5  T1U   2 at max irg =   80  r =   2.94998
     6  T1U   3 at max irg =   80  r =   2.94998
     7  A1G   1 at max irg =   80  r =   2.94998
     8  A1G   1 at max irg =   29  r =   0.40680
     9  T1U   1 at max irg =   28  r =   0.32116
    10  T1U   2 at max irg =   28  r =   0.32116
    11  T1U   3 at max irg =   28  r =   0.32116
    12  A1G   1 at max irg =   54  r =   2.60475
    13  T1U   1 at max irg =   77  r =   2.94763
    14  T1U   2 at max irg =   77  r =   2.94763
    15  T1U   3 at max irg =   77  r =   2.94763
    16  EG    1 at max irg =   80  r =   2.94998
    17  EG    2 at max irg =   80  r =   2.94998
    18  A1G   1 at max irg =  103  r =   3.40022
    19  T1U   1 at max irg =  103  r =   3.40022
    20  T1U   2 at max irg =  103  r =   3.40022
    21  T1U   3 at max irg =  103  r =   3.40022
    22  T2G   1 at max irg =   93  r =   2.99090
    23  T2G   2 at max irg =   93  r =   2.99090
    24  T2G   3 at max irg =   93  r =   2.99090
    25  EG    1 at max irg =  104  r =   3.50948
    26  EG    2 at max irg =  104  r =   3.50948
    27  T2U   1 at max irg =   94  r =   3.00223
    28  T2U   2 at max irg =   94  r =   3.00223
    29  T2U   3 at max irg =   94  r =   3.00223
    30  T1U   1 at max irg =   97  r =   3.05779
    31  T1U   2 at max irg =   97  r =   3.05779
    32  T1U   3 at max irg =   97  r =   3.05779
    33  T1G   1 at max irg =   94  r =   3.00223
    34  T1G   2 at max irg =   94  r =   3.00223
    35  T1G   3 at max irg =   94  r =   3.00223

Rotation coefficients for orbital     1  grp =    1 A1G   1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 EG    1
     2 -0.1769667484    3  0.9842168308

Rotation coefficients for orbital     3  grp =    2 EG    2
     2  0.9842168308    3  0.1769667484

Rotation coefficients for orbital     4  grp =    3 T1U   1
     4  0.0000000000    5  0.0000000000    6  1.0000000000

Rotation coefficients for orbital     5  grp =    3 T1U   2
     4 -1.0000000000    5  0.0000000000    6  0.0000000000

Rotation coefficients for orbital     6  grp =    3 T1U   3
     4  0.0000000000    5  1.0000000000    6  0.0000000000

Rotation coefficients for orbital     7  grp =    4 A1G   1
     7  1.0000000000

Rotation coefficients for orbital     8  grp =    5 A1G   1
     8  1.0000000000

Rotation coefficients for orbital     9  grp =    6 T1U   1
     9  0.0000000000   10  1.0000000000   11  0.0000000000

Rotation coefficients for orbital    10  grp =    6 T1U   2
     9  0.0000000000   10  0.0000000000   11  1.0000000000

Rotation coefficients for orbital    11  grp =    6 T1U   3
     9  1.0000000000   10  0.0000000000   11  0.0000000000

Rotation coefficients for orbital    12  grp =    7 A1G   1
    12  1.0000000000

Rotation coefficients for orbital    13  grp =    8 T1U   1
    13  0.0000000000   14  1.0000000000   15  0.0000000000

Rotation coefficients for orbital    14  grp =    8 T1U   2
    13 -1.0000000000   14  0.0000000000   15  0.0000000000

Rotation coefficients for orbital    15  grp =    8 T1U   3
    13  0.0000000000   14  0.0000000000   15  1.0000000000

Rotation coefficients for orbital    16  grp =    9 EG    1
    16 -0.5002934362   17 -0.8658559220

Rotation coefficients for orbital    17  grp =    9 EG    2
    16  0.8658559220   17 -0.5002934362

Rotation coefficients for orbital    18  grp =   10 A1G   1
    18  1.0000000000

Rotation coefficients for orbital    19  grp =   11 T1U   1
    19  0.0000000000   20  0.0000000000   21 -1.0000000000

Rotation coefficients for orbital    20  grp =   11 T1U   2
    19  0.0000000000   20 -1.0000000000   21  0.0000000000

Rotation coefficients for orbital    21  grp =   11 T1U   3
    19 -1.0000000000   20  0.0000000000   21  0.0000000000

Rotation coefficients for orbital    22  grp =   12 T2G   1
    22  0.0000000000   23  1.0000000000   24  0.0000000000

