---------------------------------------------------------------------- ePolyScat Version E ---------------------------------------------------------------------- + Start of Input Records # # input file for test13 # # N2 molden SCF, (3-sigma-g)^-1 photoionization # LMax 22 # maximum l to be used for wave functions LMaxA 12 # maximum l included at large r MMax 3 # maximum m about unique axes at high l RMax 12.0 # maximum R in inner grid EMax 50.0 # EMax, maximum asymptotic energy in eV FegeEng 13.0 # Energy correction (in eV) used in the fege potential LMaxK 10 # Maximum l in the K matirx ScatEng 10.0 # list of scattering energies InitSym 'SG' # Initial state symmetry InitSpinDeg 1 # Initial state spin degeneracy OrbOccInit 2 2 2 2 2 4 # Orbital occupation of initial state OrbOcc 2 2 2 2 1 4 # occupation of the orbital groups of target SpinDeg 1 # Spin degeneracy of the total scattering state (=1 singlet) TargSym 'SG' # Symmetry of the target state TargSpinDeg 2 # Target spin degeneracy LMaxK 10 # Maximum l in the K matirx IPot 15.581 # ionization potentail Convert '/home/lucchese/ePolyScatE/tests/test13.molden' 'molden' GetBlms ExpOrb ScatSym 'SU' # Scattering symmetry of total final state ScatContSym 'SU' # Scattering symmetry of continuum electron FileName 'MatrixElements' 'test13SU.idy' 'REWIND' GenFormPhIon DipoleOp GetPot PhIon GetCro # ScatSym 'PU' # Scattering symmetry of total final state ScatContSym 'PU' # Scattering symmetry of continuum electron FileName 'MatrixElements' 'test13PU.idy' 'REWIND' GenFormPhIon DipoleOp GetPot PhIon GetCro # GetCro 'test13PU.idy' 'test13SU.idy' # # + End of input reached + Data Record LMax - 22 + Data Record LMaxA - 12 + Data Record MMax - 3 + Data Record RMax - 12.0 + Data Record EMax - 50.0 + Data Record FegeEng - 13.0 + Data Record LMaxK - 10 + Data Record ScatEng - 10.0 + Data Record InitSym - 'SG' + Data Record InitSpinDeg - 1 + Data Record OrbOccInit - 2 2 2 2 2 4 + Data Record OrbOcc - 2 2 2 2 1 4 + Data Record SpinDeg - 1 + Data Record TargSym - 'SG' + Data Record TargSpinDeg - 2 + Data Record LMaxK - 10 + Data Record IPot - 15.581 + Command Convert + '/home/lucchese/ePolyScatE/tests/test13.molden' 'molden' ---------------------------------------------------------------------- MoldenCnv - Molden (from Molpro) conversion program ---------------------------------------------------------------------- Expansion center is (in atomic units) - 0.0000000000 0.0000000000 0.0000000000 Convert from Angstroms to Bohr radii Found 110 basis functions Selecting orbitals Number of orbitals selected is 7 Selecting 1 1 Ene = -15.6842 Spin =Alpha Occup = 2.000000 Selecting 2 2 Ene = -15.6806 Spin =Alpha Occup = 2.000000 Selecting 3 3 Ene = -1.4752 Spin =Alpha Occup = 2.000000 Selecting 4 4 Ene = -0.7786 Spin =Alpha Occup = 2.000000 Selecting 5 5 Ene = -0.6350 Spin =Alpha Occup = 2.000000 Selecting 6 6 Ene = -0.6161 Spin =Alpha Occup = 2.000000 Selecting 7 7 Ene = -0.6161 Spin =Alpha Occup = 2.000000 Atoms found 2 Z = 7 r = 0.0000000000 0.0000000000 -1.0336801953 Z = 7 r = 0.0000000000 0.0000000000 1.0336801953 + Command GetBlms + ---------------------------------------------------------------------- GetPGroup - determine point group from geometry ---------------------------------------------------------------------- Found point group DAh Reduce angular grid using nthd = 2 nphid = 4 Found point group for abelian subgroup D2h Time Now = 0.1643 Delta time = 0.1643 End GetPGroup List of unique axes N Vector Z R 1 0.00000 0.00000 1.00000 7 1.03368 7 1.03368 List of corresponding x axes N Vector 1 1.00000 0.00000 0.00000 Determineing angular grid in GetAxMax LmAx = 22 LMaxA = 12 LMaxAb = 44 For axis 1 mvals: 0 1 2 3 4 5 6 7 8 9 10 11 12 3 3 3 3 3 3 3 3 3 3 On the double L grid used for products For axis 1 mvals: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ---------------------------------------------------------------------- SymGen - generate symmetry adapted functions ---------------------------------------------------------------------- Point group is DAh LMax = = 22 The dimension of each irreducable representation is SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2) DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1) B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2) GU ( 2) Number of symmetry operations in the abelian subgroup (excluding E) = 7 The operations are - 12 22 32 2 3 21 31 Rep Component Sym Num Num Found Eigenvalues of abelian sub-group SG 1 1 14 1 1 1 1 1 1 1 A2G 1 2 2 1 -1 -1 1 1 -1 -1 B1G 1 3 4 -1 1 -1 1 -1 1 -1 B2G 1 4 4 -1 -1 1 1 -1 -1 1 PG 1 5 14 -1 -1 1 1 -1 -1 1 PG 2 6 14 -1 1 -1 1 -1 1 -1 DG 1 7 15 1 -1 -1 1 1 -1 -1 DG 2 8 15 1 1 1 1 1 1 1 FG 1 9 13 -1 -1 1 1 -1 -1 1 FG 2 10 13 -1 1 -1 1 -1 1 -1 GG 1 11 9 1 -1 -1 1 1 -1 -1 GG 2 12 9 1 1 1 1 1 1 1 SU 1 13 12 1 -1 -1 -1 -1 1 1 A2U 1 14 1 1 1 1 -1 -1 -1 -1 B1U 1 15 4 -1 -1 1 -1 1 1 -1 B2U 1 16 4 -1 1 -1 -1 1 -1 1 PU 1 17 14 -1 -1 1 -1 1 1 -1 PU 2 18 14 -1 1 -1 -1 1 -1 1 DU 1 19 12 1 -1 -1 -1 -1 1 1 DU 2 20 12 1 1 1 -1 -1 -1 -1 FU 1 21 13 -1 -1 1 -1 1 1 -1 FU 2 22 13 -1 1 -1 -1 1 -1 1 GU 1 23 7 1 -1 -1 -1 -1 1 1 GU 2 24 7 1 1 1 -1 -1 -1 -1 Time Now = 6.7230 Delta time = 6.5587 End SymGen ---------------------------------------------------------------------- SymGen - generate symmetry adapted functions ---------------------------------------------------------------------- Point group is D2h LMax = = 44 The dimension of each irreducable representation is AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1) B1U ( 1) B2U ( 1) B3U ( 1) Number of symmetry operations in the abelian subgroup (excluding E) = 7 The operations are - 2 3 4 5 6 7 8 Rep Component Sym Num Num Found Eigenvalues of abelian sub-group AG 1 1 276 1 1 1 1 1 1 1 B1G 1 2 253 1 -1 -1 1 1 -1 -1 B2G 1 3 253 -1 -1 1 1 -1 -1 1 B3G 1 4 253 -1 1 -1 1 -1 1 -1 AU 1 5 231 1 1 1 -1 -1 -1 -1 B1U 1 6 253 1 -1 -1 -1 -1 1 1 B2U 1 7 253 -1 -1 1 -1 1 1 -1 B3U 1 8 253 -1 1 -1 -1 1 -1 1 Time Now = 31.7629 Delta time = 25.0399 End SymGen + Command ExpOrb + ---------------------------------------------------------------------- GenGrid - Generate Radial Grid ---------------------------------------------------------------------- Maximum R in the grid (RMax) = 12.00000 Factors to determine step sizes in the various regions: In regions controlled by Gaussians (HFacGauss) = 30.0 In regions controlled by the wave length (HFacWave) = 120.0 Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV Factor to increase grid by (GridFac) = 1 1 Center at = 0.00000 Alpha Max = 0.10000E+01 2 Center at = 1.03368 Alpha Max = 0.11420E+05 Generated Grid irg nin ntot step R end 1 32 32 0.10541E-01 0.33731 2 32 64 0.10990E-01 0.68898 3 8 72 0.90189E-02 0.76113 4 8 80 0.71311E-02 0.81818 5 8 88 0.56384E-02 0.86329 6 8 96 0.44582E-02 0.89895 7 8 104 0.35250E-02 0.92715 8 8 112 0.27872E-02 0.94945 9 8 120 0.22038E-02 0.96708 10 8 128 0.17425E-02 0.98102 11 8 136 0.13778E-02 0.99204 12 8 144 0.10894E-02 1.00076 13 8 152 0.86135E-03 1.00765 14 8 160 0.68106E-03 1.01310 15 8 168 0.53850E-03 1.01741 16 8 176 0.42579E-03 1.02081 17 8 184 0.33666E-03 1.02351 18 8 192 0.26619E-03 1.02564 19 8 200 0.21047E-03 1.02732 20 8 208 0.16642E-03 1.02865 21 8 216 0.13158E-03 1.02970 22 8 224 0.10404E-03 1.03054 23 24 248 0.98638E-04 1.03290 24 8 256 0.97100E-04 1.03368 25 32 288 0.98638E-04 1.03684 26 8 296 0.10521E-03 1.03768 27 8 304 0.13327E-03 1.03874 28 8 312 0.16881E-03 1.04009 29 8 320 0.21383E-03 1.04181 30 8 328 0.27085E-03 1.04397 31 8 336 0.34307E-03 1.04672 32 8 344 0.43456E-03 1.05019 33 8 352 0.55044E-03 1.05460 34 8 360 0.69723E-03 1.06017 35 8 368 0.88315E-03 1.06724 36 8 376 0.11187E-02 1.07619 37 8 384 0.14170E-02 1.08752 38 8 392 0.17948E-02 1.10188 39 8 400 0.22734E-02 1.12007 40 8 408 0.28797E-02 1.14311 41 8 416 0.36476E-02 1.17229 42 8 424 0.46203E-02 1.20925 43 8 432 0.58524E-02 1.25607 44 8 440 0.74130E-02 1.31538 45 8 448 0.93899E-02 1.39049 46 8 456 0.11894E-01 1.48565 47 64 520 0.13657E-01 2.35967 48 64 584 0.13657E-01 3.23370 49 64 648 0.13657E-01 4.10772 50 64 712 0.13657E-01 4.98175 51 64 776 0.13657E-01 5.85577 52 64 840 0.13657E-01 6.72980 53 64 904 0.13657E-01 7.60382 54 64 968 0.13657E-01 8.47785 55 64 1032 0.13657E-01 9.35187 56 64 1096 0.13657E-01 10.22590 57 64 1160 0.13657E-01 11.09992 58 64 1224 0.13657E-01 11.97395 59 8 1232 0.32567E-02 12.00000 Time Now = 31.7643 Delta time = 0.0014 End GenGrid ---------------------------------------------------------------------- AngGCt - generate angular functions ---------------------------------------------------------------------- Maximum scattering l (lmax) = 22 Maximum scattering m (mmaxs) = 22 Maximum numerical integration l (lmaxi) = 44 Maximum numerical integration m (mmaxi) = 44 Maximum l to include in the asymptotic region (lmasym) = 12 Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-05 au Maximum E used to determine grid (in eV) = 50.00000 Print flag (iprnfg) = 0 lmasymtyts = 12 Actual value of lmasym found = 12 Number of regions of the same l expansion (NAngReg) = 8 Angular regions 1 L = 2 from ( 1) 0.01054 to ( 7) 0.07379 2 L = 3 from ( 8) 0.08433 to ( 15) 0.15811 3 L = 8 from ( 16) 0.16865 to ( 39) 0.41424 4 L = 12 from ( 40) 0.42523 to ( 63) 0.67799 5 L = 16 from ( 64) 0.68898 to ( 71) 0.75211 6 L = 22 from ( 72) 0.76113 to ( 472) 1.70415 7 L = 16 from ( 473) 1.71781 to ( 1224) 11.97395 8 L = 12 from ( 1225) 11.97720 to ( 1232) 12.00000 For analytic integrations ntheta = 24 nphi = 24 For numerical integrations ntheti = 48 nphii = 48 Last grid points by processor WorkExp = 1.500 Proc id = -1 Last grid point = 1 Proc id = 0 Last grid point = 112 Proc id = 1 Last grid point = 168 Proc id = 2 Last grid point = 224 Proc id = 3 Last grid point = 280 Proc id = 4 Last grid point = 336 Proc id = 5 Last grid point = 392 Proc id = 6 Last grid point = 448 Proc id = 7 Last grid point = 528 Proc id = 8 Last grid point = 616 Proc id = 9 Last grid point = 704 Proc id = 10 Last grid point = 792 Proc id = 11 Last grid point = 880 Proc id = 12 Last grid point = 968 Proc id = 13 Last grid point = 1056 Proc id = 14 Last grid point = 1144 Proc id = 15 Last grid point = 1232 Time Now = 32.3453 Delta time = 0.5810 End AngGCt ---------------------------------------------------------------------- RotOrb - Determine rotation of degenerate orbitals ---------------------------------------------------------------------- R of maximum density 1 SG 1 at max irg = 39 r = 1.04009 2 SU 1 at max irg = 39 r = 1.04009 3 SG 1 at max irg = 32 r = 1.03368 4 SU 1 at max irg = 59 r = 1.70415 5 SG 1 at max irg = 60 r = 1.81340 6 PU 1 at max irg = 55 r = 1.31538 7 PU 2 at max irg = 55 r = 1.31538 Rotation coefficients for orbital 1 grp = 1 SG 1 1 1.0000000000 Rotation coefficients for orbital 2 grp = 2 SU 1 2 1.0000000000 Rotation coefficients for orbital 3 grp = 3 SG 1 3 1.0000000000 Rotation coefficients for orbital 4 grp = 4 SU 1 4 1.0000000000 Rotation coefficients for orbital 5 grp = 5 SG 1 5 1.0000000000 Rotation coefficients for orbital 6 grp = 6 PU 1 6 1.0000000000 7 0.0000000000 Rotation coefficients for