----------------------------------------------------------------------
ePolyScat Version E
----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test06
#
# electron scattering from N2 molden SCF, polarization potential, low energy
#
  LMax   15     # maximum l to be used for wave functions
  LMaxA  12     # maximum l included at large r
  MMax 3        # maximum m about unique axes at high l
  RMax   8.5    # maximum R in inner grid
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  EngForm      # Energy formulas
   0 0         # charge, formula type
  VCorr 'PZ'
  AsyPol
 0.25  # SwitchD, distance where switching function is down to 0.1
 1     # nterm, number of terms needed to define asymptotic potential
 0     # center for polarization term 1 is for C atom
 0.0 0.0 0.0   # use molecular center for polarization term
 2     # ittyp type of polarization term, = 1 for spherically symmetric
       # = 2 for reading in the full tensor
 8.664 8.664 17.904 0.0 0.0 0.0 # axx, ayy, azz, axy, axz, ayz
 3     # icrtyp, flag to determine where r match is, 3 for second crossing
       # or at nearest approach
 0     # ilntyp, flag to determine what matching line is used, 0 - use
       # l = 0 radial function as matching function

  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatContSym 'SG'  # Scattering symmetry
  LMaxK    8     # Maximum l in the K matirx

Convert '/home/lucchese/ePolyScatE/tests/test06.molden' 'molden'
GetBlms
ExpOrb
GetPot
Scat 0.001 0.01 0.02
TotalCrossSection

+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxA - 12
+ Data Record MMax - 3
+ Data Record RMax - 8.5
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.25 / 1 / 0 / 0.0 0.0 0.0 / 2 / 8.664 8.664 17.904 0.0 0.0 0.0 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SG'
+ Data Record LMaxK - 8

+ Command Convert
+ '/home/lucchese/ePolyScatE/tests/test06.molden' 'molden'

----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro) conversion program
----------------------------------------------------------------------

 Expansion center is (in atomic units) -
     0.0000000000   0.0000000000   0.0000000000
Convert from Angstroms to Bohr radii
Found    110 basis functions
Selecting orbitals
Number of orbitals selected is     7
Selecting    1   1 Ene =     -15.6842 Spin =Alpha Occup =   2.000000
Selecting    2   2 Ene =     -15.6806 Spin =Alpha Occup =   2.000000
Selecting    3   3 Ene =      -1.4752 Spin =Alpha Occup =   2.000000
Selecting    4   4 Ene =      -0.7786 Spin =Alpha Occup =   2.000000
Selecting    5   5 Ene =      -0.6350 Spin =Alpha Occup =   2.000000
Selecting    6   6 Ene =      -0.6161 Spin =Alpha Occup =   2.000000
Selecting    7   7 Ene =      -0.6161 Spin =Alpha Occup =   2.000000

Atoms found    2
Z =  7 r =   0.0000000000   0.0000000000  -1.0336801953
Z =  7 r =   0.0000000000   0.0000000000   1.0336801953

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  DAh
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.1227  Delta time =         0.1227 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000   7  1.03368   7  1.03368
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Determineing angular grid in GetAxMax  LmAx =   15  LMaxA =   12  LMaxAb =   30
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12  3  3  3
On the double L grid used for products
For axis     1  mvals:
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is DAh
LMax = =   15
 The dimension of each irreducable representation is
    SG    (  1)    A2G   (  1)    B1G   (  1)    B2G   (  1)    PG    (  2)
    DG    (  2)    FG    (  2)    GG    (  2)    SU    (  1)    A2U   (  1)
    B1U   (  1)    B2U   (  1)    PU    (  2)    DU    (  2)    FU    (  2)
    GU    (  2)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    12    22    32     2     3    21    31
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 SG        1         1         10       1  1  1  1  1  1  1
 A2G       1         2          2       1 -1 -1  1  1 -1 -1
 B1G       1         3          4      -1  1 -1  1 -1  1 -1
 B2G       1         4          4      -1 -1  1  1 -1 -1  1
 PG        1         5         10      -1 -1  1  1 -1 -1  1
 PG        2         6         10      -1  1 -1  1 -1  1 -1
 DG        1         7         11       1 -1 -1  1  1 -1 -1
 DG        2         8         11       1  1  1  1  1  1  1
 FG        1         9          9      -1 -1  1  1 -1 -1  1
 FG        2        10          9      -1  1 -1  1 -1  1 -1
 GG        1        11          9       1 -1 -1  1  1 -1 -1
 GG        2        12          9       1  1  1  1  1  1  1
 SU        1        13          9       1 -1 -1 -1 -1  1  1
 A2U       1        14          1       1  1  1 -1 -1 -1 -1
 B1U       1        15          4      -1 -1  1 -1  1  1 -1
 B2U       1        16          4      -1  1 -1 -1  1 -1  1
 PU        1        17         11      -1 -1  1 -1  1  1 -1
 PU        2        18         11      -1  1 -1 -1  1 -1  1
 DU        1        19          9       1 -1 -1 -1 -1  1  1
 DU        2        20          9       1  1  1 -1 -1 -1 -1
 FU        1        21         10      -1 -1  1 -1  1  1 -1
 FU        2        22         10      -1  1 -1 -1  1 -1  1
 GU        1        23          7       1 -1 -1 -1 -1  1  1
 GU        2        24          7       1  1  1 -1 -1 -1 -1
Time Now =         2.4867  Delta time =         2.3640 End SymGen