Rotation coefficients for orbital    23  grp =   12 T2G   2
    22  0.0000000000   23  0.0000000000   24  1.0000000000

Rotation coefficients for orbital    24  grp =   12 T2G   3
    22  1.0000000000   23  0.0000000000   24  0.0000000000

Rotation coefficients for orbital    25  grp =   13 EG    1
    25 -0.1633372267   26  0.9865702967

Rotation coefficients for orbital    26  grp =   13 EG    2
    25 -0.9865702967   26 -0.1633372267

Rotation coefficients for orbital    27  grp =   14 T2U   1
    27  0.0000000000   28  0.0000000000   29 -1.0000000000

Rotation coefficients for orbital    28  grp =   14 T2U   2
    27  0.0000000000   28  1.0000000000   29  0.0000000000

Rotation coefficients for orbital    29  grp =   14 T2U   3
    27  1.0000000000   28  0.0000000000   29  0.0000000000

Rotation coefficients for orbital    30  grp =   15 T1U   1
    30  0.0000000000   31  0.0000000000   32  1.0000000000

Rotation coefficients for orbital    31  grp =   15 T1U   2
    30  1.0000000000   31  0.0000000000   32  0.0000000000

Rotation coefficients for orbital    32  grp =   15 T1U   3
    30  0.0000000000   31  1.0000000000   32  0.0000000000

Rotation coefficients for orbital    33  grp =   16 T1G   1
    33  0.0000000000   34 -1.0000000000   35  0.0000000000

Rotation coefficients for orbital    34  grp =   16 T1G   2
    33  1.0000000000   34  0.0000000000   35  0.0000000000

Rotation coefficients for orbital    35  grp =   16 T1G   3
    33  0.0000000000   34  0.0000000000   35  1.0000000000
Number of orbital groups and degeneracis are        16
  1  2  3  1  1  3  1  3  2  1  3  3  2  3  3  3
Number of orbital groups and number of electrons when fully occupied
        16
  2  4  6  2  2  6  2  6  4  2  6  6  4  6  6  6
Time Now =        12.3090  Delta time =         4.3419 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =   16
Orbital     1 of  A1G   1 symmetry normalization integral =  1.00000010
Orbital     2 of  EG    1 symmetry normalization integral =  0.55843506
Orbital     3 of  T1U   1 symmetry normalization integral =  0.58773015
Orbital     4 of  A1G   1 symmetry normalization integral =  0.53527422
Orbital     5 of  A1G   1 symmetry normalization integral =  0.99999995
Orbital     6 of  T1U   1 symmetry normalization integral =  0.99999983
Orbital     7 of  A1G   1 symmetry normalization integral =  0.96812201
Orbital     8 of  T1U   1 symmetry normalization integral =  0.96361790
Orbital     9 of  EG    1 symmetry normalization integral =  0.95603090
Orbital    10 of  A1G   1 symmetry normalization integral =  0.98514732
Orbital    11 of  T1U   1 symmetry normalization integral =  0.99135486
Orbital    12 of  T2G   1 symmetry normalization integral =  0.98380448
Orbital    13 of  EG    1 symmetry normalization integral =  0.99404942
Orbital    14 of  T2U   1 symmetry normalization integral =  0.98304624
Orbital    15 of  T1U   1 symmetry normalization integral =  0.98575827
Orbital    16 of  T1G   1 symmetry normalization integral =  0.97340206
Time Now =        17.5557  Delta time =         5.2468 End ExpOrb