orbital 7 grp = 6 PU 2 6 0.0000000000 7 1.0000000000 Number of orbital groups and degeneracis are 6 1 1 1 1 1 2 Number of orbital groups and number of electrons when fully occupied 6 2 2 2 2 2 4 Time Now = 33.6629 Delta time = 1.3176 End RotOrb ---------------------------------------------------------------------- ExpOrb - Single Center Expansion Program ---------------------------------------------------------------------- First orbital group to expand (mofr) = 1 Last orbital group to expand (moto) = 6 Orbital 1 of SG 1 symmetry normalization integral = 0.99799179 Orbital 2 of SU 1 symmetry normalization integral = 0.99757023 Orbital 3 of SG 1 symmetry normalization integral = 0.99989260 Orbital 4 of SU 1 symmetry normalization integral = 0.99989726 Orbital 5 of SG 1 symmetry normalization integral = 0.99999035 Orbital 6 of PU 1 symmetry normalization integral = 0.99999964 Time Now = 36.3115 Delta time = 2.6486 End ExpOrb + Data Record ScatSym - 'SU' + Data Record ScatContSym - 'SU' + Command FileName + 'MatrixElements' 'test13SU.idy' 'REWIND' Opening file test13SU.idy at position REWIND + Command GenFormPhIon + ---------------------------------------------------------------------- SymProd - Construct products of symmetry types ---------------------------------------------------------------------- Number of sets of degenerate orbitals = 6 Set 1 has degeneracy 1 Orbital 1 is num 1 type = 1 name - SG 1 Set 2 has degeneracy 1 Orbital 1 is num 2 type = 13 name - SU 1 Set 3 has degeneracy 1 Orbital 1 is num 3 type = 1 name - SG 1 Set 4 has degeneracy 1 Orbital 1 is num 4 type = 13 name - SU 1 Set 5 has degeneracy 1 Orbital 1 is num 5 type = 1 name - SG 1 Set 6 has degeneracy 2 Orbital 1 is num 6 type = 17 name - PU 1 Orbital 2 is num 7 type = 18 name - PU 2 Orbital occupations by degenerate group 1 SG occ = 2 2 SU occ = 2 3 SG occ = 2 4 SU occ = 2 5 SG occ = 1 6 PU occ = 4 The dimension of each irreducable representation is SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2) DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1) B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2) GU ( 2) Symmetry of the continuum orbital is SU Symmetry of the total state is SU Spin degeneracy of the total state is = 1 Symmetry of the target state is SG Spin degeneracy of the target state is = 2 Symmetry of the initial state is SG Spin degeneracy of the initial state is = 1 Orbital occupations of initial state by degenerate group 1 SG occ = 2 2 SU occ = 2 3 SG occ = 2 4 SU occ = 2 5 SG occ = 2 6 PU occ = 4 Open shell symmetry types 1 SG iele = 1 Use only configuration of type SG MS2 = 1 SDGN = 2 NumAlpha = 1 List of determinants found 1: 1.00000 0.00000 1 Spin adapted configurations Configuration 1 1: 1.00000 0.00000 1 Each irreducable representation is present the number of times indicated SG ( 1) representation SG component 1 fun 1 Symmeterized Function 1: 1.00000 0.00000 1 Open shell symmetry types 1 SG iele = 1 2 SU iele = 1 Use only configuration of type SU Each irreducable representation is present the number of times indicated SU ( 1) representation SU component 1 fun 1 Symmeterized Function from AddNewShell 1: -0.70711 0.00000 1 4 2: 0.70711 0.00000 2 3 Open shell symmetry types 1 SG iele = 1 Use only configuration of type SG MS2 = 1 SDGN = 2 NumAlpha = 1 List of determinants found 1: 1.00000 0.00000 1 Spin adapted configurations Configuration 1 1: 1.00000 0.00000 1 Each irreducable representation is present the number of times indicated SG ( 1) representation SG component 1 fun 1 Symmeterized Function 1: 1.00000 0.00000 1 Direct product basis set Direct product basis function 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 16 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 15 Closed shell target Time Now = 36.5627 Delta time = 0.2512 End SymProd ---------------------------------------------------------------------- MatEle - Program to compute Matrix Elements over Determinants ---------------------------------------------------------------------- Configuration 1 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 16 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 15 Direct product Configuration Cont sym = 1 Targ sym = 1 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 16 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 15 Overlap of Direct Product expansion and Symmeterized states Symmetry of Continuum = 9 Symmetry of target = 1 Symmetry of total states = 9 Total symmetry component = 1 Cont Target Component Comp 1 1 0.10000000E+01 Initial State Configuration 1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 One electron matrix elements between initial and final states 1: -1.414213562 0.000000000 < 9| 15> Reduced formula list 1 5 1 -0.1414213562E+01 Time Now = 36.6761 Delta time = 0.1134 End MatEle + Command DipoleOp + ---------------------------------------------------------------------- DipoleOp - Dipole Operator Program ---------------------------------------------------------------------- Number of orbitals in formula for the dipole operator (NOrbSel) = 1 Symmetry of the continuum orbital (iContSym) = 9 or SU Symmetry of total final state (iTotalSym) = 9 or SU Symmetry of the initial state (iInitSym) = 1 or SG Symmetry of the ionized target state (iTargSym) = 1 or SG List of unique symmetry types In the product of the symmetry types SU SG Each irreducable representation is present the number of times indicated SU ( 1) In the product of the symmetry types SU SG Each irreducable representation is present the number