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax = =   30
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1        136       1  1  1  1  1  1  1
 B1G       1         2        120       1 -1 -1  1  1 -1 -1
 B2G       1         3        120      -1 -1  1  1 -1 -1  1
 B3G       1         4        120      -1  1 -1  1 -1  1 -1
 AU        1         5        105       1  1  1 -1 -1 -1 -1
 B1U       1         6        120       1 -1 -1 -1 -1  1  1
 B2U       1         7        120      -1 -1  1 -1  1  1 -1
 B3U       1         8        120      -1  1 -1 -1  1 -1  1
Time Now =         7.3823  Delta time =         4.8957 End SymGen

+ Command ExpOrb
+

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

Maximum R in the grid (RMax) =     8.50000
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   30.0
In regions controlled by the wave length (HFacWave) =  120.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000  Alpha Max = 0.10000E+01
    2  Center at =     1.03368  Alpha Max = 0.11420E+05

Generated Grid

  irg  nin  ntot      step          R end
    1   32    32    0.10541E-01     0.33731
    2   32    64    0.10990E-01     0.68898
    3    8    72    0.90189E-02     0.76113
    4    8    80    0.71311E-02     0.81818
    5    8    88    0.56384E-02     0.86329
    6    8    96    0.44582E-02     0.89895
    7    8   104    0.35250E-02     0.92715
    8    8   112    0.27872E-02     0.94945
    9    8   120    0.22038E-02     0.96708
   10    8   128    0.17425E-02     0.98102
   11    8   136    0.13778E-02     0.99204
   12    8   144    0.10894E-02     1.00076
   13    8   152    0.86135E-03     1.00765
   14    8   160    0.68106E-03     1.01310
   15    8   168    0.53850E-03     1.01741
   16    8   176    0.42579E-03     1.02081
   17    8   184    0.33666E-03     1.02351
   18    8   192    0.26619E-03     1.02564
   19    8   200    0.21047E-03     1.02732
   20    8   208    0.16642E-03     1.02865
   21    8   216    0.13158E-03     1.02970
   22    8   224    0.10404E-03     1.03054
   23   24   248    0.98638E-04     1.03290
   24    8   256    0.97100E-04     1.03368
   25   32   288    0.98638E-04     1.03684
   26    8   296    0.10521E-03     1.03768
   27    8   304    0.13327E-03     1.03874
   28    8   312    0.16881E-03     1.04009
   29    8   320    0.21383E-03     1.04181
   30    8   328    0.27085E-03     1.04397
   31    8   336    0.34307E-03     1.04672
   32    8   344    0.43456E-03     1.05019
   33    8   352    0.55044E-03     1.05460
   34    8   360    0.69723E-03     1.06017
   35    8   368    0.88315E-03     1.06724
   36    8   376    0.11187E-02     1.07619
   37    8   384    0.14170E-02     1.08752
   38    8   392    0.17948E-02     1.10188
   39    8   400    0.22734E-02     1.12007
   40    8   408    0.28797E-02     1.14311
   41    8   416    0.36476E-02     1.17229
   42    8   424    0.46203E-02     1.20925
   43    8   432    0.58524E-02     1.25607
   44    8   440    0.74130E-02     1.31538
   45    8   448    0.93899E-02     1.39049
   46    8   456    0.11894E-01     1.48565
   47   64   520    0.13657E-01     2.35967
   48   64   584    0.13657E-01     3.23370
   49   64   648    0.13657E-01     4.10772
   50   64   712    0.13657E-01     4.98175
   51   64   776    0.13657E-01     5.85577
   52   64   840    0.13657E-01     6.72980
   53   64   904    0.13657E-01     7.60382
   54   64   968    0.13657E-01     8.47785
   55    8   976    0.27692E-02     8.50000
Time Now =         7.3833  Delta time =         0.0009 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   12
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-05 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   12
 Actual value of lmasym found =     12
Number of regions of the same l expansion (NAngReg) =    5
Angular regions
    1 L =    2  from (    1)         0.01054  to (    7)         0.07379
    2 L =    3  from (    8)         0.08433  to (   15)         0.15811
    3 L =    8  from (   16)         0.16865  to (   39)         0.41424
    4 L =   15  from (   40)         0.42523  to (  968)         8.47785
    5 L =   12  from (  969)         8.48062  to (  976)         8.50000

