Sun Apr 16 22:37:45 JST 2006
Host Robert-Luccheses-PowerBook-G4.local

LAM 7.1.1/MPI 2 C++/ROMIO - Indiana University


----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test09
#
# Expand HOMO and LUMO of SF6
#
  LMax   15     # maximum l to be used for wave functions
  LMaxI  40     # maximum l value used to determine numerical angular grids
  LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   14.0   # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV
CnvOrbSel  33 36
Convert '/Users/lucchese/ePolyScatE/tests/test09.g03' 'g03'
GetBlms
ExpOrb
FileName 'ViewOrb' 'test09ViewOrb.dat' 'REWIND'
FileName 'ViewOrbGeom' 'test09ViewOrbGeom.dat' 'REWIND'
ViewOrbGrid
  0.0 0.0 0.0
  0.0 0.0 1.0
  1.0 0.0 0.0
  -2.5 2.5 0.1
  -2.5 2.5 0.1
  0.0 0.0 0.1
ViewOrb 'ExpOrb' 1 3
ViewOrb 'ExpOrb' 2
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 14.0
+ Data Record EMax - 50.0
+ Data Record CnvOrbSel - 33 36

+ Command Convert
+ '/Users/lucchese/ePolyScatE/tests/test09.g03' 'g03'

----------------------------------------------------------------------
g03cnv - read input from G03 output
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Use orbitals    33  through    36
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from    33  to    36  number already selected     0
Number of orbitals selected is     4
Highest orbital read in is =   36
Time Now =         0.0571  Delta time =         0.0571 End g03cnv

Atoms found    7
Z = 16 r =   0.0000000000   0.0000000000   0.0000000000
Z =  9 r =   0.0000000000   0.0000000000   2.9483998470
Z =  9 r =   0.0000000000   2.9483998470   0.0000000000
Z =  9 r =  -2.9483998470   0.0000000000   0.0000000000
Z =  9 r =   2.9483998470   0.0000000000   0.0000000000
Z =  9 r =   0.0000000000  -2.9483998470   0.0000000000
Z =  9 r =   0.0000000000   0.0000000000  -2.9483998470

