----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test13
#
# N2 molden SCF, (3-sigma-g)^-1 photoionization
#
  LMax   22     # maximum l to be used for wave functions
  LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   12.0    # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  LMaxK    10     # Maximum l in the K matirx
  ScatEng  10.0   # list of scattering energies

 InitSym 'SG'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 2 2 2 4  # Orbital occupation of initial state
 OrbOcc     2 2 2 2 1 4  # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'SG'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 LMaxK   10     # Maximum l in the K matirx
 IPot 15.581    # ionization potentail

Convert '/home/lucchese/ePolyScatE/tests/test13.molden' 'molden'
GetBlms
ExpOrb

 ScatSym     'SU'  # Scattering symmetry of total final state
 ScatContSym 'SU'  # Scattering symmetry of continuum electron

FileName 'MatrixElements' 'test13SU.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
 ScatSym     'PU'  # Scattering symmetry of total final state
 ScatContSym 'PU'  # Scattering symmetry of continuum electron

FileName 'MatrixElements' 'test13PU.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
GetCro 'test13PU.idy' 'test13SU.idy'
#
#
+ End of input reached
+ Data Record LMax - 22
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 12.0
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record LMaxK - 10
+ Data Record ScatEng - 10.0
+ Data Record InitSym - 'SG'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 2 2 2 4
+ Data Record OrbOcc - 2 2 2 2 1 4
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 2
+ Data Record LMaxK - 10
+ Data Record IPot - 15.581

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test13.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2
Z =  7 r =   0.0000000000   0.0000000000  -1.0336801953
Z =  7 r =   0.0000000000   0.0000000000   1.0336801953