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =   16
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1G   1
Set    2  has degeneracy     2
Orbital     1  is num     2  type =   3  name - EG    1
Orbital     2  is num     3  type =   4  name - EG    2
Set    3  has degeneracy     3
Orbital     1  is num     4  type =  15  name - T1U   1
Orbital     2  is num     5  type =  16  name - T1U   2
Orbital     3  is num     6  type =  17  name - T1U   3
Set    4  has degeneracy     1
Orbital     1  is num     7  type =   1  name - A1G   1
Set    5  has degeneracy     1
Orbital     1  is num     8  type =   1  name - A1G   1
Set    6  has degeneracy     3
Orbital     1  is num     9  type =  15  name - T1U   1
Orbital     2  is num    10  type =  16  name - T1U   2
Orbital     3  is num    11  type =  17  name - T1U   3
Set    7  has degeneracy     1
Orbital     1  is num    12  type =   1  name - A1G   1
Set    8  has degeneracy     3
Orbital     1  is num    13  type =  15  name - T1U   1
Orbital     2  is num    14  type =  16  name - T1U   2
Orbital     3  is num    15  type =  17  name - T1U   3
Set    9  has degeneracy     2
Orbital     1  is num    16  type =   3  name - EG    1
Orbital     2  is num    17  type =   4  name - EG    2
Set   10  has degeneracy     1
Orbital     1  is num    18  type =   1  name - A1G   1
Set   11  has degeneracy     3
Orbital     1  is num    19  type =  15  name - T1U   1
Orbital     2  is num    20  type =  16  name - T1U   2
Orbital     3  is num    21  type =  17  name - T1U   3
Set   12  has degeneracy     3
Orbital     1  is num    22  type =   8  name - T2G   1
Orbital     2  is num    23  type =   9  name - T2G   2
Orbital     3  is num    24  type =  10  name - T2G   3
Set   13  has degeneracy     2
Orbital     1  is num    25  type =   3  name - EG    1
Orbital     2  is num    26  type =   4  name - EG    2
Set   14  has degeneracy     3
Orbital     1  is num    27  type =  18  name - T2U   1
Orbital     2  is num    28  type =  19  name - T2U   2
Orbital     3  is num    29  type =  20  name - T2U   3
Set   15  has degeneracy     3
Orbital     1  is num    30  type =  15  name - T1U   1
Orbital     2  is num    31  type =  16  name - T1U   2
Orbital     3  is num    32  type =  17  name - T1U   3
Set   16  has degeneracy     3
Orbital     1  is num    33  type =   5  name - T1G   1
Orbital     2  is num    34  type =   6  name - T1G   2
Orbital     3  is num    35  type =   7  name - T1G   3
Orbital occupations by degenerate group
    1  A1G      occ = 1
    2  EG       occ = 4
    3  T1U      occ = 6
    4  A1G      occ = 2
    5  A1G      occ = 2
    6  T1U      occ = 6
    7  A1G      occ = 2
    8  T1U      occ = 6
    9  EG       occ = 4
   10  A1G      occ = 2
   11  T1U      occ = 6
   12  T2G      occ = 6
   13  EG       occ = 4
   14  T2U      occ = 6
   15  T1U      occ = 6
   16  T1G      occ = 6
The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
Symmetry of the continuum orbital is T1U
Symmetry of the total state is T1U
Spin degeneracy of the total state is =    1
Symmetry of the target state is A1G
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1G
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1G      occ = 2
    2  EG       occ = 4
    3  T1U      occ = 6
    4  A1G      occ = 2
    5  A1G      occ = 2
    6  T1U      occ = 6
    7  A1G      occ = 2
    8  T1U      occ = 6
    9  EG       occ = 4
   10  A1G      occ = 2
   11  T1U      occ = 6
   12  T2G      occ = 6
   13  EG       occ = 4
   14  T2U      occ = 6
   15  T1U      occ = 6
   16  T1G      occ = 6
Open shell symmetry types
    1  A1G    iele =    1
Use only configuration of type A1G
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    A1G   (  1)

 representation A1G    component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  A1G    iele =    1
    2  T1U    iele =    1
Use only configuration of type T1U
 Each irreducable representation is present the number of times indicated
    T1U   (  1)

 representation T1U    component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    6
    2:   0.70711   0.00000    2    3

 representation T1U    component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    7
    2:   0.70711   0.00000    2    4

 representation T1U    component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    8
    2:   0.70711   0.00000    2    5
Open shell symmetry types
    1  A1G    iele =    1
Use only configuration of type A1G
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    A1G   (  1)

 representation A1G    component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   74
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   71
Direct product basis function
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   75
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   72
Direct product basis function
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   76
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   73
Closed shell target
Time Now =        17.5884  Delta time =         0.0327 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   74
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   71
Configuration     2
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   75
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   72
Configuration     3
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   76
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   73
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   74
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   71
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   75
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   72
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   76
    2:   0.70711   0.00000    2    3    4    5    6    7    8    9   10   11
                             12   13   14   15   16   17   18   19   20   21
                             22   23   24   25   26   27   28   29   30   31
                             32   33   34   35   36   37   38   39   40   41
                             42   43   44   45   46   47   48   49   50   51
                             52   53   54   55   56   57   58   59   60   61
                             62   63   64   65   66   67   68   69   70   73
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    9
Symmetry of target =    1
Symmetry of total states =    9

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
   2   0.00000000E+00
   3   0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1
   1   0.00000000E+00
   2   0.10000000E+01
   3   0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1
   1   0.00000000E+00
   2   0.00000000E+00
   3   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18   19   20
                             21   22   23   24   25   26   27   28   29   30
                             31   32   33   34   35   36   37   38   39   40
                             41   42   43   44   45   46   47   48   49   50
                             51   52   53   54   55   56   57   58   59   60
                             61   62   63   64   65   66   67   68   69   70
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    1|   71>