of times indicated SU ( 1) In the product of the symmetry types SU A2G Each irreducable representation is present the number of times indicated A2U ( 1) In the product of the symmetry types SU B1G Each irreducable representation is present the number of times indicated B1U ( 1) In the product of the symmetry types SU B2G Each irreducable representation is present the number of times indicated B2U ( 1) In the product of the symmetry types SU PG Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types SU DG Each irreducable representation is present the number of times indicated DU ( 1) In the product of the symmetry types SU FG Each irreducable representation is present the number of times indicated FU ( 1) In the product of the symmetry types SU GG Each irreducable representation is present the number of times indicated GU ( 1) In the product of the symmetry types SU SU Each irreducable representation is present the number of times indicated SG ( 1) Unique dipole matrix type 1 Dipole symmetry type =SU Final state symmetry type = SU Target sym =SG Continuum type =SU In the product of the symmetry types SU A2U Each irreducable representation is present the number of times indicated A2G ( 1) In the product of the symmetry types SU B1U Each irreducable representation is present the number of times indicated B1G ( 1) In the product of the symmetry types SU B2U Each irreducable representation is present the number of times indicated B2G ( 1) In the product of the symmetry types SU PU Each irreducable representation is present the number of times indicated PG ( 1) In the product of the symmetry types SU DU Each irreducable representation is present the number of times indicated DG ( 1) In the product of the symmetry types SU FU Each irreducable representation is present the number of times indicated FG ( 1) In the product of the symmetry types SU GU Each irreducable representation is present the number of times indicated GG ( 1) In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types PU A2G Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types PU B1G Each irreducable representation is present the number of times indicated GU ( 1) In the product of the symmetry types PU B2G Each irreducable representation is present the number of times indicated GU ( 1) In the product of the symmetry types PU PG Each irreducable representation is present the number of times indicated SU ( 1) A2U ( 1) DU ( 1) In the product of the symmetry types PU DG Each irreducable representation is present the number of times indicated PU ( 1) FU ( 1) In the product of the symmetry types PU FG Each irreducable representation is present the number of times indicated DU ( 1) GU ( 1) In the product of the symmetry types PU GG Each irreducable representation is present the number of times indicated B1U ( 1) B2U ( 1) FU ( 1) In the product of the symmetry types PU SU Each irreducable representation is present the number of times indicated PG ( 1) In the product of the symmetry types PU A2U Each irreducable representation is present the number of times indicated PG ( 1) In the product of the symmetry types PU B1U Each irreducable representation is present the number of times indicated GG ( 1) In the product of the symmetry types PU B2U Each irreducable representation is present the number of times indicated GG ( 1) In the product of the symmetry types PU PU Each irreducable representation is present the number of times indicated SG ( 1) A2G ( 1) DG ( 1) Unique dipole matrix type 2 Dipole symmetry type =PU Final state symmetry type = PU Target sym =SG Continuum type =PU In the product of the symmetry types PU DU Each irreducable representation is present the number of times indicated PG ( 1) FG ( 1) In the product of the symmetry types PU FU Each irreducable representation is present the number of times indicated DG ( 1) GG ( 1) In the product of the symmetry types PU GU Each irreducable representation is present the number of times indicated B1G ( 1) B2G ( 1) FG ( 1) In the product of the symmetry types SU SG Each irreducable representation is present the number of times indicated SU ( 1) In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) Irreducible representation containing the dipole operator is SU Number of different dipole operators in this representation is 1 In the product of the symmetry types SU SG Each irreducable representation is present the number of times indicated SU ( 1) Vector of the total symmetry ie = 1 ij = 1 1 ( 0.10000000E+01, 0.00000000E+00) Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0 Dipole operator types by symmetry components (x=1, y=2, z=3) sym comp = 1 coefficients = 0.00000000 0.00000000 1.00000000 Formula for dipole operator Dipole operator sym comp 1 index = 1 1 Cont comp 1 Orb 5 Coef = -1.4142135620 Symmetry type to write out (SymTyp) =SU Time Now = 46.4553 Delta time = 9.7792 End DipoleOp + Command GetPot + ---------------------------------------------------------------------- Den - Electron density construction program ---------------------------------------------------------------------- Total density = 13.00000000 Time Now = 46.5527 Delta time = 0.0974 End Den ---------------------------------------------------------------------- StPot - Compute the static potential from the density ---------------------------------------------------------------------- vasymp = 0.13000000E+02 facnorm = 0.10000000E+01 Time Now = 46.5597 Delta time = 0.0071 Electronic part Time Now = 46.5650 Delta time = 0.0053 End StPot + Command PhIon + ---------------------------------------------------------------------- Fege - FEGE exchange potential construction program ---------------------------------------------------------------------- Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU) Time Now = 46.6494 Delta time = 0.0844 End Fege ---------------------------------------------------------------------- scatstab - Iterative exchange scattering program (rev. 04/25/2005) ---------------------------------------------------------------------- Unit for output of final k matrices (iukmat) = 60 Symmetry type of scattering solution (symtps) =SU Form of the Green's operator used (iGrnType) = -1 Flag for dipole operator (DipoleFlag) = T Maximum l for computed scattering solutions (lna) = 10 Maximum number of iterations (itmax) = 15 Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05 Model exchange scale factor (excscl) = 0.10000000E+01 Maximum l to include in potential (lpotct) = -1 General print flag (iprnfg) = 0 Number of integration regions (NIntRegionR) = 40 Factor for number of points in asymptotic region (PntFac) = 30.0 Asymptotic cutoff (EpsAsym) = 0.10000000E-05 Asymptotic cutoff type (iAsymCond) = 1 Number of integration regions used = 62 Number of partial waves (np) = 12 Number of asymptotic solutions on the right (NAsymR) = 5 Number of asymptotic solutions on the left (NAsymL) = 2 Maximum in the asymptotic region (lpasym) = 12 Number of partial waves in the asymptotic region (npasym) = 7 Number of orthogonality constraints (NOrthUse) = 2 Maximum l used in usual function (lmax) = 22 Maximum m used in usual function (LMax) = 22 Maxamum l used in expanding static potential (lpotct) = 44 Maximum l used in exapnding the exchange potential (lmaxab) = 44 Higest l included in the expansion of the wave function (lnp) = 21 Higest l included in the K matrix (lna) = 9 Highest l used at large r (lpasym) = 12 Higest l used in the asymptotic potential (lpzb) = 24 Time Now = 46.6513 Delta time = 0.0019 Energy independent setup Compute solution for E = 10.0000000000 eV Found fege potential Charge on the molecule (zz) = 1.0 Assumed asymptotic polarization is 0.00000000E+00 au stpote at the end of the grid i = 1 lval = 4 stpote = -0.13175131E-04 i = 2 lval = 3 stpote = 0.79315169E-15 i = 3 lval = 3 stpote = -0.30408372E+01 i = 4 lval = 5 stpote = 0.25271897E-14 Number of asymptotic regions = 55 Final point in integration = 0.17322493E+03 Iter = 1 c.s. = 14.80543594 (a.u) rmsk= 1.21677590 Iter = 2 c.s. = 6.20347963 (a.u) rmsk= 0.96057916 Iter = 3 c.s. = 6.27759849 (a.u) rmsk= 0.03943741 Iter = 4 c.s. = 6.27762579 (a.u) rmsk= 0.00005797 Iter = 5 c.s. = 6.27762454 (a.u) rmsk= 0.00000022 Iter = 6 c.s. = 6.27762455 (a.u) rmsk= 0.00000000 Final k matrix ROW 1 (-0.30133733E+00, 0.11419858E+01) ( 0.13244598E+01,-0.64601125E+00) ( 0.25985169E-01,-0.22216516E-01) ( 0.21931791E-03,-0.18320379E-03) ( 0.11004235E-05,-0.92828198E-06) ROW 2 (-0.26440616E+00, 0.99920193E+00) ( 0.11510584E+01,-0.56205902E+00) ( 0.21508002E-01,-0.19292979E-01) ( 0.16775693E-03,-0.15397227E-03) ( 0.81811707E-06,-0.74404483E-06) Iter = 6 c.s. = 6.27762455 (a.u) rmsk= 0.00000000 Time Now = 72.7146 Delta time = 26.0633 End ScatStab + Command GetCro + ---------------------------------------------------------------------- CnvIdy - read in and convert dynamical matrix elements and convert to raw form ---------------------------------------------------------------------- Time Now = 72.7347 Delta time = 0.0201 End CnvIdy Found 1 energies : 10.00000 List of matrix element types found Number = 1 1 Cont Sym SU Targ Sym SG Total Sym SU Keeping 1 energies : 10.00000 Time Now = 72.7348 Delta time = 0.0001 End SelIdy ---------------------------------------------------------------------- CrossSection - compute photoionization cross section ---------------------------------------------------------------------- Kinetic Energy (a.u.) 0.85731355E+00 Photoelectron Energy in eV 0.10000000E+02 Photoelectron Energy a.u. 0.36749326E+00 Photon Energy (eV) 0.25581000E+02 Sigma LENGTH at all energies Eng 25.5810 0.57415977E+01 Sigma MIXED at all energies Eng 25.5810 0.53230165E+01 Sigma VELOCITY at all energies Eng 25.5810 0.49350084E+01 Beta LENGTH at all energies Eng 25.5810 0.47433791E+00 Beta MIXED at all energies Eng 25.5810 0.47537129E+00 Beta VELOCITY at all energies Eng 25.5810 0.47640706E+00 COMPOSITE CROSS SECTIONS AT ALL ENERGIES Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL EPhi 25.5810 5.7416 5.3230 4.9350 0.4743 0.4754 0.4764 Time Now = 72.7795 Delta time = 0.0448 End CrossSection + Data Record ScatSym - 'PU' + Data Record ScatContSym - 'PU' + Command FileName + 'MatrixElements' 'test13PU.idy' 'REWIND' Opening file test13PU.idy at position REWIND + Command GenFormPhIon + ---------------------------------------------------------------------- SymProd - Construct products of symmetry types ---------------------------------------------------------------------- Number of sets of degenerate orbitals = 6 Set 1 has degeneracy 1 Orbital 1 is num 1 type = 1 name - SG 1 Set 2 has degeneracy 1 Orbital 1 is num 2 type = 13 name - SU 1 Set 3 has degeneracy 1 Orbital 1 is num 3 type = 1 name - SG 1 Set 4 has degeneracy 1 Orbital 1 is num 4 type = 13 name - SU 1 Set 5 has degeneracy 1 Orbital 1 is num 5 type = 1 name - SG 1 Set 6 has degeneracy 2 Orbital 1 is num 6 type = 17 name - PU 1 Orbital 2 is num 7 type = 18 name - PU 2 Orbital occupations by degenerate group 1 SG occ = 2 2 SU occ = 2 3 SG occ = 2 4 SU occ = 2 5 SG occ = 1 6 PU occ = 4 The dimension of each