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.1643  Delta time =         0.1643 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Determineing angular grid in GetAxMax  LmAx =   22  LMaxA =   12  LMaxAb =   44
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12  3  3  3  3  3  3  3
  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   22
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1         14       1  1  1  1  1  1  1
 A2G       1         2          2       1 -1 -1  1  1 -1 -1
 B1G       1         3          4      -1  1 -1  1 -1  1 -1
 B2G       1         4          4      -1 -1  1  1 -1 -1  1
 PG        1         5         14      -1 -1  1  1 -1 -1  1
 PG        2         6         14      -1  1 -1  1 -1  1 -1
 DG        1         7         15       1 -1 -1  1  1 -1 -1
 DG        2         8         15       1  1  1  1  1  1  1
 FG        1         9         13      -1 -1  1  1 -1 -1  1
 FG        2        10         13      -1  1 -1  1 -1  1 -1
 GG        1        11          9       1 -1 -1  1  1 -1 -1
 GG        2        12          9       1  1  1  1  1  1  1
 SU        1        13         12       1 -1 -1 -1 -1  1  1
 A2U       1        14          1       1  1  1 -1 -1 -1 -1
 B1U       1        15          4      -1 -1  1 -1  1  1 -1
 B2U       1        16          4      -1  1 -1 -1  1 -1  1
 PU        1        17         14      -1 -1  1 -1  1  1 -1
 PU        2        18         14      -1  1 -1 -1  1 -1  1
 DU        1        19         12       1 -1 -1 -1 -1  1  1
 DU        2        20         12       1  1  1 -1 -1 -1 -1
 FU        1        21         13      -1 -1  1 -1  1  1 -1
 FU        2        22         13      -1  1 -1 -1  1 -1  1
 GU        1        23          7       1 -1 -1 -1 -1  1  1
 GU        2        24          7       1  1  1 -1 -1 -1 -1
Time Now =         6.7230  Delta time =         6.5587 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   44
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        276       1  1  1  1  1  1  1
 B1G       1         2        253       1 -1 -1  1  1 -1 -1
 B2G       1         3        253      -1 -1  1  1 -1 -1  1
 B3G       1         4        253      -1  1 -1  1 -1  1 -1
 AU        1         5        231       1  1  1 -1 -1 -1 -1
 B1U       1         6        253       1 -1 -1 -1 -1  1  1
 B2U       1         7        253      -1 -1  1 -1  1  1 -1
 B3U       1         8        253      -1  1 -1 -1  1 -1  1
Time Now =        31.7629  Delta time =        25.0399 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    12.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     1.03368  Alpha Max = 0.11420E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.10541E-01     0.33731
    2   32    64    0.10990E-01     0.68898
    3    8    72    0.90189E-02     0.76113
    4    8    80    0.71311E-02     0.81818
    5    8    88    0.56384E-02     0.86329
    6    8    96    0.44582E-02     0.89895
    7    8   104    0.35250E-02     0.92715
    8    8   112    0.27872E-02     0.94945
    9    8   120    0.22038E-02     0.96708
   10    8   128    0.17425E-02     0.98102
   11    8   136    0.13778E-02     0.99204
   12    8   144    0.10894E-02     1.00076
   13    8   152    0.86135E-03     1.00765
   14    8   160    0.68106E-03     1.01310
   15    8   168    0.53850E-03     1.01741
   16    8   176    0.42579E-03     1.02081
   17    8   184    0.33666E-03     1.02351
   18    8   192    0.26619E-03     1.02564
   19    8   200    0.21047E-03     1.02732
   20    8   208    0.16642E-03     1.02865
   21    8   216    0.13158E-03     1.02970
   22    8   224    0.10404E-03     1.03054
   23   24   248    0.98638E-04     1.03290
   24    8   256    0.97100E-04     1.03368
   25   32   288    0.98638E-04     1.03684
   26    8   296    0.10521E-03     1.03768
   27    8   304    0.13327E-03     1.03874
   28    8   312    0.16881E-03     1.04009
   29    8   320    0.21383E-03     1.04181
   30    8   328    0.27085E-03     1.04397
   31    8   336    0.34307E-03     1.04672
   32    8   344    0.43456E-03     1.05019
   33    8   352    0.55044E-03     1.05460
   34    8   360    0.69723E-03     1.06017
   35    8   368    0.88315E-03     1.06724
   36    8   376    0.11187E-02     1.07619
   37    8   384    0.14170E-02     1.08752
   38    8   392    0.17948E-02     1.10188
   39    8   400    0.22734E-02     1.12007
   40    8   408    0.28797E-02     1.14311
   41    8   416    0.36476E-02     1.17229
   42    8   424    0.46203E-02     1.20925
   43    8   432    0.58524E-02     1.25607
   44    8   440    0.74130E-02     1.31538
   45    8   448    0.93899E-02     1.39049
   46    8   456    0.11894E-01     1.48565
   47   64   520    0.13657E-01     2.35967
   48   64   584    0.13657E-01     3.23370
   49   64   648    0.13657E-01     4.10772
   50   64   712    0.13657E-01     4.98175
   51   64   776    0.13657E-01     5.85577
   52   64   840    0.13657E-01     6.72980
   53   64   904    0.13657E-01     7.60382
   54   64   968    0.13657E-01     8.47785
   55   64  1032    0.13657E-01     9.35187
   56   64  1096    0.13657E-01    10.22590
   57   64  1160    0.13657E-01    11.09992
   58   64  1224    0.13657E-01    11.97395
   59    8  1232    0.32567E-02    12.00000
Time Now =        31.7643  Delta time =         0.0014 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   22
Maximum scattering m (mmaxs) =   22
Maximum numerical integration l (lmaxi) =   44
Maximum numerical integration m (mmaxi) =   44
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    8
Angular regions
    1 L =    2  from (    1)         0.01054  to (    7)         0.07379
    2 L =    3  from (    8)         0.08433  to (   15)         0.15811
    3 L =    8  from (   16)         0.16865  to (   39)         0.41424
    4 L =   12  from (   40)         0.42523  to (   63)         0.67799
    5 L =   16  from (   64)         0.68898  to (   71)         0.75211
    6 L =   22  from (   72)         0.76113  to (  472)         1.70415
    7 L =   16  from (  473)         1.71781  to ( 1224)        11.97395
    8 L =   12  from ( 1225)        11.97720  to ( 1232)        12.00000