Reduced formula list
    1    1    1 -0.1414213562E+01
Time Now =        17.5913  Delta time =         0.0028 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     9 or T1U
Symmetry of total final state (iTotalSym) =     9 or T1U
Symmetry of the initial state (iInitSym) =     1 or A1G
Symmetry of the ionized target state (iTargSym) =     1 or A1G
List of unique symmetry types
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   A2G
 Each irreducable representation is present the number of times indicated
    T2U   (  1)
In the product of the symmetry types T1U   EG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
    T2U   (  1)
In the product of the symmetry types T1U   T1G
 Each irreducable representation is present the number of times indicated
    A1U   (  1)
    EU    (  1)
    T1U   (  1)
    T2U   (  1)
In the product of the symmetry types T1U   T2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
    EU    (  1)
    T1U   (  1)
    T2U   (  1)
In the product of the symmetry types T1U   A1U
 Each irreducable representation is present the number of times indicated
    T1G   (  1)
In the product of the symmetry types T1U   A2U
 Each irreducable representation is present the number of times indicated
    T2G   (  1)
In the product of the symmetry types T1U   EU
 Each irreducable representation is present the number of times indicated
    T1G   (  1)
    T2G   (  1)
In the product of the symmetry types T1U   T1U
 Each irreducable representation is present the number of times indicated
    A1G   (  1)
    EG    (  1)
    T1G   (  1)
    T2G   (  1)
Unique dipole matrix type     1 Dipole symmetry type =T1U
     Final state symmetry type = T1U    Target sym =A1G
     Continuum type =T1U
In the product of the symmetry types T1U   T2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
    EG    (  1)
    T1G   (  1)
    T2G   (  1)
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Irreducible representation containing the dipole operator is T1U
Number of different dipole operators in this representation is     1
In the product of the symmetry types T1U   A1G
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  0.00000000  1.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  1.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  1  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =T1U
Time Now =        32.0279  Delta time =        14.4366 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     69.00000000
Time Now =        33.5349  Delta time =         1.5070 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.69000000E+02 facnorm =  0.10000000E+01
Time Now =        33.5402  Delta time =         0.0053 Electronic part
Time Now =        33.5526  Delta time =         0.0124 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.24900000E+04  eV
 Do E =  0.60000000E+02 eV (  0.22049596E+01 AU)
Time Now =        33.6488  Delta time =         0.0961 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1U
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    53
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    5
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        33.6565  Delta time =         0.0077 Energy independent setup

Compute solution for E =   60.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.22604674E-09
 i =  2  lval =   3  stpote =  0.95200694E-13
 i =  3  lval =   3  stpote =  0.28669155E-12
 i =  4  lval =   5  stpote = -0.66753297E+02
Number of asymptotic regions =       9
Final point in integration =   0.31951996E+02
Iter =   1 c.s. =      1.52396652 (a.u)  rmsk=     0.29097218
Iter =   2 c.s. =      2.52320271 (a.u)  rmsk=     0.23892092
Iter =   3 c.s. =      2.67558218 (a.u)  rmsk=     0.03496107
Iter =   4 c.s. =      2.67540905 (a.u)  rmsk=     0.00084344
Iter =   5 c.s. =      2.67522610 (a.u)  rmsk=     0.00002180
Iter =   6 c.s. =      2.67522527 (a.u)  rmsk=     0.00000076
Iter =   7 c.s. =      2.67522522 (a.u)  rmsk=     0.00000001
Iter =   8 c.s. =      2.67522522 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.62767059E-02,-0.76395504E-02) ( 0.81281582E-03, 0.10442657E-02)
  (-0.39743245E-02, 0.10867513E-02) (-0.24279724E-02,-0.21964928E-02)
  ( 0.46208519E-02,-0.17505144E-02) ( 0.54662264E-03, 0.10966487E-01)
  (-0.80590736E-03, 0.61460327E-03) (-0.12950308E-02, 0.73529582E-03)
  (-0.17784780E-02, 0.51426588E-02)
     ROW  2
  ( 0.58668232E+00,-0.71801615E+00) ( 0.76530583E-01, 0.95846049E-01)
  (-0.37347941E+00, 0.99671761E-01) (-0.22803907E+00,-0.20657811E+00)
  ( 0.43198957E+00,-0.16174268E+00) ( 0.50418625E-01, 0.10267992E+01)
  (-0.75119025E-01, 0.57125403E-01) (-0.12077794E+00, 0.68260440E-01)
  (-0.16586348E+00, 0.48035176E+00)
Iter =   8 c.s. =      2.67522522 (a.u)  rmsk=     0.00000000
Time Now =       149.8198  Delta time =       116.1633 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.24900000E+04  eV
 Do E =  0.90000000E+02 eV (  0.33074393E+01 AU)
Time Now =       149.9157  Delta time =         0.0959 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =T1U
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    53
Number of partial waves (np) =    18
Number of asymptotic solutions on the right (NAsymR) =     9
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =   12
Number of orthogonality constraints (NOrthUse) =    5
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =       149.9292  Delta time =         0.0135 Energy independent setup