For analytic integrations ntheta =     16  nphi =     16
For numerical integrations ntheti =     32 nphii =     32
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      96
Proc id =    1  Last grid point =     160
Proc id =    2  Last grid point =     224
Proc id =    3  Last grid point =     288
Proc id =    4  Last grid point =     352
Proc id =    5  Last grid point =     416
Proc id =    6  Last grid point =     472
Proc id =    7  Last grid point =     528
Proc id =    8  Last grid point =     584
Proc id =    9  Last grid point =     640
Proc id =   10  Last grid point =     696
Proc id =   11  Last grid point =     752
Proc id =   12  Last grid point =     808
Proc id =   13  Last grid point =     864
Proc id =   14  Last grid point =     920
Proc id =   15  Last grid point =     976
Time Now =         7.5187  Delta time =         0.1355 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  SG    1 at max irg =   39  r =   1.04009
     2  SU    1 at max irg =   39  r =   1.04009
     3  SG    1 at max irg =   32  r =   1.03368
     4  SU    1 at max irg =   59  r =   1.70415
     5  SG    1 at max irg =   60  r =   1.81340
     6  PU    1 at max irg =   55  r =   1.31538
     7  PU    2 at max irg =   55  r =   1.31538

Rotation coefficients for orbital     1  grp =    1 SG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 SU    1
     2  1.0000000000

Rotation coefficients for orbital     3  grp =    3 SG    1
     3  1.0000000000

Rotation coefficients for orbital     4  grp =    4 SU    1
     4  1.0000000000

Rotation coefficients for orbital     5  grp =    5 SG    1
     5  1.0000000000

Rotation coefficients for orbital     6  grp =    6 PU    1
     6  1.0000000000    7  0.0000000000

Rotation coefficients for orbital     7  grp =    6 PU    2
     6  0.0000000000    7  1.0000000000
Number of orbital groups and degeneracis are         6
  1  1  1  1  1  2
Number of orbital groups and number of electrons when fully occupied
         6
  2  2  2  2  2  4
Time Now =         7.9626  Delta time =         0.4439 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    6
Orbital     1 of  SG    1 symmetry normalization integral =  0.98788419
Orbital     2 of  SU    1 symmetry normalization integral =  0.99051998
Orbital     3 of  SG    1 symmetry normalization integral =  0.99928530
Orbital     4 of  SU    1 symmetry normalization integral =  0.99958444
Orbital     5 of  SG    1 symmetry normalization integral =  0.99994147
Orbital     6 of  PU    1 symmetry normalization integral =  0.99998924
Time Now =         9.3274  Delta time =         1.3649 End ExpOrb

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     14.00000000
Time Now =         9.3367  Delta time =         0.0093 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.14000000E+02 facnorm =  0.10000000E+01
Time Now =         9.3799  Delta time =         0.0432 Electronic part
Time Now =         9.3820  Delta time =         0.0021 End StPot

----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------

Time Now =         9.4158  Delta time =         0.0338 End VcpPol

----------------------------------------------------------------------
asypol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------