irreducable representation is SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2) DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1) B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2) GU ( 2) Symmetry of the continuum orbital is PU Symmetry of the total state is PU Spin degeneracy of the total state is = 1 Symmetry of the target state is SG Spin degeneracy of the target state is = 2 Symmetry of the initial state is SG Spin degeneracy of the initial state is = 1 Orbital occupations of initial state by degenerate group 1 SG occ = 2 2 SU occ = 2 3 SG occ = 2 4 SU occ = 2 5 SG occ = 2 6 PU occ = 4 Open shell symmetry types 1 SG iele = 1 Use only configuration of type SG MS2 = 1 SDGN = 2 NumAlpha = 1 List of determinants found 1: 1.00000 0.00000 1 Spin adapted configurations Configuration 1 1: 1.00000 0.00000 1 Each irreducable representation is present the number of times indicated SG ( 1) representation SG component 1 fun 1 Symmeterized Function 1: 1.00000 0.00000 1 Open shell symmetry types 1 SG iele = 1 2 PU iele = 1 Use only configuration of type PU Each irreducable representation is present the number of times indicated PU ( 1) representation PU component 1 fun 1 Symmeterized Function from AddNewShell 1: -0.70711 0.00000 1 5 2: 0.70711 0.00000 2 3 representation PU component 2 fun 1 Symmeterized Function from AddNewShell 1: -0.70711 0.00000 1 6 2: 0.70711 0.00000 2 4 Open shell symmetry types 1 SG iele = 1 Use only configuration of type SG MS2 = 1 SDGN = 2 NumAlpha = 1 List of determinants found 1: 1.00000 0.00000 1 Spin adapted configurations Configuration 1 1: 1.00000 0.00000 1 Each irreducable representation is present the number of times indicated SG ( 1) representation SG component 1 fun 1 Symmeterized Function 1: 1.00000 0.00000 1 Direct product basis set Direct product basis function 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 17 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 15 Direct product basis function 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 18 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 16 Closed shell target Time Now = 72.7888 Delta time = 0.0093 End SymProd ---------------------------------------------------------------------- MatEle - Program to compute Matrix Elements over Determinants ---------------------------------------------------------------------- Configuration 1 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 17 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 15 Configuration 2 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 18 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 16 Direct product Configuration Cont sym = 1 Targ sym = 1 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 17 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 15 Direct product Configuration Cont sym = 2 Targ sym = 1 1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11 12 13 14 18 2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11 12 13 14 16 Overlap of Direct Product expansion and Symmeterized states Symmetry of Continuum = 13 Symmetry of target = 1 Symmetry of total states = 13 Total symmetry component = 1 Cont Target Component Comp 1 1 0.10000000E+01 2 0.00000000E+00 Total symmetry component = 2 Cont Target Component Comp 1 1 0.00000000E+00 2 0.10000000E+01 Initial State Configuration 1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 One electron matrix elements between initial and final states 1: -1.414213562 0.000000000 < 9| 15> Reduced formula list 1 5 1 -0.1414213562E+01 Time Now = 72.7894 Delta time = 0.0006 End MatEle + Command DipoleOp + ---------------------------------------------------------------------- DipoleOp - Dipole Operator Program ---------------------------------------------------------------------- Number of orbitals in formula for the dipole operator (NOrbSel) = 1 Symmetry of the continuum orbital (iContSym) = 13 or PU Symmetry of total final state (iTotalSym) = 13 or PU Symmetry of the initial state (iInitSym) = 1 or SG Symmetry of the ionized target state (iTargSym) = 1 or SG List of unique symmetry types In the product of the symmetry types SU SG Each irreducable representation is present the number of times indicated SU ( 1) In the product of the symmetry types SU SG Each irreducable representation is present the number of times indicated SU ( 1) In the product of the symmetry types SU A2G Each irreducable representation is present the number of times indicated A2U ( 1) In the product of the symmetry types SU B1G Each irreducable representation is present the number of times indicated B1U ( 1) In the product of the symmetry types SU B2G Each irreducable representation is present the number of times indicated B2U ( 1) In the product of the symmetry types SU PG Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types SU DG Each irreducable representation is present the number of times indicated DU ( 1) In the product of the symmetry types SU FG Each irreducable representation is present the number of times indicated FU ( 1) In the product of the symmetry types SU GG Each irreducable representation is present the number of times indicated GU ( 1) In the product of the symmetry types SU SU Each irreducable representation is present the number of times indicated SG ( 1) Unique dipole matrix type 1 Dipole symmetry type =SU Final state symmetry type = SU Target sym =SG Continuum type =SU In the product of the symmetry types SU A2U Each irreducable representation is present the number of times indicated A2G ( 1) In the