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Oh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.4371  Delta time =         0.3800 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   9  2.94840   9  2.94840
  2  0.00000  1.00000  0.00000   9  2.94840   9  2.94840
  3 -1.00000  0.00000  0.00000   9  2.94840   9  2.94840
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  1.00000  0.00000  0.00000
  3  0.00000  1.00000  0.00000
Determineing angular grid in GetAxMax  LMax =   15  LMaxA =   12  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12   3   3   3
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Oh
LMax = =   15
 The dimension of each irreducable representation is
    A1G   (  1)    A2G   (  1)    EG    (  2)    T1G   (  3)    T2G   (  3)
    A1U   (  1)    A2U   (  1)    EU    (  2)    T1U   (  3)    T2U   (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    16    19    24     2     4     3     5
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1G       1         1          8       1  1  1  1  1  1  1
 A2G       1         2          4       1  1  1  1  1  1  1
 EG        1         3         11       1  1  1  1  1  1  1
 EG        2         4         11       1  1  1  1  1  1  1
 T1G       1         5         11      -1 -1  1  1 -1 -1  1
 T1G       2         6         11      -1  1 -1  1 -1  1 -1
 T1G       3         7         11       1 -1 -1  1  1 -1 -1
 T2G       1         8         15      -1 -1  1  1 -1 -1  1
 T2G       2         9         15      -1  1 -1  1 -1  1 -1
 T2G       3        10         15       1 -1 -1  1  1 -1 -1
 A1U       1        11          1       1  1  1 -1 -1 -1 -1
 A2U       1        12          6       1  1  1 -1 -1 -1 -1
 EU        1        13          7       1  1  1 -1 -1 -1 -1
 EU        2        14          7       1  1  1 -1 -1 -1 -1
 T1U       1        15         18      -1 -1  1 -1  1  1 -1
 T1U       2        16         18      -1  1 -1 -1  1 -1  1
 T1U       3        17         18       1 -1 -1 -1 -1  1  1
 T2U       1        18         15      -1 -1  1 -1  1  1 -1
 T2U       2        19         15      -1  1 -1 -1  1 -1  1
 T2U       3        20         15       1 -1 -1 -1 -1  1  1
Time Now =        28.5675  Delta time =        28.1304 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  3       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  4       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  7       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
  8       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    3  sym =B2G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    4  sym =B3G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1  -1  -1   1  -1   1   1  -1
irep =    7  sym =B2U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    8  sym =B3U   1  eigs =   1  -1   1  -1  -1   1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120      -1 -1  1  1 -1 -1  1
 B2G       1         3        120       1 -1 -1  1  1 -1 -1
 B3G       1         4        120      -1  1 -1  1 -1  1 -1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120      -1 -1  1 -1  1  1 -1
 B2U       1         7        120       1 -1 -1 -1 -1  1  1
 B3U       1         8        120      -1  1 -1 -1  1 -1  1
Time Now =        28.7517  Delta time =         0.1843 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =    14.00000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.93413E+05
    2  Center at =     2.94840  Alpha Max = 0.11427E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.34488E-04     0.00110
    2    8    40    0.36788E-04     0.00140
    3    8    48    0.46598E-04     0.00177
    4    8    56    0.59024E-04     0.00224
    5    8    64    0.74764E-04     0.00284
    6    8    72    0.94700E-04     0.00360
    7    8    80    0.11995E-03     0.00456
    8    8    88    0.15194E-03     0.00577
    9    8    96    0.19246E-03     0.00731
   10    8   104    0.24378E-03     0.00926
   11    8   112    0.30879E-03     0.01173
   12    8   120    0.39113E-03     0.01486
   13    8   128    0.49544E-03     0.01883
   14    8   136    0.62755E-03     0.02385
   15    8   144    0.79490E-03     0.03021
   16    8   152    0.10069E-02     0.03826
   17    8   160    0.12754E-02     0.04846
   18    8   168    0.16155E-02     0.06139
   19    8   176    0.20463E-02     0.07776
   20    8   184    0.25919E-02     0.09849
   21    8   192    0.32831E-02     0.12476
   22    8   200    0.41586E-02     0.15803
   23    8   208    0.52676E-02     0.20017
   24    8   216    0.66723E-02     0.25355
   25    8   224    0.84516E-02     0.32116
   26    8   232    0.10705E-01     0.40680
   27   64   296    0.10990E-01     1.11015
   28   64   360    0.10990E-01     1.81349
   29   64   424    0.10990E-01     2.51684
   30    8   432    0.10990E-01     2.60475
   31    8   440    0.89913E-02     2.67668
   32    8   448    0.71093E-02     2.73356
   33    8   456    0.56212E-02     2.77853
   34    8   464    0.44446E-02     2.81409
   35    8   472    0.35143E-02     2.84220
   36    8   480    0.27787E-02     2.86443
   37    8   488    0.21971E-02     2.88201
   38    8   496    0.17372E-02     2.89590
   39    8   504    0.13736E-02     2.90689
   40    8   512    0.10861E-02     2.91558
   41    8   520    0.85872E-03     2.92245
   42    8   528    0.67898E-03     2.92788
   43    8   536    0.53686E-03     2.93218
   44    8   544    0.42449E-03     2.93557
   45    8   552    0.33563E-03     2.93826
   46    8   560    0.26538E-03     2.94038
   47    8   568    0.20983E-03     2.94206
   48    8   576    0.16591E-03     2.94339
   49    8   584    0.13118E-03     2.94444
   50    8   592    0.10372E-03     2.94527
   51   24   616    0.98608E-04     2.94763
   52    8   624    0.95992E-04     2.94840
   53   32   656    0.98608E-04     2.95156
   54    8   664    0.10518E-03     2.95240
   55    8   672    0.13323E-03     2.95346
   56    8   680    0.16876E-03     2.95481
   57    8   688    0.21376E-03     2.95652
   58    8   696    0.27076E-03     2.95869
   59    8   704    0.34297E-03     2.96143
   60    8   712    0.43442E-03     2.96491
   61    8   720    0.55027E-03     2.96931
   62    8   728    0.69701E-03     2.97489
   63    8   736    0.88288E-03     2.98195
   64    8   744    0.11183E-02     2.99090
   65    8   752    0.14165E-02     3.00223
   66    8   760    0.17943E-02     3.01658
   67    8   768    0.22727E-02     3.03476
   68    8   776    0.28788E-02     3.05779
   69    8   784    0.36465E-02     3.08697
   70    8   792    0.46189E-02     3.12392
   71    8   800    0.58506E-02     3.17072
   72    8   808    0.74107E-02     3.23001
   73    8   816    0.93869E-02     3.30510
   74    8   824    0.11890E-01     3.40022
   75   64   888    0.13657E-01     4.27425
   76   64   952    0.13657E-01     5.14827
   77   64  1016    0.13657E-01     6.02230
   78   64  1080    0.13657E-01     6.89632
   79   64  1144    0.13657E-01     7.77035
   80   64  1208    0.13657E-01     8.64438
   81   64  1272    0.13657E-01     9.51840
   82   64  1336    0.13657E-01    10.39243
   83   64  1400    0.13657E-01    11.26645
   84   64  1464    0.13657E-01    12.14048
   85   64  1528    0.13657E-01    13.01450
   86   64  1592    0.13657E-01    13.88853
   87    8  1600    0.13657E-01    13.99778
   88    8  1608    0.27763E-03    14.00000
Time Now =        28.7850  Delta time =         0.0332 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   40
Maximum numerical integration m (mmaxi) =   40
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    5
Angular regions
    1 L =    2  from (    1)         0.00003  to (    7)         0.00024
    2 L =    3  from (    8)         0.00028  to (   71)         0.00350
    3 L =    8  from (   72)         0.00360  to (  183)         0.09590
    4 L =   15  from (  184)         0.09849  to ( 1600)        13.99778
    5 L =   12  from ( 1601)        13.99806  to ( 1608)        14.00000