Switching distance (SwitchD) =     0.25000
 Number of terms in the asymptotic polarization potential (nterm) =    1
Term =    1  At center =    0
Explicit coordinates =  0.00000000E+00  0.00000000E+00  0.00000000E+00
Type =    2
Last center is at (RCenterX) =   0.00000
 Radial matching parameter (icrtyp) =    3
 Matching line type (ilntyp) =    0
 Matching point is at r =   3.6683997780
First nonzero weight at R =        3.01519
Last point of the switching region R=        4.32623
Total asymptotic potential is   0.11744000E+02
Time Now =         9.5340  Delta time =         0.1182 End AsyPol

+ Command Scat
+ 0.001 0.01 0.02

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-02 eV (  0.36749326E-04 AU)
Time Now =         9.5763  Delta time =         0.0423 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    10
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =         9.5775  Delta time =         0.0012 Energy independent setup

Compute solution for E =    0.0010000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.27600246E+00
 i =  2  lval =   3  stpote =  0.85352940E-15
 i =  3  lval =   3  stpote =  0.94295880E+00
 i =  4  lval =   5  stpote = -0.68188873E-15
Number of asymptotic regions =      13
Final point in integration =   0.22793160E+04
Iter =   1 c.s. =      5.07747545 angs^2  rmsk=     0.00205973
Iter =   2 c.s. =      1.42895104 angs^2  rmsk=     0.00097014
Iter =   3 c.s. =      1.02665516 angs^2  rmsk=     0.00016767
Iter =   4 c.s. =      1.01295187 angs^2  rmsk=     0.00000625
Iter =   5 c.s. =      1.01296303 angs^2  rmsk=     0.00000001
Iter =   6 c.s. =      1.01296280 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.45611506E-02-0.38385171E-03-0.35001939E-08-0.16981508E-12-0.55113438E-18
     ROW  2
 -0.38385171E-03-0.21521937E-03-0.56925943E-04-0.17582559E-09-0.60558145E-14
     ROW  3
 -0.35001888E-08-0.56925943E-04-0.60512444E-04-0.23836811E-04-0.28900097E-10
     ROW  4
 -0.16981695E-12-0.17582516E-09-0.23836811E-04-0.27942589E-04-0.13527034E-04
     ROW  5
 -0.11395739E-17-0.60558085E-14-0.28900059E-10-0.13527034E-04-0.15677264E-04
 eigenphases
 -0.4594767E-02 -0.2044339E-03 -0.5734221E-04 -0.2254695E-04 -0.1380125E-05
 eigenphase sum-0.488047E-02  scattering length=   0.56928
 eps+pi 0.313671E+01  eps+2*pi 0.627830E+01

Iter =   6 c.s. =      1.01296280 angs^2  rmsk=     0.00000000
Time Now =        15.5475  Delta time =         5.9699 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.10000000E-01 eV (  0.36749326E-03 AU)
Time Now =        15.5884  Delta time =         0.0409 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    10
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        15.5895  Delta time =         0.0012 Energy independent setup

Compute solution for E =    0.0100000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.27581154E+00
 i =  2  lval =   3  stpote =  0.43795859E-15
 i =  3  lval =   3  stpote =  0.94295888E+00
 i =  4  lval =   5  stpote =  0.29079231E-13
Number of asymptotic regions =      14
Final point in integration =   0.99493792E+03
Iter =   1 c.s. =      6.70469876 angs^2  rmsk=     0.00748958
Iter =   2 c.s. =      2.40405673 angs^2  rmsk=     0.00301292
Iter =   3 c.s. =      1.88061870 angs^2  rmsk=     0.00052021
Iter =   4 c.s. =      1.86236543 angs^2  rmsk=     0.00001938
Iter =   5 c.s. =      1.86238010 angs^2  rmsk=     0.00000002
Iter =   6 c.s. =      1.86237980 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.19639338E-01-0.12374588E-02-0.11676959E-06-0.63334961E-11-0.31581049E-15
     ROW  2
 -0.12374587E-02-0.50964593E-03-0.17588197E-03-0.64114345E-08-0.19757104E-12
     ROW  3
 -0.11676953E-06-0.17588197E-03-0.16765002E-03-0.71675733E-04-0.12944649E-08
     ROW  4
 -0.63334921E-11-0.64114304E-08-0.71675733E-04-0.82408567E-04-0.40003551E-04
     ROW  5
 -0.31334596E-15-0.19756970E-12-0.12944645E-08-0.40003551E-04-0.48188016E-04
 eigenphases
 -0.1971651E-01 -0.5203072E-03 -0.1518910E-03 -0.5784744E-04  0.1876173E-05
 eigenphase sum-0.204447E-01  scattering length=   0.75423
 eps+pi 0.312115E+01  eps+2*pi 0.626274E+01