product of the symmetry types SU B1U Each irreducable representation is present the number of times indicated B1G ( 1) In the product of the symmetry types SU B2U Each irreducable representation is present the number of times indicated B2G ( 1) In the product of the symmetry types SU PU Each irreducable representation is present the number of times indicated PG ( 1) In the product of the symmetry types SU DU Each irreducable representation is present the number of times indicated DG ( 1) In the product of the symmetry types SU FU Each irreducable representation is present the number of times indicated FG ( 1) In the product of the symmetry types SU GU Each irreducable representation is present the number of times indicated GG ( 1) In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types PU A2G Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types PU B1G Each irreducable representation is present the number of times indicated GU ( 1) In the product of the symmetry types PU B2G Each irreducable representation is present the number of times indicated GU ( 1) In the product of the symmetry types PU PG Each irreducable representation is present the number of times indicated SU ( 1) A2U ( 1) DU ( 1) In the product of the symmetry types PU DG Each irreducable representation is present the number of times indicated PU ( 1) FU ( 1) In the product of the symmetry types PU FG Each irreducable representation is present the number of times indicated DU ( 1) GU ( 1) In the product of the symmetry types PU GG Each irreducable representation is present the number of times indicated B1U ( 1) B2U ( 1) FU ( 1) In the product of the symmetry types PU SU Each irreducable representation is present the number of times indicated PG ( 1) In the product of the symmetry types PU A2U Each irreducable representation is present the number of times indicated PG ( 1) In the product of the symmetry types PU B1U Each irreducable representation is present the number of times indicated GG ( 1) In the product of the symmetry types PU B2U Each irreducable representation is present the number of times indicated GG ( 1) In the product of the symmetry types PU PU Each irreducable representation is present the number of times indicated SG ( 1) A2G ( 1) DG ( 1) Unique dipole matrix type 2 Dipole symmetry type =PU Final state symmetry type = PU Target sym =SG Continuum type =PU In the product of the symmetry types PU DU Each irreducable representation is present the number of times indicated PG ( 1) FG ( 1) In the product of the symmetry types PU FU Each irreducable representation is present the number of times indicated DG ( 1) GG ( 1) In the product of the symmetry types PU GU Each irreducable representation is present the number of times indicated B1G ( 1) B2G ( 1) FG ( 1) In the product of the symmetry types SU SG Each irreducable representation is present the number of times indicated SU ( 1) In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) Irreducible representation containing the dipole operator is PU Number of different dipole operators in this representation is 1 In the product of the symmetry types PU SG Each irreducable representation is present the number of times indicated PU ( 1) Vector of the total symmetry ie = 1 ij = 1 1 ( 0.10000000E+01, 0.00000000E+00) 2 ( 0.88817842E-16, 0.00000000E+00) Vector of the total symmetry ie = 2 ij = 1 1 ( 0.88817842E-16, 0.00000000E+00) 2 ( 0.10000000E+01, 0.00000000E+00) Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0 Component Dipole Op Sym = 2 goes to Total Sym component 2 phase = 1.0 Dipole operator types by symmetry components (x=1, y=2, z=3) sym comp = 1 coefficients = 0.00000000 1.00000000 0.00000000 sym comp = 2 coefficients = 1.00000000 0.00000000 0.00000000 Formula for dipole operator Dipole operator sym comp 1 index = 1 1 Cont comp 1 Orb 5 Coef = -1.4142135620 Symmetry type to write out (SymTyp) =PU Time Now = 82.5801 Delta time = 9.7907 End DipoleOp + Command GetPot + ---------------------------------------------------------------------- Den - Electron density construction program ---------------------------------------------------------------------- Total density = 13.00000000 Time Now = 82.6733 Delta time = 0.0932 End Den ---------------------------------------------------------------------- StPot - Compute the static potential from the density ---------------------------------------------------------------------- vasymp = 0.13000000E+02 facnorm = 0.10000000E+01 Time Now = 82.6805 Delta time = 0.0072 Electronic part Time Now = 82.6858 Delta time = 0.0054 End StPot + Command PhIon + ---------------------------------------------------------------------- Fege - FEGE exchange potential construction program ---------------------------------------------------------------------- Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU) Time Now = 82.7704 Delta time = 0.0845 End Fege ---------------------------------------------------------------------- scatstab - Iterative exchange scattering program (rev. 04/25/2005) ---------------------------------------------------------------------- Unit for output of final k matrices (iukmat) = 60 Symmetry type of scattering solution (symtps) =PU Form of the Green's operator used (iGrnType) = -1 Flag for dipole operator (DipoleFlag) = T Maximum l for computed scattering solutions (lna) = 10 Maximum number of iterations (itmax) = 15 Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05 Model exchange scale factor (excscl) = 0.10000000E+01 Maximum l to include in potential (lpotct) = -1 