For analytic integrations ntheta =     24  nphi =     24
For numerical integrations ntheti =     48 nphii =     48
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     112
Proc id =    1  Last grid point =     168
Proc id =    2  Last grid point =     224
Proc id =    3  Last grid point =     280
Proc id =    4  Last grid point =     336
Proc id =    5  Last grid point =     392
Proc id =    6  Last grid point =     448
Proc id =    7  Last grid point =     528
Proc id =    8  Last grid point =     616
Proc id =    9  Last grid point =     704
Proc id =   10  Last grid point =     792
Proc id =   11  Last grid point =     880
Proc id =   12  Last grid point =     968
Proc id =   13  Last grid point =    1056
Proc id =   14  Last grid point =    1144
Proc id =   15  Last grid point =    1232
Time Now =        32.3453  Delta time =         0.5810 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   39  r =   1.04009
     2  SU    1 at max irg =   39  r =   1.04009
     3  SG    1 at max irg =   32  r =   1.03368
     4  SU    1 at max irg =   59  r =   1.70415
     5  SG    1 at max irg =   60  r =   1.81340
     6  PU    1 at max irg =   55  r =   1.31538
     7  PU    2 at max irg =   55  r =   1.31538

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7  0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =        33.6629  Delta time =         1.3176 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.99799179
Orbital     2 of  SU    1 symmetry normalization integral =  0.99757023
Orbital     3 of  SG    1 symmetry normalization integral =  0.99989260
Orbital     4 of  SU    1 symmetry normalization integral =  0.99989726
Orbital     5 of  SG    1 symmetry normalization integral =  0.99999035
Orbital     6 of  PU    1 symmetry normalization integral =  0.99999964
Time Now =        36.3115  Delta time =         2.6486 End ExpOrb
+ Data Record ScatSym - 'SU'
+ Data Record ScatContSym - 'SU'

+ Command FileName
+ 'MatrixElements' 'test13SU.idy' 'REWIND'
Opening file test13SU.idy at position REWIND

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    6
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - SG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =  13  name - SU    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - SG    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =  13  name - SU    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   1  name - SG    1
Set    6  has degeneracy     2
Orbital     1  is num     6  type =  17  name - PU    1
Orbital     2  is num     7  type =  18  name - PU    2
Orbital occupations by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 1
    6  PU       occ = 4
The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
Symmetry of the continuum orbital is SU
Symmetry of the total state is SU
Spin degeneracy of the total state is =    1
Symmetry of the target state is SG
Spin degeneracy of the target state is =    2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 2
    6  PU       occ = 4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  SG     iele =    1
    2  SU     iele =    1
Use only configuration of type SU
 Each irreducable representation is present the number of times indicated
    SU    (  1)

 representation SU     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    4
    2:   0.70711   0.00000    2    3
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Closed shell target
Time Now =        36.5627  Delta time =         0.2512 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   16
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    9
Symmetry of target =    1
Symmetry of total states =    9