Iter =   6 c.s. =      1.86237980 angs^2  rmsk=     0.00000000
Time Now =        21.6478  Delta time =         6.0583 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.20000000E-01 eV (  0.73498652E-03 AU)
Time Now =        21.6901  Delta time =         0.0423 End Fege

----------------------------------------------------------------------
scatstab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =   60
Symmetry type of scattering solution (symtps) =SG
Form of the Green's operator used (iGrnType) =     0
Flag for dipole operator (DipoleFlag) =     F
Maximum l for computed scattering solutions (lna) =    8
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Model exchange scale factor (excscl) =  0.10000000E+01
Maximum l to include in potential (lpotct) =   -1
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (PntFac) =  30.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-05
Asymptotic cutoff type (iAsymCond) =    1
Use fixed asymptotic polarization =  0.11744000E+02  au
Number of integration regions used =    51
Number of partial waves (np) =    10
Number of asymptotic solutions on the right (NAsymR) =     5
Number of asymptotic solutions on the left (NAsymL) =     5
Maximum in the asymptotic region (lpasym) =   12
Number of partial waves in the asymptotic region (npasym) =    9
Number of orthogonality constraints (NOrthUse) =    0
Found polarization potential
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   14
Higest l included in the K matrix (lna) =    8
Highest l used at large r (lpasym) =   12
Higest l used in the asymptotic potential (lpzb) =   24
Time Now =        21.6913  Delta time =         0.0012 Energy independent setup

Compute solution for E =    0.0200000000 eV
Found fege potential
Charge on the molecule (zz) =  0.0
Assumed asymptotic polarization is  0.11744000E+02 au
 stpote at the end of the grid
 i =  1  lval =   6  stpote = -0.27559972E+00
 i =  2  lval =   3  stpote =  0.10485340E-14
 i =  3  lval =   3  stpote =  0.94295897E+00
 i =  4  lval =   5  stpote = -0.16306066E-13
Number of asymptotic regions =      14
Final point in integration =   0.74471903E+03
Iter =   1 c.s. =      7.62151078 angs^2  rmsk=     0.01130294
Iter =   2 c.s. =      3.02021294 angs^2  rmsk=     0.00420168
Iter =   3 c.s. =      2.43814569 angs^2  rmsk=     0.00072472
Iter =   4 c.s. =      2.41769115 angs^2  rmsk=     0.00002697
Iter =   5 c.s. =      2.41770734 angs^2  rmsk=     0.00000002
Iter =   6 c.s. =      2.41770700 angs^2  rmsk=     0.00000000
     REAL PART -  Final k matrix
     ROW  1
 -0.31685474E-01-0.17976216E-02-0.33265182E-06-0.21843694E-10-0.18508365E-14
     ROW  2
 -0.17976215E-02-0.57252909E-03-0.24858424E-03-0.18282695E-07-0.64841112E-12
     ROW  3
 -0.33265171E-06-0.24858424E-03-0.21446846E-03-0.10120276E-03-0.37826938E-08
     ROW  4
 -0.21843695E-10-0.18282685E-07-0.10120276E-03-0.10936707E-03-0.56252790E-04
     ROW  5
 -0.18563268E-14-0.64840368E-12-0.37826928E-08-0.56252790E-04-0.65332684E-04
 eigenphases
 -0.3177830E-01 -0.6262200E-03 -0.1881793E-03 -0.6459407E-04  0.2082019E-04
 eigenphase sum-0.326365E-01  scattering length=   0.85154
 eps+pi 0.310896E+01  eps+2*pi 0.625055E+01

Iter =   6 c.s. =      2.41770700 angs^2  rmsk=     0.00000000
Time Now =        27.7476  Delta time =         6.0563 End ScatStab

+ Command TotalCrossSection
+
Symmetry SG -
        E (eV)      XS(angs^2)    EPS(radians)
       0.001000       1.012963      -0.004880
       0.010000       1.862380      -0.020445
       0.020000       2.417707      -0.032636

 Total Cross Sections

 Energy      Total Cross Section
   0.00100     1.01296
   0.01000     1.86238
   0.02000     2.41771
Time Now =        27.7525  Delta time =         0.0049 Finalize