Compute solution for E =   90.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.23244429E-09
 i =  2  lval =   3  stpote =  0.95201216E-13
 i =  3  lval =   3  stpote =  0.24126158E-12
 i =  4  lval =   5  stpote = -0.66753297E+02
Number of asymptotic regions =      10
Final point in integration =   0.30286417E+02
Iter =   1 c.s. =      2.18368816 (a.u)  rmsk=     0.34830448
Iter =   2 c.s. =      1.94638859 (a.u)  rmsk=     0.05966701
Iter =   3 c.s. =      1.94706067 (a.u)  rmsk=     0.00081919
Iter =   4 c.s. =      1.94703990 (a.u)  rmsk=     0.00006691
Iter =   5 c.s. =      1.94703944 (a.u)  rmsk=     0.00000040
Iter =   6 c.s. =      1.94703944 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  ( 0.64148815E-02,-0.10422116E-01) ( 0.41955323E-02,-0.11972616E-02)
  ( 0.29090439E-03,-0.62867869E-03) (-0.34510818E-02,-0.22763538E-02)
  ( 0.67109466E-04,-0.39948526E-03) ( 0.30175448E-02, 0.22306775E-02)
  ( 0.62792264E-04, 0.22596022E-03) ( 0.23616237E-03, 0.37685703E-03)
  ( 0.35324510E-02, 0.16762350E-02)
     ROW  2
  ( 0.60888608E+00,-0.98862960E+00) ( 0.39780508E+00,-0.11335842E+00)
  ( 0.27617550E-01,-0.59799723E-01) (-0.32701794E+00,-0.21635326E+00)
  ( 0.63745446E-02,-0.37576002E-01) ( 0.28743481E+00, 0.21172143E+00)
  ( 0.61552116E-02, 0.21261638E-01) ( 0.22687700E-01, 0.35522882E-01)
  ( 0.33648505E+00, 0.15849059E+00)
Iter =   6 c.s. =      1.94703944 (a.u)  rmsk=     0.00000000
Time Now =       233.2255  Delta time =        83.2963 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       233.2342  Delta time =         0.0088 End CnvIdy
Found     2 energies :
    60.00000    90.00000
List of matrix element types found   Number =    1
    1  Cont Sym T1U    Targ Sym A1G    Total Sym T1U
Keeping     2 energies :
    60.00000    90.00000
Time Now =       233.2343  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.20999807E+01
Photoelectron Energy in eV    0.60000000E+02
Photoelectron Energy a.u.    0.22049596E+01
Photon Energy (eV)    0.25500000E+04
Kinetic Energy (a.u.)    0.25719406E+01
Photoelectron Energy in eV    0.90000000E+02
Photoelectron Energy a.u.    0.33074393E+01
Photon Energy (eV)    0.25800000E+04

     Sigma LENGTH   at all energies
      Eng
  2550.0000  0.14680984E+00
  2580.0000  0.10525970E+00

     Sigma MIXED    at all energies
      Eng
  2550.0000  0.14670322E+00
  2580.0000  0.10535692E+00

     Sigma VELOCITY at all energies
      Eng
  2550.0000  0.14659823E+00
  2580.0000  0.10545445E+00

     Beta LENGTH   at all energies
      Eng
  2550.0000  0.91145749E+00
  2580.0000  0.15046456E+01

     Beta MIXED    at all energies
      Eng
  2550.0000  0.91177360E+00
  2580.0000  0.15038037E+01

     Beta VELOCITY at all energies
      Eng
  2550.0000  0.91209112E+00
  2580.0000  0.15029584E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi   2550.0000     0.1468     0.1467     0.1466     0.9115     0.9118     0.9121
EPhi   2580.0000     0.1053     0.1054     0.1055     1.5046     1.5038     1.5030
Time Now =       233.2523  Delta time =         0.0180 End CrossSection
Time Now =       233.2548  Delta time =         0.0025 Finalize