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    9|   15>

Reduced formula list
    1    5    1 -0.1414213562E+01
Time Now =        36.6761  Delta time =         0.1134 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     9 or SU
Symmetry of total final state (iTotalSym) =     9 or SU
Symmetry of the initial state (iInitSym) =     1 or SG
Symmetry of the ionized target state (iTargSym) =     1 or SG
List of unique symmetry types
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    A2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
In the product of the symmetry types SU    B1G
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
In the product of the symmetry types SU    B2G
 Each irreducable representation is present the number of times indicated
    B2U   (  1)
In the product of the symmetry types SU    PG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types SU    DG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
In the product of the symmetry types SU    FG
 Each irreducable representation is present the number of times indicated
    FU    (  1)
In the product of the symmetry types SU    GG
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types SU    SU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
Unique dipole matrix type     1 Dipole symmetry type =SU
     Final state symmetry type = SU     Target sym =SG
     Continuum type =SU
In the product of the symmetry types SU    A2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
In the product of the symmetry types SU    B1U
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
In the product of the symmetry types SU    B2U
 Each irreducable representation is present the number of times indicated
    B2G   (  1)
In the product of the symmetry types SU    PU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types SU    DU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
In the product of the symmetry types SU    FU
 Each irreducable representation is present the number of times indicated
    FG    (  1)
In the product of the symmetry types SU    GU
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    A2G
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    B1G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    B2G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    PG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
    A2U   (  1)
    DU    (  1)
In the product of the symmetry types PU    DG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
    FU    (  1)
In the product of the symmetry types PU    FG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
    GU    (  1)
In the product of the symmetry types PU    GG
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
    B2U   (  1)
    FU    (  1)
In the product of the symmetry types PU    SU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    A2U
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    B1U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    B2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    PU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
    A2G   (  1)
    DG    (  1)
Unique dipole matrix type     2 Dipole symmetry type =PU
     Final state symmetry type = PU     Target sym =SG
     Continuum type =PU
In the product of the symmetry types PU    DU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
    FG    (  1)
In the product of the symmetry types PU    FU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
    GG    (  1)
In the product of the symmetry types PU    GU
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
    B2G   (  1)
    FG    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Irreducible representation containing the dipole operator is SU
Number of different dipole operators in this representation is     1
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  5  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =SU
Time Now =        46.4553  Delta time =         9.7792 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =        46.5527  Delta time =         0.0974 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =        46.5597  Delta time =         0.0071 Electronic part
Time Now =        46.5650  Delta time =         0.0053 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        46.6494  Delta time =         0.0844 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SU
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    62
Number of partial waves (np) =    12
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    7
Number of orthogonality constraints (NOrthUse) =    2
Maximum l used in usual function (lmax) =   22
Maximum m used in usual function (LMax) =   22
Maxamum l used in expanding static potential (lpotct) =   44
Maximum l used in exapnding the exchange potential (lmaxab) =   44
Higest l included in the expansion of the wave function (lnp) =   21
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        46.6513  Delta time =         0.0019 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.13175131E-04
 i =  2  lval =   3  stpote =  0.79315169E-15
 i =  3  lval =   3  stpote = -0.30408372E+01
 i =  4  lval =   5  stpote =  0.25271897E-14
Number of asymptotic regions =      55
Final point in integration =   0.17322493E+03
Iter =   1 c.s. =     14.80543594 (a.u)  rmsk=     1.21677590
Iter =   2 c.s. =      6.20347963 (a.u)  rmsk=     0.96057916
Iter =   3 c.s. =      6.27759849 (a.u)  rmsk=     0.03943741
Iter =   4 c.s. =      6.27762579 (a.u)  rmsk=     0.00005797
Iter =   5 c.s. =      6.27762454 (a.u)  rmsk=     0.00000022
Iter =   6 c.s. =      6.27762455 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.30133733E+00, 0.11419858E+01) ( 0.13244598E+01,-0.64601125E+00)
  ( 0.25985169E-01,-0.22216516E-01) ( 0.21931791E-03,-0.18320379E-03)
  ( 0.11004235E-05,-0.92828198E-06)
     ROW  2
  (-0.26440616E+00, 0.99920193E+00) ( 0.11510584E+01,-0.56205902E+00)
  ( 0.21508002E-01,-0.19292979E-01) ( 0.16775693E-03,-0.15397227E-03)
  ( 0.81811707E-06,-0.74404483E-06)
Iter =   6 c.s. =      6.27762455 (a.u)  rmsk=     0.00000000
Time Now =        72.7146  Delta time =        26.0633 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        72.7347  Delta time =         0.0201 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    1
    1  Cont Sym SU     Targ Sym SG     Total Sym SU
Keeping     1 energies :
    10.00000
Time Now =        72.7348  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.85731355E+00
Photoelectron Energy in eV    0.10000000E+02
Photoelectron Energy a.u.    0.36749326E+00
Photon Energy (eV)    0.25581000E+02