For analytic integrations ntheta =     16  nphi =     16
For numerical integrations ntheti =     44 nphii =     44
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =     872
Proc id =    1  Last grid point =    1608
Time Now =        30.4661  Delta time =         1.6812 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  T1G   1 at max irg =   94  r =   3.00223
     2  T1G   2 at max irg =   94  r =   3.00223
     3  T1G   3 at max irg =   94  r =   3.00223
     4  A1G   1 at max irg =   54  r =   2.60475

Rotation coefficients for orbital     1  grp =    1 T1G   1
     1  0.0000000000    2 -1.0000000000    3 -0.0000000000

Rotation coefficients for orbital     2  grp =    1 T1G   2
     1  1.0000000000    2  0.0000000000    3  0.0000000000

Rotation coefficients for orbital     3  grp =    1 T1G   3
     1 -0.0000000000    2 -0.0000000000    3  1.0000000000

Rotation coefficients for orbital     4  grp =    2 A1G   1
     4  1.0000000000
Number of orbital groups and degeneracis are         2
  3  1
Number of orbital groups and number of electrons when fully occupied
         2
  6  2
Time Now =        75.1900  Delta time =        44.7239 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    2
Orbital     1 of  T1G   1 symmetry normalization integral =  0.97340206
Orbital     2 of  A1G   1 symmetry normalization integral =  0.98573137
Time Now =       293.9181  Delta time =       218.7281 End ExpOrb

+ Command FileName
+ 'ViewOrb' 'test09ViewOrb.dat' 'REWIND'
Opening file test09ViewOrb.dat at position REWIND

+ Command FileName
+ 'ViewOrbGeom' 'test09ViewOrbGeom.dat' 'REWIND'
Opening file test09ViewOrbGeom.dat at position REWIND
+ Data Record ViewOrbGrid
+ 0.0 0.0 0.0 / 0.0 0.0 1.0 / 1.0 0.0 0.0 / -2.5 2.5 0.1 / -2.5 2.5 0.1 / 0.0 0.0 0.1

+ Command ViewOrb
+ 'ExpOrb' 1 3

----------------------------------------------------------------------
vieworb - Orbital viewing program
----------------------------------------------------------------------

 Unit for output of orbitals on cartesian grid (iuvorb) =   64
 Unit for output of flux on cartesian grid (iujorb) =    0
 Unit for output of geometry information (iugeom) =   66
 Origin of coordinate system in angstroms
         0.000000    0.000000    0.000000
 Directional vectors as inputed
     1         0.000000    0.000000    1.000000
     2         1.000000    0.000000    0.000000
 Directional vectors as computed
     1         0.000000    0.000000    1.000000
     2         1.000000    0.000000    0.000000
     3         0.000000    1.000000    0.000000

In direction 1
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 2
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 3
(in Angstroms) cmin =    0.000000  cmax =    0.000000  cstep =    0.100000
 Use     1 orbitals
Time Now =       295.8669  Delta time =         1.9488 End ViewOrb

+ Command ViewOrb
+ 'ExpOrb' 2

----------------------------------------------------------------------
vieworb - Orbital viewing program
----------------------------------------------------------------------

 Unit for output of orbitals on cartesian grid (iuvorb) =   64
 Unit for output of flux on cartesian grid (iujorb) =    0
 Unit for output of geometry information (iugeom) =   66
 Origin of coordinate system in angstroms
         0.000000    0.000000    0.000000
 Directional vectors as inputed
     1         0.000000    0.000000    1.000000
     2         1.000000    0.000000    0.000000
 Directional vectors as computed
     1         0.000000    0.000000    1.000000
     2         1.000000    0.000000    0.000000
     3         0.000000    1.000000    0.000000

In direction 1
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 2
(in Angstroms) cmin =   -2.500000  cmax =    2.500000  cstep =    0.100000

In direction 3
(in Angstroms) cmin =    0.000000  cmax =    0.000000  cstep =    0.100000
 Use     2 orbitals
Time Now =       296.3887  Delta time =         0.5218 End ViewOrb
Time Now =       296.3921  Delta time =         0.0035 Finalize

LAM 7.1.1/MPI 2 C++/ROMIO - Indiana University

Sun Apr 16 22:42:42 JST 2006