General print flag (iprnfg) = 0 Number of integration regions (NIntRegionR) = 40 Factor for number of points in asymptotic region (PntFac) = 30.0 Asymptotic cutoff (EpsAsym) = 0.10000000E-05 Asymptotic cutoff type (iAsymCond) = 1 Number of integration regions used = 62 Number of partial waves (np) = 14 Number of asymptotic solutions on the right (NAsymR) = 6 Number of asymptotic solutions on the left (NAsymL) = 2 Maximum in the asymptotic region (lpasym) = 12 Number of partial waves in the asymptotic region (npasym) = 9 Number of orthogonality constraints (NOrthUse) = 1 Maximum l used in usual function (lmax) = 22 Maximum m used in usual function (LMax) = 22 Maxamum l used in expanding static potential (lpotct) = 44 Maximum l used in exapnding the exchange potential (lmaxab) = 44 Higest l included in the expansion of the wave function (lnp) = 21 Higest l included in the K matrix (lna) = 9 Highest l used at large r (lpasym) = 12 Higest l used in the asymptotic potential (lpzb) = 24 Time Now = 82.7722 Delta time = 0.0019 Energy independent setup Compute solution for E = 10.0000000000 eV Found fege potential Charge on the molecule (zz) = 1.0 Assumed asymptotic polarization is 0.00000000E+00 au stpote at the end of the grid i = 1 lval = 4 stpote = -0.13175131E-04 i = 2 lval = 3 stpote = 0.79315169E-15 i = 3 lval = 3 stpote = -0.30408372E+01 i = 4 lval = 5 stpote = 0.25271897E-14 Number of asymptotic regions = 55 Final point in integration = 0.17322493E+03 Iter = 1 c.s. = 1.83289232 (a.u) rmsk= 0.39082097 Iter = 2 c.s. = 1.64774889 (a.u) rmsk= 0.04175091 Iter = 3 c.s. = 1.64764542 (a.u) rmsk= 0.00036459 Iter = 4 c.s. = 1.64765119 (a.u) rmsk= 0.00000302 Iter = 5 c.s. = 1.64765119 (a.u) rmsk= 0.00000000 Iter = 6 c.s. = 1.64765119 (a.u) rmsk= 0.00000000 Final k matrix ROW 1 (-0.95092537E-03, 0.52719685E+00) ( 0.81312102E+00,-0.10222204E+00) ( 0.21462231E-01,-0.89410865E-02) ( 0.17982237E-03,-0.98897681E-04) ( 0.14887264E-16, 0.80433987E-18) ( 0.83968005E-06,-0.47837727E-06) ROW 2 ( 0.66800580E-02, 0.48756482E+00) ( 0.67315576E+00,-0.79706917E-01) ( 0.15790314E-01,-0.72605080E-02) ( 0.11659757E-03,-0.71635799E-04) ( 0.15666691E-16, 0.13370055E-17) ( 0.49674338E-06,-0.30517161E-06) Iter = 6 c.s. = 1.64765119 (a.u) rmsk= 0.00000000 Time Now = 111.6908 Delta time = 28.9186 End ScatStab + Command GetCro + ---------------------------------------------------------------------- CnvIdy - read in and convert dynamical matrix elements and convert to raw form ---------------------------------------------------------------------- Time Now = 111.6923 Delta time = 0.0015 End CnvIdy Found 1 energies : 10.00000 List of matrix element types found Number = 1 1 Cont Sym PU Targ Sym SG Total Sym PU Keeping 1 energies : 10.00000 Time Now = 111.6924 Delta time = 0.0000 End SelIdy ---------------------------------------------------------------------- CrossSection - compute photoionization cross section ---------------------------------------------------------------------- Kinetic Energy (a.u.) 0.85731355E+00 Photoelectron Energy in eV 0.10000000E+02 Photoelectron Energy a.u. 0.36749326E+00 Photon Energy (eV) 0.25581000E+02 Sigma LENGTH at all energies Eng 25.5810 0.30580831E+01 Sigma MIXED at all energies Eng 25.5810 0.27834112E+01 Sigma VELOCITY at all energies Eng 25.5810 0.25405610E+01 Beta LENGTH at all energies Eng 25.5810 0.12689801E+01 Beta MIXED at all energies Eng 25.5810 0.13003991E+01 Beta VELOCITY at all energies Eng 25.5810 0.13303073E+01 COMPOSITE CROSS SECTIONS AT ALL ENERGIES Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL EPhi 25.5810 3.0581 2.7834 2.5406 1.2690 1.3004 1.3303 Time Now = 111.7012 Delta time = 0.0088 End CrossSection + Command GetCro + 'test13PU.idy' 'test13SU.idy' Taking dipole matrix from file test13PU.idy ---------------------------------------------------------------------- CnvIdy - read in and convert dynamical matrix elements and convert to raw form ---------------------------------------------------------------------- Time Now = 111.7025 Delta time = 0.0013 End CnvIdy Taking dipole matrix from file test13SU.idy ---------------------------------------------------------------------- CnvIdy - read in and convert dynamical matrix elements and convert to raw form ---------------------------------------------------------------------- Time Now = 111.7035 Delta time = 0.0010 End CnvIdy Found 1 energies : 10.00000 List of matrix element types found Number = 2 1 Cont Sym PU Targ Sym SG Total Sym PU 2 Cont Sym SU Targ Sym SG Total Sym SU Keeping 1 energies : 10.00000 Time Now = 111.7035 Delta time = 0.0000 End SelIdy ---------------------------------------------------------------------- CrossSection - compute photoionization cross section ---------------------------------------------------------------------- Kinetic Energy (a.u.) 0.85731355E+00 Photoelectron Energy in eV 0.10000000E+02 Photoelectron Energy a.u. 0.36749326E+00 Photon Energy (eV) 0.25581000E+02 Sigma LENGTH at all energies Eng 25.5810 0.87996808E+01 Sigma MIXED at all energies Eng 25.5810 0.81064277E+01 Sigma VELOCITY at all energies Eng 25.5810 0.74755693E+01 Beta LENGTH at all energies Eng 25.5810 0.10203180E+01 Beta MIXED at all energies Eng 25.5810 0.10433073E+01 Beta VELOCITY at all energies Eng 25.5810 0.10660352E+01 COMPOSITE CROSS SECTIONS AT ALL ENERGIES Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL EPhi 25.5810 8.7997 8.1064 7.4756 1.0203 1.0433 1.0660 Time Now = 111.7123 Delta time = 0.0088 End CrossSection Time Now = 111.7166 Delta time = 0.0042 Finalize