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.57415977E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.53230165E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.49350084E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.47433791E+00

     Beta MIXED    at all energies
      Eng
    25.5810  0.47537129E+00

     Beta VELOCITY at all energies
      Eng
    25.5810  0.47640706E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     5.7416     5.3230     4.9350     0.4743     0.4754     0.4764
Time Now =        72.7795  Delta time =         0.0448 End CrossSection
+ Data Record ScatSym - 'PU'
+ Data Record ScatContSym - 'PU'

+ Command FileName
+ 'MatrixElements' 'test13PU.idy' 'REWIND'
Opening file test13PU.idy at position REWIND

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    6
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - SG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =  13  name - SU    1
Set    3  has degeneracy     1
Orbital     1  is num     3  type =   1  name - SG    1
Set    4  has degeneracy     1
Orbital     1  is num     4  type =  13  name - SU    1
Set    5  has degeneracy     1
Orbital     1  is num     5  type =   1  name - SG    1
Set    6  has degeneracy     2
Orbital     1  is num     6  type =  17  name - PU    1
Orbital     2  is num     7  type =  18  name - PU    2
Orbital occupations by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 1
    6  PU       occ = 4
The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
Symmetry of the continuum orbital is PU
Symmetry of the total state is PU
Spin degeneracy of the total state is =    1
Symmetry of the target state is SG
Spin degeneracy of the target state is =    2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  SG       occ = 2
    2  SU       occ = 2
    3  SG       occ = 2
    4  SU       occ = 2
    5  SG       occ = 2
    6  PU       occ = 4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Open shell symmetry types
    1  SG     iele =    1
    2  PU     iele =    1
Use only configuration of type PU
 Each irreducable representation is present the number of times indicated
    PU    (  1)

 representation PU     component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    5
    2:   0.70711   0.00000    2    3

 representation PU     component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    6
    2:   0.70711   0.00000    2    4
Open shell symmetry types
    1  SG     iele =    1
Use only configuration of type SG
MS2 =    1  SDGN =    2
NumAlpha =    1
List of determinants found
    1:   1.00000   0.00000    1
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1
 Each irreducable representation is present the number of times indicated
    SG    (  1)

 representation SG     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Closed shell target
Time Now =        72.7888  Delta time =         0.0093 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Configuration     2
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   17
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   15
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   11
                             12   13   14   18
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   11
                             12   13   14   16
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =   13
Symmetry of target =    1
Symmetry of total states =   13

Total symmetry component =    1

Cont      Target Component
Comp        1
   1   0.10000000E+01
   2   0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1
   1   0.00000000E+00
   2   0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <    9|   15>

Reduced formula list
    1    5    1 -0.1414213562E+01
Time Now =        72.7894  Delta time =         0.0006 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =    13 or PU
Symmetry of total final state (iTotalSym) =    13 or PU
Symmetry of the initial state (iInitSym) =     1 or SG
Symmetry of the ionized target state (iTargSym) =     1 or SG
List of unique symmetry types
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types SU    A2G
 Each irreducable representation is present the number of times indicated
    A2U   (  1)
In the product of the symmetry types SU    B1G
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
In the product of the symmetry types SU    B2G
 Each irreducable representation is present the number of times indicated
    B2U   (  1)
In the product of the symmetry types SU    PG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types SU    DG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
In the product of the symmetry types SU    FG
 Each irreducable representation is present the number of times indicated
    FU    (  1)
In the product of the symmetry types SU    GG
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types SU    SU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
Unique dipole matrix type     1 Dipole symmetry type =SU
     Final state symmetry type = SU     Target sym =SG
     Continuum type =SU
In the product of the symmetry types SU    A2U
 Each irreducable representation is present the number of times indicated
    A2G   (  1)
In the product of the symmetry types SU    B1U
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
In the product of the symmetry types SU    B2U
 Each irreducable representation is present the number of times indicated
    B2G   (  1)
In the product of the symmetry types SU    PU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types SU    DU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
In the product of the symmetry types SU    FU
 Each irreducable representation is present the number of times indicated
    FG    (  1)
In the product of the symmetry types SU    GU
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    A2G
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    B1G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    B2G
 Each irreducable representation is present the number of times indicated
    GU    (  1)
In the product of the symmetry types PU    PG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
    A2U   (  1)
    DU    (  1)
In the product of the symmetry types PU    DG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
    FU    (  1)
In the product of the symmetry types PU    FG
 Each irreducable representation is present the number of times indicated
    DU    (  1)
    GU    (  1)
In the product of the symmetry types PU    GG
 Each irreducable representation is present the number of times indicated
    B1U   (  1)
    B2U   (  1)
    FU    (  1)
In the product of the symmetry types PU    SU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    A2U
 Each irreducable representation is present the number of times indicated
    PG    (  1)
In the product of the symmetry types PU    B1U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    B2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
In the product of the symmetry types PU    PU
 Each irreducable representation is present the number of times indicated
    SG    (  1)
    A2G   (  1)
    DG    (  1)
Unique dipole matrix type     2 Dipole symmetry type =PU
     Final state symmetry type = PU     Target sym =SG
     Continuum type =PU
In the product of the symmetry types PU    DU
 Each irreducable representation is present the number of times indicated
    PG    (  1)
    FG    (  1)
In the product of the symmetry types PU    FU
 Each irreducable representation is present the number of times indicated
    DG    (  1)
    GG    (  1)
In the product of the symmetry types PU    GU
 Each irreducable representation is present the number of times indicated
    B1G   (  1)
    B2G   (  1)
    FG    (  1)
In the product of the symmetry types SU    SG
 Each irreducable representation is present the number of times indicated
    SU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Irreducible representation containing the dipole operator is PU
Number of different dipole operators in this representation is     1
In the product of the symmetry types PU    SG
 Each irreducable representation is present the number of times indicated
    PU    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.88817842E-16,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.88817842E-16,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  2
  coefficients =  1.00000000  0.00000000  0.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  5  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =PU
Time Now =        82.5801  Delta time =         9.7907 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     13.00000000
Time Now =        82.6733  Delta time =         0.0932 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.13000000E+02 facnorm =  0.10000000E+01
Time Now =        82.6805  Delta time =         0.0072 Electronic part
Time Now =        82.6858  Delta time =         0.0054 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E+02 eV (  0.36749326E+00 AU)
Time Now =        82.7704  Delta time =         0.0845 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =PU
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =     T
Maximum l for computed scattering solutions (lna) =   10
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    62
Number of partial waves (np) =    14
Number of asymptotic solutions on the right (NAsymR) =     6
Number of asymptotic solutions on the left (NAsymL) =     2
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    1
Maximum l used in usual function (lmax) =   22
Maximum m used in usual function (LMax) =   22
Maxamum l used in expanding static potential (lpotct) =   44
Maximum l used in exapnding the exchange potential (lmaxab) =   44
Higest l included in the expansion of the wave function (lnp) =   21
Higest l included in the K matrix (lna) =    9
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        82.7722  Delta time =         0.0019 Energy independent setup

Compute solution for E =   10.0000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
 i =  1  lval =   4  stpote = -0.13175131E-04
 i =  2  lval =   3  stpote =  0.79315169E-15
 i =  3  lval =   3  stpote = -0.30408372E+01
 i =  4  lval =   5  stpote =  0.25271897E-14
Number of asymptotic regions =      55
Final point in integration =   0.17322493E+03
Iter =   1 c.s. =      1.83289232 (a.u)  rmsk=     0.39082097
Iter =   2 c.s. =      1.64774889 (a.u)  rmsk=     0.04175091
Iter =   3 c.s. =      1.64764542 (a.u)  rmsk=     0.00036459
Iter =   4 c.s. =      1.64765119 (a.u)  rmsk=     0.00000302
Iter =   5 c.s. =      1.64765119 (a.u)  rmsk=     0.00000000
Iter =   6 c.s. =      1.64765119 (a.u)  rmsk=     0.00000000
      Final k matrix
     ROW  1
  (-0.95092537E-03, 0.52719685E+00) ( 0.81312102E+00,-0.10222204E+00)
  ( 0.21462231E-01,-0.89410865E-02) ( 0.17982237E-03,-0.98897681E-04)
  ( 0.14887264E-16, 0.80433987E-18) ( 0.83968005E-06,-0.47837727E-06)
     ROW  2
  ( 0.66800580E-02, 0.48756482E+00) ( 0.67315576E+00,-0.79706917E-01)
  ( 0.15790314E-01,-0.72605080E-02) ( 0.11659757E-03,-0.71635799E-04)
  ( 0.15666691E-16, 0.13370055E-17) ( 0.49674338E-06,-0.30517161E-06)
Iter =   6 c.s. =      1.64765119 (a.u)  rmsk=     0.00000000
Time Now =       111.6908  Delta time =        28.9186 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       111.6923  Delta time =         0.0015 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    1
    1  Cont Sym PU     Targ Sym SG     Total Sym PU
Keeping     1 energies :
    10.00000
Time Now =       111.6924  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.85731355E+00
Photoelectron Energy in eV    0.10000000E+02
Photoelectron Energy a.u.    0.36749326E+00
Photon Energy (eV)    0.25581000E+02

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.30580831E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.27834112E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.25405610E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.12689801E+01

     Beta MIXED    at all energies
      Eng
    25.5810  0.13003991E+01

     Beta VELOCITY at all energies
      Eng
    25.5810  0.13303073E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     3.0581     2.7834     2.5406     1.2690     1.3004     1.3303
Time Now =       111.7012  Delta time =         0.0088 End CrossSection

+ Command GetCro
+ 'test13PU.idy' 'test13SU.idy'
Taking dipole matrix from file test13PU.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       111.7025  Delta time =         0.0013 End CnvIdy
Taking dipole matrix from file test13SU.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =       111.7035  Delta time =         0.0010 End CnvIdy
Found     1 energies :
    10.00000
List of matrix element types found   Number =    2
    1  Cont Sym PU     Targ Sym SG     Total Sym PU
    2  Cont Sym SU     Targ Sym SG     Total Sym SU
Keeping     1 energies :
    10.00000
Time Now =       111.7035  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Kinetic Energy (a.u.)    0.85731355E+00
Photoelectron Energy in eV    0.10000000E+02
Photoelectron Energy a.u.    0.36749326E+00
Photon Energy (eV)    0.25581000E+02

     Sigma LENGTH   at all energies
      Eng
    25.5810  0.87996808E+01

     Sigma MIXED    at all energies
      Eng
    25.5810  0.81064277E+01

     Sigma VELOCITY at all energies
      Eng
    25.5810  0.74755693E+01

     Beta LENGTH   at all energies
      Eng
    25.5810  0.10203180E+01

     Beta MIXED    at all energies
      Eng
    25.5810  0.10433073E+01

     Beta VELOCITY at all energies
      Eng
    25.5810  0.10660352E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     25.5810     8.7997     8.1064     7.4756     1.0203     1.0433     1.0660
Time Now =       111.7123  Delta time =         0.0088 End CrossSection
Time Now =       111.7166  Delta time =         0.0042 Finalize